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Abstract Location fingerprinting is an approach to GPS-free localization. This ap-
proach requires a prior training set of fingerprints sampled at known locations, by
comparing to which the locations of future fingerprints can be determined. For good
accuracy, the training set should be large enough to appropriately cover the area.
However, in practice, a quality training set is not easy to obtain and as such re-
cent studies have resorted to utilizing fingerprints that are available without location
information; these are called unlabeled fingerprints. This chapter presents several
ways one can use regularization to learn from unlabeled fingerprints. Regulariza-
tion is a mathematical framework to learn a function from data by enforcing regu-
larizers to improve generalizability. The following scenarios are discussed: (1) how
the training set can be enriched with unlabeled fingerprints, (2) how a trajectory of
a moving device can be computed given its sequential fingerprints, labeled or un-
labeled, collected during the trajectory, and (3) how a device can be tracked in an
online manner as it moves using real-time fingerprints.

1 Introduction

Location information is valuable to a myriad of applications of wireless networks.
In a surveillance sensor network, it is crucial to know the location of an incident
caught by a sensor, such as fire in a building or oil spill in a coastal water. The
demand is also high for mobile apps providing navigation and other location-based
services in hospitals, shopping malls, airport terminals, and campus buildings, to
name a few. GPS is the most effective way to get location information but does not
work indoors. Even for outdoor environments where this service is available, it is
not energy-efficient to have to turn it on continuously all the time.
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Consequently, numerous efforts have been made towards GPS-free localization
solutions. A popular approach is to leverage a model correlating received signal
strength (RSS) with distance [30]; this is called “ranging”. Given a number of refer-
ence points (RPs), e.g., Wi-Fi access points [1] or FM broadcasting towers [8], we
can locate a device by estimating its distances to these RPs based on RSS ranging
and then using multi-lateration to compute the device’s location. RSS ranging, how-
ever, is highly sensitive to noise interference [30]. Furthermore, radio propagates
differently in different directions due to obstacles such as walls, people, and furni-
ture. Positioning based on LED lighting [12] has also been proposed with promising
accuracy, but as visible light does not penetrate physical obstacles, this technique is
suitable only for short-range applications.

Location fingerprinting is a viable range-free localization alternative. An early
adopter of this approach is RADAR [1], perhaps the world’s first Wi-Fi RSS-based
indoor positioning system. This system relies on a radio map, a lookup table that
maps locations inside the building under localization to the RSS fingerprints empir-
ically observed at these locations, respectively. The reference points are the Wi-Fi
access points in the building. To locate a user, the radio map is searched to find the
closest sample RSS reading and its corresponding location will be used as the esti-
mate for the user’s location. RADAR represents the fingerprint approach that uses
kNN for comparison to the map [1, 16, 33]. One can also employ a model-based
learning approach to relate a fingerprint to a location, for example, probabilistically
using Bayesian inference [21] or non-probabilistically using Artificial Neural Net-
works [13] or Support Vector Machines [5, 11, 32].

To generalize, a fingerprint at a specific location is a vector of location-sensitive
measurements observed about the mobile device at this location. For indoor envi-
ronments, such a measurement can be a RSS reading from a nearby Wi-Fi access
point [1], a FM broadcasting tower [8], or a cellular tower [29]. For underwater
environments, a measurement can be a profile of echo-sounding signals transmit-
ted from the device (e.g., an AUV) to the sea floor or ping signals to the surface
buoys. In theory, any sensor information that is sensitive to location change, in-
cluding sound [23], light [12], and geomagnetic field [9], can be included in the
fingerprint vector. Combining different sensor data where applicable can lead to a
rich set of discriminative features for the fingerprint information.

The fingerprint approach works on the basis that if fingerprint information is
obtained for sufficiently many sample locations then the device’s location given a
new fingerprint can be computed by comparing to these samples. Specifically, there
are two phases: the training phase, which is often done offline, and the positioning
phase, which is done online. In the training phase, a number of sample locations
are surveyed to build a map pairing each location to a fingerprint. In the positioning
phase, when we need to compute a location in real time, the fingerprint of the device
is compared against the fingerprint map to find the best location match.

Despite its simplicity, the fingerprint approach is limited by the quality of the
training data. The training data should be sufficiently large to be well-representative
of the environment, both spatially and temporally; see example in Figure 1. For a
large area, many locations need to be surveyed to ensure good spatial coverage and
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Fig. 1 Example of surveyed area: Wi-Fi RSSI fingerprint data were obtained at 208 sample loca-
tions (shown as dots) on the Computer Science department floor (68m × 63m) at UMass Boston.
There are in total 138 Wi-Fi access points and from those unreachable the corresponding RSSI is
set to -100db. At each sample location, the corresponding fingerprint is the average of the RSSIs
observed at this location. RSSI was measured by a person carrying an Android phone in no partic-
ular heading direction.

many fingerprint readings need to be measured at each sample location to ensure
good temporal coverage (the signal characteristics of the environment are not time
invariant). Consequently, the calibration task can be tedious and labor-extensive,
causing bottleneck to localization accuracy.

To circumvent this problem, one can apply semi-supervised learning [6] to aug-
ment the (small) training data set of fingerprints with non-training fingerprints (those
available but without known location) [17–19, 25, 34]. Here, training fingerprints
serve as labeled data and non-training fingerprints as unlabeled. Unlabeled finger-
prints are abundant because they can easily be obtained for a mobile device without
manual location labeling. In practice, fingerprints should have similar values at sim-
ilar locations and differ at different locations. This spatial property can be useful
to regulate the learning. In Section 3, we present two different ways how location
fingerprinting can be cast into a semi-supervised learning framework using regular-
ization.

Another problem discussed in this chapter is location tracking of a mobile device
based on its sequentially obtained fingerprints. As the device is moving, more fin-
gerprints, labeled or unlabeled, may be obtained on the spot and we should utilize
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them to better locate the device beyond mere reliance on the prebuilt/enriched train-
ing data. Since these fingerprints are that of a trajectory, a useful observation is that
if two fingerprints are measured in proximate times then so should their correspond-
ing locations. Section 4 presents the formulation of fingerprint-based tracking as a
regularization problem incorporating this kind of temporal smoothness to compute
a moving device’s trajectory from its sequential fingerprint history.

Any computing framework is meaningful only if it can be implemented effi-
ciently in a real system. For fingerprint-based localization and tracking in real time,
since the fingerprint stream can go to infinity, it is impossible to store and process
all the fingerprints observed in the past due to storage and computation costs. It is
therefore desirable to have an algorithm that can compute the location in an online
manner using a manageable amount of memory and compute resources. One idea
is to store and compute based on only a small set of representative fingerprints in-
stead of all the observed fingerprints. The rationale is as follows. Since the location
matrix of a mobile device over a time window exhibits a low-rank structure, as sub-
stantiated in [20], we conjecture that the fingerprint matrix over time should also be
sparse because of the tight correspondence between a fingerprint and its location.
Consequently, the fingerprint stream can be approximated by a sparse set of repre-
sentative fingerprints with minimal loss of information. Section 5 presents an online
algorithm based on this idea.

There are already numerous research works on mobile localization and tracking,
but they make additional assumptions such that those about special sensors built in
the device (e.g., gyroscope, accelerometer, compass, light sensor) [31], those about
mobility-specific constraints (e.g, speed, predefined map) [33] and those that are
network-specific (e.g., vehicular [3] or wireless sensor networks [24]). In contrast,
the regularization frameworks presented in this chapter are aimed at universal appli-
cability in the sense that they are orthogonally applicable to any type of fingerprint
space; i.e., applicable where fingerprint information can be of radio signals, acous-
tic, visible light, or geomagnetic, etc and can contain any other information so long
as it is location-sensitive.

The remainder of this chapter is organized as follows. Section 2 presents some
background about fingerprint localization, its state-of-the-art formulation and solu-
tion using a training dataset. Section 3 discusses how to enrich the training data with
unlabeled fingerprint information. Section 4 is focused on the trajectory reconstruc-
tion problem. Section 5 is about how a trajectory can be computed in a sequential
manner. Finally, the chapter is concluded in Section 6.

2 Preliminaries

Denote the fingerprint space by X ⊂ Rm, where m is the number of fingerprint
features, each taking a real-valued number; e.g., RSSI from different Wi-Fi APs,
readings from inertial measurement units (accelerometer, gyroscope, magnetome-
ter), and/or any other location-discriminative feature that is obtainable for the de-
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vice. A fingerprint is said to be “labeled” if its ground-truth location is known and
“unlabeled” otherwise. For a fingerprint x, which is a point in this m-dimensional
space, let h(x) be the function indicating whether x is labeled (h(x) = 1) or not
(h(x) = 0). Denote

y(x) =
{

ground-truth location of x, if x is labeled
0, if x is unlabeled.

For the sake of presentation, we assume that the location space is 1D; hence, y(x) ∈
R. The case for higher dimensions is a trivial extension (where each coordinate is
computed separately). The unknown in our formulation is a function f : X → R
that returns the location estimate for a given fingerprint. Ideally, f (x) should equal
its ground-truth location y(x) for every labeled x.

Given a training set of labeled fingerprints, T = {x1,x2, ...,xl}, one can use su-
pervised learning to learn the location estimate f . For example, supervised learning
can be formulated as a Tikhonov regularization problem minimizing the following
regularized empirical risk

f ∗ = argmin
f∈HK

l

∑
i=1

( f (xi)− y(xi))
2 +λK‖ f‖2

K . (1)

Here, the solution space for the location estimator f is the reproducing kernel Hilbert
space (RKHS) HK associated with a kernel function

K : X ×X → R

(x,x′) 7→ exp
(
−|x−x′|2

2γ2

)
(2)

for some constant γ . The first term, ∑
l
i=1( f (xi)− y(xi))

2, represents the deviation
compared to the ground truth, using the squared loss as an example. The second
term, λK‖ f‖2

K , is added to enforce some property; in our case, f is preferred to
be smooth with respect to kernel K. The notation ‖.‖K denotes the norm in HK .
Coefficient λK > 0 represents the enforcement weight of the regularization.

In our context, the RKHS HK is a Hilbert space of real-valued functions defined
on the fingerprint space X , with the following properties. First, for every x ∈X ,
the function Kx ≡ K(x, .) ∈HK . Second, which is referred to as the reproducing
property, for every x ∈X , we have f (x) = 〈 f ,Kx〉. In general, any symmetric pos-
itive definite function can be used for the kernel K, not just the Gaussian function
defined in Eq. 2.

Because HK is a vector space whose dimension can be infinite, trying to directly
solve the minimization problem (1) is not computationally feasible. Fortunately,
thanks to the beautiful theorem below, called the Representer Theorem [22], we can
convert this problem to a minimization problem in a finite-dimensional space, which
can be solved easily.
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Theorem 1 (Representer Theorem). Suppose we are given a non-empty set X ,
a positive definite kernel K : X ×X → R, a set of training samples {(x1,y(x1)),
(x2,y(x2)), ..., (xl ,y(xl))}, a strictly increasing function g : [0,∞)→ R, an arbi-
trary cost function c : (X ×R2)l → R∪ {∞}. Then any f ∈HK minimizing the
regularized risk functional

c((x1,y(x1), f (x1)),(x2,y(x2), f (x2)), ...,(xl ,y(xl), f (xl)))+g(‖ f‖K) (3)

must lie in the subspace spanned by {Kx1 , Kx2 , ..., Kxl}.

Proof. Project f onto the subspace spanned by the vectors {Kx1 , Kx2 , ..., Kxl} to
obtain

f =
l

∑
i=1

αiKxi + v

where v∈HK is the orthogonal component; i.e,. 〈v,Kxi〉= 0 ∀i = 1,2, ..., l. Because
of the reproducing property,

f (x j) = 〈 f ,Kx j〉

=

〈
l

∑
i=1

αiKxi + v,Kx j

〉

=
l

∑
i=1

αi〈Kxi ,Kx j〉+ 〈v,Kx j〉

=
l

∑
i=1

αiK(xi,x j)

which is independent from v. Thus, the cost function c(.) does not depend on v.
Next, we have

‖ f‖2
K =

〈
l

∑
i=1

αiKxi + v,
l

∑
i=1

αiKxi + v

〉

=

〈
l

∑
i=1

αiKxi ,
l

∑
i=1

αiKxi

〉
+ 〈v,v〉

=

∥∥∥∥∥ l

∑
i=1

αiKxi

∥∥∥∥∥
2

K

+‖v‖2
K

and so, as g is strictly increasing,

g(‖ f‖)≥ g


√√√√‖ l

∑
i=1

αiKxi‖2
K

 ;
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the equality holds when v = 0. It becomes obvious that for f to minimize the risk in
(3) we must have v = 0. It follows that f must lie in the subspace spanned by {Kx1 ,
Kx2 , ..., Kxl}.

Applying this theorem to our problem, where

c((x1,y(x1), f (x1)),(x2,y(x2), f (x2)), ...,(xl ,y(xl), f (xl))) =
l

∑
i=1

( f (xi)− y(xi))
2

and g(x) = λKx2 (a strictly increasing function on [0,∞)), hence

g(‖ f‖K) = λK‖ f‖2
K ,

we will look for a solution of the form

f =
l

∑
i=1

αiKxi

or

f (x) =
l

∑
i=1

αiK(xi,x) ∀x ∈X

where the coefficients α1, α2, ..., αl ∈ R are the only unknown to be found. Let us
denote the following matrices:

• The location estimator vector

f =


f (x1)
f (x2)
...

f (xl)


• The kernel coefficient vector

ααα =


α1
α2
...
αl


• The label vector

y =


y(x1)
y(x2)
...

y(xl)


• The identity matrix I = diag(1,1, ...,1︸ ︷︷ ︸

l

)

• The kernel matrix
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K =


K(x1,x1) K(x1,x2) ... K(x1,xl)
K(x2,x1) K(x2,x2) ... K(x2,xl)

...
K(xl ,x1) K(xl ,x2) ... K(xl ,xl)


We have

l

∑
i=1

( f (xi)− y(xi))
2 = (f−y)ᵀ(f−y) = (Kααα−y)ᵀ(Kααα−y)

and

‖ f‖2
K = 〈 f , f 〉

=

〈
l

∑
i=1

αiKxi ,
l

∑
i=1

αiKxi

〉

=
l

∑
i=1

l

∑
j=1

αiα j〈Kxi ,Kx j〉

=
l

∑
i=1

l

∑
j=1

αiα jK(xi,x j)

= ααα
ᵀKααα

The minimization problem in (1) can be expressed in matrix form as

ααα
∗ = argmin

ααα

(Kααα−y)ᵀ(Kααα−y)+λKααα
ᵀKααα.

Assuming K is invertible, using gradient descent to solve this minimization prob-
lem, we can easily obtain

ααα
∗ =


α∗1
α∗2
...
α∗l

= (λKI+K)−1 y.

In the positioning phase, given a new fingerprint x, its predicted location will be

f ∗(x) =
l

∑
i=1

α
∗
i K(xi,x).

The localization error of this prediction depends on the quality of the training set T .
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3 Enrichment of Training Data

Suppose that, in addition to the original training set T = {x1,x2, ...,xl}, whose
ground-truth location is known, we have a supplemental set of unlabeled finger-
prints, U = {xl+1,xl+2, ...,xl+u}, whose location is unknown. In practice, u� l.
If we can somehow learn the locations of the unlabeled fingerprints, the extended
fingerprint map {y(x)}x∈T∪U with n = l + u samples, instead of the original map
{y(x)}x∈T with only l samples, should be used for training purposes. Since the
extended map is richer, it is highly likely that the localization quality during the
positioning phase will be better.

One way to learn the locations of these unlabeled fingerprints based on the la-
beled is by applying Bayesian inference [14]. This method, called the generative
method, consists in two steps. First, we estimate a distribution for the probability
p(x|y) of observing a fingerprint x at a given location y. Second, the location corre-
sponding to a fingerprint x is determined based on the probability

p(y|x) ∝ p(x|y)p(y)

where p(y) is the probability of location y. The location distribution is assumed
known.

The generative method relies on choosing the right model for the distribution
p(x|y), which is not easy. Alternatively, one can use the regularization method to
propagate the location labels for the unlabeled fingerprints based on their similarity
with the labeled. This is possible because of the spatial smoothness in the finger-
print space. The de facto regularization framework for semi-supervised learning is
Manifold Regularization proposed by Belkin et al. [2]. Pan et al. [17, 18] apply this
framework to fingerprint localization, in which a Laplacian regularization term is
added to regulate the intrinsic manifold structure of the fingerprints; here the mani-
fold is a weighted graph of fingerprints in which the weight of an edge connecting
two fingerprints represents their similarity. Total Variation Regularization, which is
an alternative framework for semi-supervised learning [15], has been explored for
location fingerprinting in the work of Tran and Truong [25]. We present below the
formulations using Manifold Regularization and Total Variation Regularization.

3.1 Manifold Regularization

The Manifold Regularization method for semi-supervised learning extends the regu-
larization formulation (1) by introducing a Laplacian regularization term to enforce
the smoothness with respect to an intrinsic manifold. To apply this framework to
location fingerprinting, as in [17, 18], we need to solve the following problem:

min
f∈HK

l

∑
i=1

( f (xi)− y(xi))
2 +λK‖ f‖2

K +λMR

n

∑
i, j=1

w(xi,x j)( f (xi)− f (x j))
2. (4)
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Here, the intrinsic manifold is a similarity graph W of n = l +u vertices, each rep-
resenting a fingerprint. W can be constructed as a kNN-graph or an ε-ball-graph.
As a kNN-graph, each vertex is connected to its k nearest vertices; i.e., those at
smallest distances (distance in the fingerprint space). As an ε-ball-graph, each ver-
tex is connected to every vertex within a distance bounded by ε . The distance can
be defined based on any metric such as Euclidean or Manhattan and the value k or
ε chosen must ensure that the graph is connected. Once the edges are formed, each
edge (xi,x j) is associated with a weight w(xi,x j) to represent the similarity between
the fingerprints xi and x j. The similarity measure is most often based on a Gaussian

Radial Basis Function; i.e., w(x,x′) = exp
(
− |x−x′|2

2σ2

)
for some σ . The weight is set

to zero for non-edges.
The additional regularization term in (4) is called the Laplacian regularizer be-

cause we can express

n

∑
i, j=1

w(xi,x j)( f (xi)− f (x j))
2 =


f (x1)
f (x2)
...

f (xn)

L
[

f (x1) f (x2) ... f (xn)
]

where L is the Laplacian matrix of the similarity graph W ,

L =

[
li j =

{
−w(xi,x j) if i 6= j
∑

n
k=1 w(xi,xk) otherwise

]
n×n

Let us denote f = [ f (x1), f (x2), ..., f (xn)]
ᵀ, y = [y(x1),y(x2), ...,y(xn)]

ᵀ, H =
diag(h(x1),h(x2), ...,h(xn)), the identity matrix I = diag(1,1, ...,1︸ ︷︷ ︸

n

), and the kernel

matrix K = [ki j = K(xi,x j)]n×n. Then, we can write

l

∑
i=1

( f (xi)− y(xi))
2 = (f−y)ᵀH(f−y).

Because we just need to find the best values for { f (xl+1), f (xl+2), ..., f (xn)}, it
suffices to solve the following minimization:

min
f

{
J(f) = (f−y)ᵀH(f−y)+λK‖f‖2

K +λMRfᵀLf
}
. (5)

Proposition 1. The minimizer of risk J(f) in (5) admits the following solution:

f∗ = (λKI+KH+λMRKL)−1 KHy. (6)

Proof. Because f belongs to the RKHS HK , according to the Representer Theorem,
we look for a solution in the form f = Kααα for some column vector ααα ∈ Rn. There-
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fore, ‖f‖2
K = αααᵀKααα and the risk J(f) in Eq. (5) becomes: (note that K is symmetric

and so Kᵀ = K)

J(f) = (f−y)ᵀH(f−y)+λKααα
ᵀKααα +λMRfᵀLf

= fᵀ(H+λMRL)f−2yᵀHf+yᵀHy+λKααα
ᵀKααα

= ααα
ᵀK(H+λMRL)Kααα−2yᵀHKααα +yᵀHy+λKααα

ᵀKααα

= ααα
ᵀ K(λKI+(H+λMRL)K)︸ ︷︷ ︸

Q

ααα−2yᵀHKααα +yᵀHy

= ααα
ᵀQααα−2yᵀHKααα +yᵀHy.

To minimize J(f), set its derivative with respect to ααα to zero,

∂J
∂ααα

= (Q+Qᵀ)ααα−2KHy = 0.

Since K, H, and L are symmetric, we have Qᵀ = Q and so 2Qααα − 2KHy = 0 or
(λKI+K(H+λMRL))Kααα−KHy = 0. Because f = Kααα , we obtain

f = (λKI+KH+λMRKL)−1 KHy,

assuming the matrix inverse is possible.

3.2 Total Variation Regularization

Total Variation (TV) regularization is a widely used regularization framework for
restoring images in the area of image processing [15]. TV permits sharper edges near
the decision boundaries whereas the Laplacian regularization penalizes too much
gradients on edges. The former’s effectiveness as an alternative framework for semi-
supervised learning has been demonstrated, for example by Bresson and Zhang [4].
TV can be used to enrich the training quality for location fingerprinting, as first
reported in the work of Tran and Truong [25].

In the TV framework for semi-supervised learning, the minimization problem is

min
f

l

∑
i=1

( f (xi)− y(xi))
2 +λTV TVW , (7)

where TVW is the TV of the function f on the similarity graph W described earlier.
By definition, the TV of a continuous function f is

TV [ f ] =
∫

X
‖∇ f‖ dx,

where X is the domain (continuous) of f , ∇ f is its gradient, and dx the area element
of Ω of f . This concept can be extended for weighted graphs as follows. On graph
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W , the TV of a real-valued scalar function f defined on its vertices is the sum of the
local TV at each and every vertex,

TVW =
n

∑
i=1
‖∇ f (i)‖Lp(w).

The local TV at vertex xi is the weighted Lp-norm of the gradient at this vertex. The
gradient of function f at vertex xi is

∇ f (xi) =


f (x1)− f (xi)
f (x2)− f (xi)

...
f (x j)− f (xi)

...
f (xn)− f (xi)


and so,

‖∇ f (xi)‖Lp(w) =

(
n

∑
j=1

w(xi,x j)| f (x j)− f (xi)|p
)1/p

.

The graph TV above is a generalization of that defined in [4] and [10]. Note that the
case p = 1 corresponds to the graph TV used by Bresson and Zhang [4],

TVW =
n

∑
i, j=1

w(xi,x j)| f (x j)− f (xi)|,

and the case p = 2 corresponds to the graph TV used by Elmoataz et al. [10],

TVW =
n

∑
i=1

√
n

∑
j=1

w(xi,x j)( f (x j)− f (xi))2.

The minimization in (7) becomes

min
f

l

∑
i=1

( f (xi)− y(xi))
2 +λTV

(
n

∑
j=1

w(xi,x j)| f (x j)− f (xi)|p
)1/p

. (8)

This problem can be solved generally using the algorithm in [10]. Alternatively,
there is a simpler algorithm [25] which fixes the locations for the labeled (setting
f (xi) = y(xi) for labeled xi) and iteratively adjust the location estimates for the
unlabeled as long as the value of the TV regularization term continues to decrease.
This algorithm works as follows:

1. Initial step: for i, j ∈ [1,n]
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Fig. 2 Trento dataset’s map: 30m×20m (courtesy of [5])

f (0)i =

{
y(xi) if i≤ l
0 otherwise

γ
(0)
i j = w(xi,x j)

2. Iterative step t = 0,1,2, ...: for i, j ∈ [1,n]

f (t+1)
i =


f (t)i if i≤ l
∑

n
j=1 γ

(t)
i j f (t)j

∑
n
j=1 γ

(t)
i j

otherwise

γ
(t+1)
i j =

w(xi,x j)

‖∇ f (t)(i)‖L2(w)
+

w(xi,x j)

‖∇ f (t)( j)‖L2(w)

3. Stop when ∑
n
i=l+1 | f

(t+1)
i − f (t)i |< τ (a predefined threshold). When stopped, the

value of f (t)i is used as the estimated location for each unlabeled fingerprint xi.

3.3 Manifold vs. Total Variation Regularization

We present below the results of an evaluation to assess the effectiveness of Man-
ifold Regularization and Total Variation Regularization for enriching the training
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fingerprint set. This evaluation, published in [25], uses a Wi-Fi fingerprint dataset
obtained from an indoor experiment, courtesy of [5] (University of Trento), contain-
ing 257 RSSI fingerprints at 257 sample locations in a WLAN with six Wi-Fi access
points (see floor plan in Figure 2). The sample locations are regular-grid points of
the floor. Each fingerprint is measured at a sample location by a person carrying a
PDA to receive Wi-Fi signals from the access points. The PDA always points north.

A random half Train of this collection (128 samples) is used for training and the
other half Test (129 samples) for testing purposes. Out of the training samples, we
randomly create two groups of samples: the labeled group T (with the location labels
intact) and the unlabeled group U (with the location labels removed). It is noted that
T,U ⊂ Train and T ∩U = /0. The size of T is set to be 10%, 20%, ..., or 70% of
|Train| and, given T , the size of U is set to be 10%, 20%, ..., or 100% of |Train\T |.
For each combination of these sizes, the average location when tested with Test is
averaged over 10 times running the simulation (with random generations of T and
U). 1-NN is used for testing; that is, given a test fingerprint, its estimated location is
the location of the nearest fingerprint in the fingerprint map.

Figure 3 and Figure 4 plot the average error for various cases of |T | and |U |,
comparing the following techniques.

• Original: only the labeled set T is used as the training fingerprint map.
• Combine: the set T ∪U , where the ground-truth label is provided for every fin-

gerprint, is used as the training fingerprint map.
• TV: the Total Variable Regularization method is used to estimate the label for U

and then T ∪U is used for training.
• Manifold: the Manifold Regularization method is used to estimate the label for

U and then T ∪U is used for training.

The following patterns are observed:

• Regardless of the size of the labeled set, Manifold and TV tend to be increasingly
effective as the size of the unlabeled set increases.

• When the labeled set is small (e.g., 10%, 20% in Figure 3), regularization does
not help. Only when the labeled set gets sufficiently large (e.g., 60%, 70% in
Figure 4), we start to see its effect. This finding is understandable because a
small labeled set offers too little information to be useful for the training.

• Manifold is consistently more accurate than TV. This is different from the ob-
servation in the area of image processing where TV is known to be better. This
suggests that, unlike images which often have edges, the fingerprint space may
not exhibit “edges” of fingerprints (i.e., a path in the fingerprint graph) located at
a small cluster of locations isolated from the rest of locations. This could be due
to the penetrable-ness of the Wi-Fi signal in the indoor area.

That said, these findings are meant to be suggestive rather than conclusive as the
dataset used is small. Nevertheless, they show the potential effectiveness of both
Manifold Regularization and TV Regularization in enriching the training data set
for fingerprint-based localization.
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Fig. 3 Effectiveness of Manifold Regularization and Total Variation Regularization: showing av-
erage location error for the case of low label rate. The unit for y-axis is 0.1m. ( [25])
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Fig. 4 Effectiveness of Manifold Regularization and Total Variation Regularization: showing av-
erage location error for the case of high label rate. The unit for y-axis is 0.1m. ( [25])
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Fig. 5 A test trajectory visiting 185 locations on the Computer Science department floor (68m ×
63m) at UMass Boston.

4 Trajectory Computation

Suppose that a mobile device is moving along a trajectory, during which we obtain a
sequence of fingerprints, x1,x2, ...,xn, at times 1,2, ...,n, respectively. Some of them
may be obtained with location information, but most without. Note that this is a
sequence of fingerprints whose time order matters, not a set of fingerprints as for
enriching the training data in the previous section. We need to compute the location
at the current time n.

In a study on trajectory tracking, Rallapalli et al. [20] confirmed that real-world
mobility of a device often exhibits its moving at a constant velocity for a long period
of time before changing speed. Consequently, the quantity

|( f (xi)− f (xi−1))− ( f (xi−1)− f (xi−2))|= | f (xi)+ f (xi−2)−2 f (xi−1)|

for most i should be close to zero. We refer to this property as the temporal smooth-
ness in the fingerprint space, in contrast to the spatial smoothness discussed in the
previous section.

Tran and Zhang [26] showed that temporal smoothness is more effective than
spatial smoothness for trajectory construction if one property is exclusively enforced
in the regularization. As an illustration, given the ground-truth trajectory of a mov-
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ing device shown in Figure 5, in all three cases where 10% or 50% or 90% of the
fingerprint sequence is labeled (at random), a better trajectory estimate is obtained
by enforcing temporal smoothness than by enforcing spatial smoothness; see Figure
6, Figure 7, and Figure 8 for the case of 10% labeled, 50%, and 90%, respectively.
In these figures, we show the location estimated for a fingerprint instantly at the time
it is observed. The first point is always put at the center because in the fingerprint
sequence under evaluation it happens to be unlabeled and there is no labeled finger-
print available for learning. As can be seen, in all cases of label rate, the temporally-
regularized trajectory resembles the ground-truth trajectory more closely than the
spatially-regularized trajectory does. Even in the case only 50% of the fingerprints
are labeled, temporal regularization results in a trajectory (Figure 7) comparable to
the trajectory produced by spatial regularization for the case 90% labeled (Figure
8).

Tran et. al [28] proposed a unified regularization framework combining both
properties as follows:

min
f∈HK

{
J( f ) =

n

∑
i=1

h(xi)( f (xi)− y(xi))
2 +λK‖ f‖2

K +λSS( f )+λT T ( f )

}
, (9)

where

S( f ) =
n

∑
i, j=1

w(xi,x j)( f (xi)− f (x j))
2

T ( f ) =
n

∑
i=3

( f (xi)+ f (xi−2)−2 f (xi−1))
2

are the regularizers to enforce spatial smoothness and temporal smoothness, respec-
tively. This framework extends the manifold regularization framework of Belkin et
al. [2] (by setting λT = 0) with the temporal regularizer T ( f ). The weights λK , λS,
λT ∈ [0,∞) are to tune the importance of the smoothness terms (kernel, spatial,
temporal). Recall that h(.) is the label indicator function.

Let D be the second-order difference matrix of size n×n,

D =



0 0 0 0 ... ... ... ... 0
0 0 0 0 0 ... ... ... 0
1 −2 1 0 0 0 ... ... 0
0 1 −2 1 0 0 0 ... 0
0 0 1 −2 1 0 0 ... 0
... ... ... ... ... ... ... ... ...
0 ... ... 0 1 −2 1 0 0
0 ... ... ... 0 1 −2 1 0
0 ... ... ... ... 0 1 −2 1


n×n

Using the same matrix notations, f, y, H, L, and K, as earlier, we have
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(b) Temporal: 10% labeled

Fig. 6 Effect of spatial regularization vs. temporal regularization for the case 10% of the finger-
prints is labeled: showing the estimated trajectory, where red-colored points are location estimates
for unlabeled fingerprints and blue-colored points are the ground-truth locations of the labeled
fingerprints; the numbers represent the ID of the fingerprints sorted in time of measurement. The
ground-truth trajectory is shown in Figure 5. ( [26])
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(b) Temporal: 50% labeled

Fig. 7 Effect of spatial regularization vs. temporal regularization for the case 50% of the finger-
prints is labeled: showing the estimated trajectory, where red-colored points are location estimates
for unlabeled fingerprints and blue-colored points are the ground-truth locations of the labeled
fingerprints; the numbers represent the ID of the fingerprints sorted in time of measurement. The
ground-truth trajectory is shown in Figure 5. ( [26])
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(a) Spatial: 90% labeled
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(b) Temporal: 90% labeled

Fig. 8 Effect of spatial regularization vs. temporal regularization for the case 90% of the finger-
prints is labeled: showing the estimated trajectory, where red-colored points are location estimates
for unlabeled fingerprints and blue-colored points are the ground-truth locations of the labeled
fingerprints; the numbers represent the ID of the fingerprints sorted in time of measurement. The
ground-truth trajectory is shown in Figure 5. ( [26])
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Df =



0 0 0 0 ... ... ... ... 0
0 0 0 0 0 ... ... ... 0
1 −2 1 0 0 0 ... ... 0
0 1 −2 1 0 0 0 ... 0
0 0 1 −2 1 0 0 ... 0
... ... ... ... ... ... ... ... ...
0 ... ... 0 1 −2 1 0 0
0 ... ... ... 0 1 −2 1 0
0 ... ... ... ... 0 1 −2 1


n×n


f (x1
f (x2
...

f (xn)



=


0
0

f (x1)−2 f (x2)+ f (x3)
f (x2)−2 f (x3 + f (x4)

...
f (xn−2)−2 f (xn−1)+ f (xn)


and so

T ( f ) =
n

∑
i=3

( f (xi)+ f (xi−2)−2 f (xi−1))
2 = (Df)ᵀDf = fᵀDᵀDf = fᵀBf

where

B = DᵀD =



1 −2 1 0 ... ... ... ... 0
−2 5 −4 1 0 ... ... ... 0
1 −4 6 −4 1 0 ... ... 0
0 1 −4 6 −4 1 0 ... 0
0 0 1 −4 6 −4 1 ... 0
... ... ... ... ... ... ... ... ...
0 ... ... 0 1 −4 6 −4 1
0 ... ... ... 0 1 −4 5 −2
0 ... ... ... ... 0 1 −2 1


n×n

.

Also, S( f ) = fᵀLf. We now minimize the following regularized risk:

min
f

{
J(f) = (f−y)ᵀH(f−y)+λK‖f‖2

K +λSfᵀLf+λT fᵀBf
}
. (10)

Proposition 2. The minimizer of risk J(f) in (10) admits the following solution

f∗ = (λKI+K(H+λSL+λT B))−1 KHy. (11)

Proof. A proof can be derived in a way similar to the proof of Proposition 1. The
complete proof is provided in [28].
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A comparison of this framework to the nearest-neighbor (NN) framework has
been conducted in [28]. For example, for the same ground-truth trajectory in Fig-
ure 5, using a sequence of 185 fingerprints with 10% labeled, the corresponding
estimate resulted from each framework is visualized in Figure 9; the regularization
framework is the better. Figure 10 gives the location error comparison for other
cases of label rates.

5 Online Algorithm

Assuming the problem setting in the previous section and using the same notations,
we now discuss how the location of a moving device can be computed from its
sequentially obtained fingerprints in an online manner. Note that to compute the so-
lution f∗ as in Eq. (11) requires a O(n3)-time and O(n2)-space algorithm. As such,
when the fingerprint stream goes larger, it will become infeasible to compute the
location of the device in real time. Fortunately, as aforementioned, the fingerprint
space should be sparse in both time and space. This implies the possibility to ap-
proximate the growing set of fingerprints with only a sparse representation which
we can use to estimate location in real time.

5.1 Sparse Representation

Let us represent the set of fingerprints x1,x2, ...,xn compactly as a multi-set

{(x̄1,m1),(x̄2,m2), ...,(x̄k,mk)}

where the representative elements are x̄1, x̄2, ..., x̄k and their respective multiplicities
m1,m2, ...,mk (∑k

i=1 mi = n). In other words, there are m1 fingerprints with value
x̄1, m2 fingerprints with value x̄2, etc. Denote the corresponding compact vector for
estimated locations by

f̄ =


f (x̄1)
f (x̄2)
...

f (x̄k)

 .
Similarly, let

ȳ =


ȳ1
ȳ2
...
ȳk


be the compact vector for ground-truth locations. If no ground-truth information is
available for fingerprint x̄i and neither for any fingerprint that x̄i represents, then
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(a) Nearest-neighbor

(b) Regularization

Fig. 9 Regularization vs. Nearest-Neighbor for computation of mobile trajectory: showing the es-
timated trajectory (red-colored) given the same fingerprint sequence with 10% labeled; the ground-
truth trajectory is black-colored. The ground-truth trajectory is shown in Figure 5. ( [28])
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Fig. 10 Regularization vs. Nearest-Neighbor for computation of mobile trajectory: showing loca-
tion error as more fingerprints are available as labeled.

ȳi is set to 0; otherwise, ȳi is the ground-truth location associated with x̄i. We can
transform the original minimization problem in (9) to a more compact version using
only the representative fingerprints.

Since we are looking for f ∈HK , let f (x) = ∑
n
i=1 αiK(xi,x). We have

f (x̄i) =
n

∑
j=1

α jK(x j, x̄i)

=
k

∑
j=1

K(x̄ j, x̄i) ∑
p|xp=x̄ j

αp︸ ︷︷ ︸
ᾱ j

=
k

∑
j=1

ᾱ jK(x̄ j, x̄i),

and so f̄ = K̄ᾱαα where K̄ =
[
k̄i j = K(x̄ j, x̄i)

]
k×k and ᾱαα = [ᾱ1, ᾱ2, ..., ᾱk]

ᵀ. It follows
that the kernel regularization term can be expressed as ‖f‖2

K = ᾱαα
ᵀK̄ᾱαα .
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Next, the estimation error with respect to the labeled fingerprints can be rewritten
as follows:

n

∑
i=1

hi( f (xi)− yi)
2 =

k

∑
i=1

h̄i( f (x̄i)− ȳi)
2 = (f̄− ȳ)ᵀH̄(f̄− ȳ)

where H̄ = diag(h̄1, h̄2, ..., h̄k) such that h̄i = ∑ j|x j=x̄i h(x j) which is the number of
labeled fingerprints represented by x̄i.

The spatial regularization term S( f ) can be rewritten as

S( f ) = fᵀLf̄

=
n

∑
i=1

i

∑
j=1

w(xi,x j)( f (xi)− f (x j))
2

=
k

∑
i=1

i

∑
j=1

mim jw(x̄i, x̄ j)︸ ︷︷ ︸
w̄(x̄i,x̄ j)

( f (x̄i)− f (x̄ j))
2

=
k

∑
i=1

i

∑
j=1

w̄(x̄i, x̄ j)( f (x̄i)− f (x̄ j))
2 = f̄ᵀL̄f̄

where L̄ is the Laplacian matrix of the similarity graph with vertices x̄1, x̄2, ..., x̄k,
constructed as discussed earlier in Section 3.1, except that the edge weight function
is w̄(x̄i, x̄ j) = mim jw(x̄i, x̄ j).

The temporal regularization term T ( f ) can be rewritten as

T ( f ) = fᵀBf̄

=
n

∑
i=1

f (xi)
n

∑
j=1

f (x j)bi j

=
n

∑
i=1

f (xi)
k

∑
j=1

f (x̄ j) ∑
q|xq=x̄ j

biq

=
k

∑
j=1

f (x̄ j)
t

∑
i=1

f (xi) ∑
q|xq=x̄ j

biq

=
k

∑
j=1

f (x̄ j)
k

∑
i=1

f (x̄i)

 ∑
p|xp=x̄i

∑
q|xq=x̄ j

bpq︸ ︷︷ ︸
b̄i j


=

k

∑
i=1

k

∑
j=k

f (x̄i) f (x̄ j)b̄i j = f̄ᵀB̄f̄
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where B̄= [b̄i j]k×k. Intuitively, B̄ is a compact version of B by merging (summing up
values of) all the entries in B whose row/column indices correspond to fingerprints
having identical values.

Therefore, the risk J(f) in (10) can be expressed as

J(f) = (f̄− ȳ)ᵀH̄(f̄− ȳ)+λKᾱαα
ᵀK̄ᾱαα +λS f̄ᵀL̄f̄+λT f̄ᵀB̄f̄.

meaning that the minimization problem in (10) can be reduced to an exact same
minimization problem except that

• The input fingerprints are {x̄i} instead of {xi}.
• The weight function is w̄(x̄i, x̄ j) = mim jw(x̄i, x̄ j).
• The matrices L̄, H̄, B̄, and K̄ are used in place of the matrices L, H, B, and K,

respectively.

Applying Proposition 2 on this compact problem, we obtain the following result.

Corollary 1. The minimizer of risk J(f) in (10) admits the following solution f∗ =
[ f ∗(x1), f ∗(x2), ..., f ∗(xn)] where f ∗(xi) is the jth entry of vector

f̄∗ =
(
λK Ī+ K̄(H̄+λSL̄+λT B̄)

)−1 K̄H̄ȳ. (12)

such that xi = x̄ j.

As a result of this corollary, instead of using a O(n3)-time and O(n2)-space algo-
rithm for computing the solution f∗ as in Eq. (11), we can obtain an exact solution
by computing f̄∗ in Eq. (12) which involves matrices of size k× k; hence, O(k3)-
time and O(k2)-space complexities. Therefore, if k is small, we have a much more
efficient algorithm.

In practice, however, it is rare to obtain two identical fingerprints even at the
same location due to noise and so if we use the exact multi-set representation for the
fingerprint sequence the value of k can be as large as n. In what follows, we present
an approximate algorithm that uses a fixed-size buffer of up to k representative fin-
gerprints where k is set to a predefined constant.

5.2 Representative Buffer

Hereafter, we assume that k is a constant. At any time n we maintain a buffer

Bn = {(x̃i, m̃i, h̃i, ỹi)}i

of up to k representative fingerprints x̃1, x̃2, ..., x̃k ∈ {x1,x2, ...,xn}, where there is a
count m̃i for x̃i for the number of fingerprints represented by xi, and another count
h̃i for the number of labeled fingerprints therein. Each fingerprint is assigned to its
closest representative. Here, ỹi is the location of x̃i if it is labeled and zero otherwise.
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We use the notation (˜) to mean “approximate” to distinguish from (¯) which means
“exact”.

Natural candidates to be the representative fingerprints in the buffer are the k-
centers (as in the well-known metric k-center clustering problem),

[x̃1, x̃2, ..., x̃k] = argmin
[x̃1,x̃2,...,x̃k]

(
max

1≤ j≤n

(
min

1≤i≤k
‖x j− x̃i‖

))
.

The k-center representatives are a good compact representation of the fingerprint
graph in terms of spatial representativity (unlikely for two fingerprints with similar
values to be both selected centers) and temporal representativity (unlikely for two
fingerprints observed in similar times to be both selected centers).

For a fingerprint stream, its k-centers can be computed, and updated incremen-
tally upon receipt of each new fingerprint, by an incremental k-center clustering
algorithm. In particular, we use Charikar et al.’s Doubling Algorithm [7]. The Dou-
bling Algorithm guarantees that the distance between a fingerprint and its assigned
representative is always less than the distance between any pair of centers. When
applying the Doubling Algorithm, the details being listed in Algorithm 1, we en-
force two rules: (1) when the new fingerprint needs to join an existing cluster, it
prefers to be represented by a center that is labeled; see lines 6-11, and (2) in the
re-clustering process when the number of centers exceeds k, labeled fingerprints are
selected first to serve as center whenever needed; see line 23. More presence of la-
beled fingerprints in the representative set should result in more information useful
for the location prediction.

It is possible that the buffer consists of k′ < k centers, for example, during the
initial phase of the fingerprint stream or as a result of the re-clustering using the
Doubling Algorithm; in this case, location estimation is computed using these k′

centers. For simplicity of presentation, we assume below that the buffer has k repre-
sentative fingerprints.

5.3 Location Estimation

Similar to how we define the matrices H̄, L̄, B̄ and K̄ for the exact multi-set, we
have the corresponding matrices H̃, L̃, B̃ and K̃ for the representative fingerprints
in Bn. When each new fingerprint is available, the buffer needs be updated and,
accordingly, so do these matrices. Matrices H̃, L̃, and K̃ can be computed easily
after the buffer is updated, as follows:

H̃ = diag(h̃1, h̃2, .., h̃k)

L̃ =

[
l̃i j =

{
−m̃im̃ jw(x̃i, x̃ j) if i 6= j
∑

k
p=1 m̃im̃pw(x̃i, x̃p) otherwise

]
k×k
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Algorithm 1: Incremental Update of Representative Buffer
/* run at time n after obtaining fingerprint xn */
Input: fingerprint xn, representative buffer Bn−1 = {(x̃i, m̃i, ỹi)}i
Output: new representative buffer Bn

1 if (n equals 1) then
2 B1 = {(x1,1,h(x1),y(x1)};
3 Initialize R to a small value, e.g., 0.0001;
4 return;
5 end
6 Find the labeled center x̃i in Bn−1 s.t. ‖xn− x̃i‖< R and ‖xn− x̃i‖ is minimum;
7 if (that x̃i is found) then

/* Assign xn to center x̃i */
8 m̃i ++;
9 Bn = Bn−1;

10 return;
11 end
12 Find the unlabeled center x̃i in Bn−1 s.t. ‖xn− x̃i‖< R and ‖xn− x̃i‖ is minimum;
13 if (that x̃i is found) then

/* Assign xn to center x̃i */
14 m̃i ++;
15 Bn = Bn−1;
16 return;
17 end

/* If we get here, xn is too far, at least R away, from any
center; create a new center */

18 Bn = Bn−1∪{(xn,1,h(xn),y(xn))};
19 while (|Bn|> k) do

/* Need to re-cluster */
20 R = 2×R;
21 Btemp =∅;
22 repeat
23 Choose one center x̃i in Bn, preferably labeled;
24 Bn = Bn \{(x̃i, m̃i, h̃i, ỹi)};
25 for (each center x̃l in Bn s.t. ‖x̃l − x̃i‖< R) do

/* Collapse center x̃l into center x̃i */
26 m̃i = m̃i + m̃l ;
27 Bn = Bn \{(x̃l , m̃l , h̃l , ỹl)};
28 end
29 Btemp = Btemp∪{(x̃i, m̃i, h̃i, ỹi)};
30 until (Bn =∅);
31 Bn = Btemp;
32 return;
33 end

K̃ =

[
k̃i j = exp

(
−
|x̃i− x̃ j|2

2γ2

)]
k×k

Let “7→” denote the assignment of a fingerprint to a representative. Matrix B̃ is the
following matrix
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B̃ =

b̃i j = ∑
p|xp 7→x̃i

∑
q|xq 7→x̃ j

bpq


k×k

. (13)

The entries {b̃i j}k×k are incrementally updated during the same time as the buffer is
being updated. Initially, at time zero, b̃i j is set to 0 for every i, j≤ k. Suppose that the
current buffer is {x̃1, x̃2, ..., x̃k} when we receive a new fingerprint xn. Because we
use the Doubling Algorithm for updating the k-centers, the buffer update consists
in two steps: (1) assign a representative to the new fingerprint and (2) re-cluster the
representatives if necessary (when there are more than k of them).

In the first step, as a result of using the Doubling Algorithm, suppose that xn is
assigned to some representative x̃i (see line 7 or line 13 in Algorithm 1). Because
of this new assignment, only the values of b̃i j and b̃ ji for j = 1,2, ...,k need to be
updated such that

b̃i j+= ∑
q|xq 7→x̃ j

bnq

b̃ ji+= ∑
q|xq 7→x̃ j

bnq.

Recall that in matrix B entry bpq is zero everywhere except when |p−q| ≤ 2. There-
fore, b̃i j (and b̃ ji) can be efficiently computed as follows:

b̃i j +=


bn−1,n if xn−1 7→ x̃ j ∧xn−2 67→ x̃ j
bn−2,n if xn−1 67→ x̃ j ∧xn−2 7→ x̃ j
bn−1,n +bn−2,n if xn−1 7→ x̃ j ∧xn−2 7→ x̃ j
0 otherwise.

For this computation to be possible, we need to keep track of which fingerprints in
the buffer represent the two latest fingerprints, xn−1 and xn−2.

It is also important to note that at each new step n, the entry bn−1,n−1 changes
value from 1 (value at time n−1) to 5 (value at time n). Similarly, bn−2,n−2 changes
value from 5 to 6, and bn−1,n−2 and bn−2,n−1 both from −2 to −4. The values of the
other entries of matrix B are intact. Consequently, supposing that xn−1 7→ x̃ j1 and
xn−2 7→ x̃ j2 , we need to make the following updates:

b̃ j1 j1+= 4

b̃ j2 j2+= 1

b̃ j1 j2−= 2

b̃ j2 j1−= 2.

The time complexity for updating B̃ in this step is O(k).
In the second step, which takes place only if there are more than k representative

fingerprints in the buffer, we need to re-cluster them. This step involves merging
of the representatives. Each time when a representative x̃l is collapsed into another
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Algorithm 2: Online Algorithm
/* run at time n after fingerprint xn is observed */
Input: fingerprint xn
Output: location of xn

1 Update buffer Bn = {(x̃i, m̃i, h̃i, ỹi)}k
i=1 according to Algorithm 1 and at the same time

update matrix B̃;
2 if ( xn is labeled) then
3 Location of xn is the given yn;
4 return;
5 end
6 Compute H̃, L̃, and K̃;
7 Let ỹ = [ỹ1, ỹ2, ..., ỹk]

ᵀ where ỹi is the given location of representative fingerprint x̃i if it is
labeled and set to zero otherwise; Ī be the n×n identity matrix;

8 Compute f̃ =
(
λK Ī+ K̃(H̃+λSL̃+λT B̃)

)−1 K̃H̃ỹ;
9 Location of xn is the element in f̃ that corresponds to the representative fingerprint of xn;

10 return;

representative x̃i (see line 25 in Algorithm 1), we make the following update:

∀ j : 1≤ j ≤ k∧ j 6= l :

b̃i j += b̃ jl

b̃ ji += b̃ jl

∀ j : 1≤ j ≤ k :

b̃l j = 0

b̃ jl = 0.

The time complexity for updating B̃ in the re-clustering step, if it occurs, is also
O(k).

After matrices H̃, L̃, B̃ and K̃ have been updated the location estimation is simply
an application of Eq. (12) in Corollary 1 where we use H̃, L̃, B̃, and K̃ instead of
H̄, L̄, B̄, and K̄. This is summarized in Algorithm 2. The total time complexity for
estimating the location of each fingerprint is dominated by the time to compute the
inverse matrix; hence, O(k3).

The promise of this online algorithm has been substantiated by Tran and Zhang
in [27]. Figure 11 shows an example where given a sequence of 124 fingerprints,
50% of which labeled, the estimated trajectory using a buffer storing only 20% of
the sequence length can closely approximate the trajectory computed using an infi-
nite buffer. For this result, only temporal regularization is applied and the ground-
truth trajectory is shown in Figure 12; the parameters are temporal regularization
coefficient λT = 10−4, kernel regularization coefficient λK = 10−6, and Gaussian
parameters γ = 1 and σ = 0.1 for the kernel function and weight function, respec-
tively.
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(a) Buffer size: 20% sequence length
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Fig. 11 Example of the estimated trajectory for a fingerprint sequence with 50% of the fingerprints
labeled. Red-colored points are location estimates for the unlabeled fingerprints and blue-colored
points are the ground-truth locations of the labeled fingerprints. The numbers represent the IDs of
the fingerprints sorted in time of observation. The ground-truth trajectory is shown in Figure 12.
( [27])
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Fig. 12 A test trajectory visiting 124 locations on the Upper Level (185m × 113m) in the Campus
Center at UMass Boston.

In terms of computation time, Figure 13 provides an illustration of the time ad-
vantage of the online algorithm for this trajectory. The time to locate each individual
fingerprint exhibits a cubic growth until the buffer reaches its capacity (k in the on-
line algorithm and no limit in the batch algorithm). Regardless of how large the
buffer is, as long as its size is fixed, eventually the computation time will converge
to a stable value, which does not increase even when the fingerprint stream gets
longer. The cubic growth in time renders the batch algorithm extremely inefficient
in practice where the tracking is required for an extended period of time.

6 Conclusions

Fingerprint-based localization and tracking can be made more effective by enriching
the set of training fingerprints and by utilizing real-time fingerprints obtainable on
the spot. To realize this potential, a regularization approach has been presented,
which, by incorporating spatial and temporal characteristics of the fingerprint space
into the regularization framework, can offer promising estimation accuracy. Also
discussed is an algorithm with constant-bounded computational complexities which
can be used to track the location of a moving device in real time.

Potential applications of the presented regularization frameworks are plentiful. A
GPS-equipped smartphone, say, when being used in an urban shopping outlet, does
not need to turn GPS on continuously; instead, it can be set to switch on once in
a while and our algorithm can be used to compute the smartphone location during
the GPS-free gaps. This results in great energy saving. In an indoor building, we can
place location labels (e.g., RFID tags) at popular locations such as info desks, which
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Fig. 13 Localization time (in log scale) to locate each individual fingerprint. Buffer size k is ex-
pressed as a percentage of the length of the fingerprint sequence. ( [27])

the phone can read automatically when passing nearby; this labeled location infor-
mation can be used to infer location at any other place. In tracking of autonomous
underwater vehicles (AUVs) deployed in underwater environments, the AUV while
submerged is tracked using a built-in inertial navigation system that has to dead
reckon with GPS each time the AUV surfaces; it is desirable to improve the local-
ization accuracy of the AUV between these GPS fixes. It is noted that in all these
applications, the training data comes sequentially in real time.

Although theoretically interesting, there exist challenges when implementing a
regularization framework. For example, how to find the best regularization coeffi-
cients, or in the case of online tracking, what should be the best fingerprint buffer
size? Assuming a sparse fingerprint matrix, we conjecture that the best fingerprint
buffer size should be logarithmic to the length of the fingerprint sequence. Another
challenge is to determine the best label rate, i.e., the amount of labeled fingerprints
relatively to the amount of unlabeled, as too high or too low a rate may degrade
the effectiveness of the regularization. Also, in practice, there are other constraints
regarding the mobility of the moving device that should be incorporated into the
framework for better accuracy. Consequently, there is much more room for future
research. In the mean time, the presented techniques can be used to provide bench-
mark for evaluation of location fingerprinting.
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19. Pulkkinen, T., Roos, T., Myllymäki, P.: Semi-supervised learning for wlan positioning. In:
Proceedings of the 21th international conference on Artificial neural networks - Volume Part
I, ICANN’11, pp. 355–362. Springer-Verlag, Berlin, Heidelberg (2011).

20. Rallapalli, S., Qiu, L., Zhang, Y., Chen, Y.C.: Exploiting temporal stability and low-rank struc-
ture for localization in mobile networks. In: Proceedings of the sixteenth annual international
conference on Mobile computing and networking, MobiCom ’10, pp. 161–172. ACM, New
York, NY, USA (2010). DOI 10.1145/1859995.1860015.
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