
A Random Projection Approach to Subscription
Covering Detection in Publish/Subscribe Systems

Duc A. Tran
Department of Computer Science

University of Massachusetts, Boston, MA 02125
Email: duc@cs.umb.edu

Thinh Nguyen
Department of Electrical and Computer Engineering

Oregon State University, Corvallis, OR 97331
Email: thinhq@eecs.oregonstate.edu

Abstract—Subscription covering detection is useful to improv-
ing the performance of any publish/subscribe system. However,
an exact solution to querying coverings among a large set of
subscriptions in high dimension is computationally too expensive
to be practicable. Therefore, we are interested in an approximate
approach. We focus on spherical subscriptions and propose a
solution based on random projections. Our complexities are
substantially better than that of the exact approach. The pro-
posed solution can potentially find exact coverings with a success
probability 100% asymptotically approachable.

I. INTRODUCTION

E-commerce is a popular marketplace involving more and
more producers and consumers everyday. An effective mech-
anism for them to find each other is desirable. Of importance
is a publish/subscribe system (a.k.a. pub/sub) that enables
consumers to subscribe to their interests and producers to
publish their products, asynchronously without their knowing
each other, so that subscription-product matching can be made
quickly.

The simplest design for a pub/sub is to index every sub-
scription and product in one central place, where matchings
can be determined locally (e.g., [1]). This centralized approach
obviously does not scale with the system size.

For scalability, a pub/sub should be designed as a dis-
tributed network involving broker nodes, who share the load
of storing, distributing, and matchmaking subscriptions with
products [2]–[6]. Underlying a distributed pub/sub are routing
mechanisms for subscription propagation and product prop-
agation. Typically, during the propagation of a subscription,
each receiving broker records the subscription coupled with
the sending broker into a routing table. During a product’s
propagation, each visited broker searches its routing table
to find the matching subscriptions and forwards the product
information to the corresponding brokers in the routing table,
to find the way to matching consumers.

The routing table at any broker may grow quickly as new
subscriptions continue to enter the network. Consequently,
searching a routing table for subscriptions matching a product
may be a time-consuming process. To keep the routing table
small, an effective way is to let a broker forward a subscription
during its propagation only if it is not already covered by an
existing subscription locally stored [2], [5], [7]. For example,
consider a broker A that already stores a subscription S(X) .=

(company = ∗, stock = [$400, $500]) for a consumer X
who is interested in companies with stock values between
$400 and $500. Suppose that broker A later receives a new
subscription S(Y ) .= (company = ∗, stock = [$420, $440])
for a consumer Y who is interested in companies with stock
values between $420 and $440. Broker A would not need
to forward the new subscription to other brokers because A
is already waiting for products that match S(X), which will
automatically contain the results for S(Y ). In this example,
there are two advantages of stop forwarding S(Y ): (1) the
traffic due to forwarding S(Y ) is avoided, and (2) the routing
tables at other brokers are not getting larger.

Although potential for improving a pub/sub’s performance,
the detection of subscription coverings at each broker, if not
done efficiently, may turn into a burdening process, especially
when there are already many subscriptions, each having many
attributes. First, it may take long time to find a covering sub-
scription for every new subscription. Second, when an existing
subscription is removed, because the products matching it may
no longer arrive, all subscriptions covered by this subscription
need to be found and subsequently be forwarded further. To
illustrate this case, we revisit the previous example. If S(X) is
removed, the products matching S(X) may never be available.
Therefore, broker A needs to find S(Y ) and then advertise it
further so that the products matching S(Y ) can find A. The
process of finding all covered subscriptions of a given one
may also be time-consuming.

Thus, for a pub/sub network of many subscriptions with
many attributes, we need an efficient data structure for orga-
nizing the subscriptions so that fast algorithms for detection
of subscription coverings can be derived. The challenge is
that, despite a few attempts [7]–[10], no exact solution to
the subscription covering problem can remain efficient if the
subscription dimensionality is high [10]–[12]. By “exact”,
we mean that the covering detection algorithm always finds
coverings exactly. Therefore, if a new subscription is found to
be covered by an existing subscription, this covering is always
correct and the new subscription is never forwarded further.

Our research in this paper is to seek an approximate solu-
tion. By “approximate”, we mean that the covering detection
algorithm may return false coverings. Thus, the broker may
redundantly forward a subscription even when it is covered
by an existing subscription. This redundant forwarding creates



some traffic but does not affect the correctness of the system.
The advantage of an approximate solution is that it may
lower both time and place complexities compared to the exact
approach. The accuracy of an approximate solution is the
capability to avoid redundant forwarding, which should be
maximized.

Recently, approximate solutions to the subscription covering
problem have been proposed for rectangular subscriptions [9],
[10]. In this paper, we assume spherical subscriptions. First,
we show that it is not trivial to approximate a spherical sub-
scription with a rectangular one. We then propose a novel ap-
proximation approach based on random projections, in which
redundant forwarding occurs with a probability exponentially
approaching zero as we increase the number of projections.
We propose a simple implementation based on layered range
tree to index the subscriptions. This implementation, for n
subscriptions in d dimensions, in the worst case results in
O(log2k−1 n) query time and O(n log2k−1 n) storage, where
k is any integer less than d. These bounds are much better
than that for the exact approach.

The remainder of this paper is structured as follows. In
Section II, we formalize the problem and present some pos-
sible solutions as well as our motivation for using random
projections. The proposed data structures and algorithms are
described in Section III. Related work is discussed in Section
V. We conclude our paper with pointers to our future work in
Section VI.

II. PRELIMINARIES

When a product is first generated, we call that an event
and represent it by a point in Rd where d is the number of
attributes associated with the event. There are various ways
to represent a subscription. Most work models a subscrip-
tion as a d-dimension rectangle. In our work, we represent
each subscription by a d-dimension sphere (s, r) centered at
point s ∈ Rd with radius r ∈ R+. For example, consider
a video surveillance sensor network where sensor cameras
are deployed in many places to detect criminals. In this
application, a subscription specified by a sample photo of a
wanted criminal is submitted to the network with the purpose
that similar pictures are detected and their locations reported.
For image retrieval, a spherical query is used more often than
a rectangular query to define the limit of image results.

An event x and a subscription (s, r) is said to match each
other, denoted by x ∈ (s, r) iff ‖ x − s ‖ ≤ r. Also, a
subscription (s, r) is said to cover another subscription (s′,
r′), denoted by (s, r) ⊇ (s′, r′), if the sphere (s, r) contains
the sphere (s′, r′). Conversely, the latter is said to be covered
by the former, which is denoted by (s′, r′) ⊆ (s, r). It is easy
to prove the following equivalence:

Proposition 2.1: (s, r) ⊇ (s′, r′) ⇔ ‖ s − s′ ‖ ≤ r − r′.
We focus on a single broker that stores a set of n subscrip-

tions {(s1, r1), (s2, r2), ..., (sn, rn)}. Our problem is to devise
an efficient method that allows for fast detection of covering
relationships in this subscription set. Specifically, we need a
dynamic data structure to organize the subscriptions so that:

(s, r)

(s’, r’)

Fig. 1. Approximating spheres with minimum bounding and maximum
bounded cubes

1) The cost, time and space, to construct the data structure
and update it upon subscription insertions or deletions
is low

2) Finding at least a subscription that covers a given
subscription is fast

3) Finding all the subscriptions covered by a given sub-
scription is fast

A. Contributions

When a new subscription enters the broker, the simplest way
to find a subscription covering it is to scan the subscription
set sequentially and check the covering condition on each
visited subscription. With a time complexity of O(nd), which
is linear in n, this brute-force approach is too expensive for
a large publish/suscribe system where a broker may contain
millions of subscriptions. A complexity sub-linear of n is more
desirable.

Another solution is to approximate a spherical subscription
by a rectangular subscription because solutions for the latter
are widely available. If we denote by mBC(s, r) the mini-
mal bounding d-dimension axis-parallel cube and MBC(s, r)
the maximal bounded d-dimension axis-parallel cube of the
subscription (s, r), we have the proposition below:

Proposition 2.2: The following causalities are true:
1) mBC(s, r) 	⊇ mBC(s′, r′) ⇒ (s, r) 	⊇ (s′, r′)
2) MBC(s, r) ⊇ MBC(s′, r′) ⇒ (s, r) ⊇ (s′, r′)
Therefore, we can conclude on the covering relationship

between two spherical subscriptions based on the covering
conditions on the minimal bounding cubes and maximal
bounded cubes as in Proposition 2.2. The only case that no
accurate conclusion about the covering relationship can be
made is when mBC(s, r) ⊇ mBC(s′, r′) and MBC(s, r) 	⊇
MBC(s′, r′) (see Figure 1).

This ambiguous case occurs if at least one vertex of
MBC(s′, r′) is outside MBC(s, r). Assuming uniform dis-
tribution for the subscriptions (for both centers and radii), the



Fig. 2. Projections of two spheres onto a random unit vector

probability for the ambiguous case can approximately be

1 −
(

volume(MBC(s, r))
volume(mBC(s, r))

)d

= 1 − (
√

2r)d

(2r)d

= 1 −
(

1√
2

)d

which is highly likely if d is a large number.
We propose a novel solution that approximates a spherical

subscription by its projection on a set of random uni-dimension
vectors rather than by its bounding and bounded cubes. We
show that not only finding subscription coverings in the
new projection space is more efficient, but the approximation
accuracy can approach 100% asymptotically. Our motivation
for using random projections is explained next.

B. Why Random Projections?

Suppose that u is a random unit vector in Rd. The projection
of a subscription (s, r) on this vector is the interval u(s, r) =
[〈u, s〉 − r, 〈u, s〉 + r] (where 〈., .〉 is the inner product). For
example, in Figure 2, the projection of the sphere (s, r) is the
interval AB = [〈u, s〉 − r, 〈u, s〉 + r].

It is always true that, if subscription (s, r) covers subscrip-
tion (s′, r′), we also have u(s, r) ⊇ u(s′, r′). To assess the
capability of u in detecting covering relationships, we are
interested in the conditional probability that u(s, r) ⊇ u(s′, r′)
given (s, r) 	⊇ (s′, r′).

This case is illustrated in Figure 2. Without loss of gener-
ality, suppose that r ≥ r′. Firstly, we have

AB = u(s, r) ⊇ u(s′, r′) = A′B′

⇔ OC ≤ r

⇔ OD + r′ ≤ r

⇔ ‖ 〈u, s − s′〉 ‖≤ r − r′

⇔ ‖ s − s′ ‖| cos θ |≤ r − r′

⇔ r′ − r

‖ s − s′ ‖ ≤ cos θ ≤ r − r′

‖ s − s′ ‖

Assuming that θ is uniformly distributed between 0 and 2π,
the conditional probability that the last inequality occurs is

Pr

{
r′ − r

‖ s − s′ ‖ ≤ cos θ ≤ r − r′

‖ s − s′ ‖
}

(1)

= 1 − 2
π

arccos
(

r − r′

‖ s − s′ ‖
)

(2)

According to Maclaurin series,

arccos z =
π

2
−

(
z1 +

(
1
2

)
z3

3
+

(
1 · 3
2 · 4

)
z5

5
+ ...

)

Let z = r−r′
‖s−s′‖ . Because (s, r) 	⊇ (s′, r′), combining with

Proposition 2.1, we must have 0 ≤ z < 1. Therefore,

arccos z � π

2
− z

This is a tight approximation because, even when z is as
large as 0.9, the next terms after term z of the Maclaurin series
quickly become very small. For example,(

1
2

)
z3

3
= 0.1215

(
1 · 3
2 · 4

)
z5

5
= 0.0442

The probability (2) can be approximated as follows:

1 − 2
π

arccos z � 1 − 2
π

(
π

2
− z) =

(
2
π

)
r − r′

‖ s − s′ ‖
We note that this probability is conditional on (s, r) 	⊇

(s′, r′). Hence, we obtain the following proposition.
Proposition 2.3: Consider the projection of the subscrip-

tion/event space onto a random unit vector. Assume that
the subscriptions follow a uniform distribution. Given two
subscriptions (s, r) and (s′, r′) that do not have a covering
relationship, the probability that this projection results in a
covering relationship is close to(

2
π

) | r − r′ |
‖ s − s′ ‖

Proposition 2.3 suggests that we can detect subscription
coverings by finding coverings among the subscriptions’ pro-
jections on a random unit vector, which is less demanding in
both time and space. In terms of accuracy using this approach,
the probability that a found covering is false nears zero if
the original subscriptions have similar radii (r ≈ r′) or inter-
distant centers (large ‖ s − s′ ‖).

This probability, however, may be as large as 2
π ≈ 0.64 in

the worst case, which is rather high. We, therefore, propose
to use more than one random projection. The following
proposition provides a bound on the accuracy of covering
detection based on multiple random projections.

Proposition 2.4: Consider i.i.d. projections of the subscrip-
tion/event space onto k random unit vectors {u1, u2, ..., uk}.



Assume that the subscriptions follow a uniform distribution.
Given two subscriptions (s, r) and (s′, r′):

• If at least one projection ui finds no covering relationship
between ui(s, r) and ui(s′, r′), it must be true that no
covering relationship exists between (s, r) and (s′, r′)

• If every projection ui finds that ui(s, r) ⊇ ui(s′, r′), the
probability that (s, r) ⊇ (s′, r′) is closely at least

1 −
(

2
π

)k

Proof: The first conclusion is correct because if (s, r) ⊇
(s′, r′), it is always true that ui(s, r) ⊇ ui(s′, r′) for any i.
The second conclusion is a consequence of Proposition 2.3.

This proposition implies that it is highly effective to detect
subscription coverings by projecting the subscription space
onto multiple random uni-dimensions. The error probability
approaches zero exponentially as the number of projections
increases. We present our data structures and algorithms in
the next section.

III. DATA STRUCTURES AND ALGORITHMS

In this section, we propose how to organize the subscriptions
so that covering detection based on random projections can be
implemented.

Firstly, in the preprocessing phase when the broker first
starts, it generates the following matrix

⎛
⎜⎜⎝

u1

u2

...
uk

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝

u1
1 u2

1 ... ud
1

u1
2 u2

2 ... ud
2

... ... ... ...
u1

k u2
k ... ud

k

⎞
⎟⎟⎠ (3)

where each row vector ui is a d-dimension unit vector i.i.d.
randomly generated. To maximize their mutual independence,
if these vectors are not orthogonal, we can use a Gram-Schmidt
process [13] to orthogonalize them. For each subscription
(s, r), we compute a set of k uni-dimension intervals, each
being a projection of the subscription on a vector ui:

u1(s, r) = [〈u1, s〉 − r, 〈u1, s〉 + r]
u2(s, r) = [〈u2, s〉 − r, 〈u2, s〉 + r]

...

uk(s, r) = [〈uk, s〉 − r, 〈uk, s〉 + r]

These intervals form a k-dimension rectangle in the
(u1, u2, ..., uk)-coordinate space:

RECT (s, r) = u1(s, r) × u2(s, r) × ... × uk(s, r)

We refer to this rectangle by a “k-projection rectangle”, or
simply “projection rectangle” when the dimension is obvious.

Proposition 2.4 implies the following:

1) If RECT (s, r) 	⊇ RECT (s′, r′), then (s, r) 	⊇ (s′, r′)
2) If RECT (s, r) ⊇ RECT (s′, r′), then (s, r) ⊇ (s′, r′)

with a probability, roughly, at least 1 − (2/π)k

Therefore, approximating the covering relationship between
two subscriptions by that between their projection rectan-
gles is highly accurate. In addition, according to [14], a
rectangle in k dimensions can be considered a point in 2k
dimensions: R = [a1, b1] × [a2, b2] × ... × [ak, bk] ≡ pR =
(a1,−b1, a2, b2, ..., ak,−bk) ∈ R2k so that

• To find all rectangles that cover R is equivalent to the
orthogonal range query that finds all the points in the
range [a1,∞] × [−b1,∞] × [a2,∞] × [−b2,∞] × ... ×
[ak,∞] × [−bk,∞] of the 2k-dimension space. These
points are called the dominating points of the point pR

• To find all rectangles that are covered by R is equiv-
alent to the orthogonal range query that finds all the
points in the range [−∞, a1]× [−∞,−b1]× [−∞, a2]×
[−∞,−b2] × ... × [−∞, ak] × [−∞,−bk] of the 2k-
dimension space. These points are called the dominated
points of the point pR

Therefore, we propose to index each subscription (s, r) by
a 2k-dimension point:

idx(s, r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈u1, s〉 − r
−〈u1, s〉 − r
〈u2, s〉 − r
−〈u2, s〉 − r

...
〈uk, s〉 − r
−〈uk, s〉 − r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We then store these indices using a data structure that
supports orthogonal range searching in high dimension. We
use a 2k-dimension layered range tree for simple indexing
implementation (see [15], chapter 5). Therefore, we obtain the
following properties:

• Building time for n subscriptions: O(n log2k−1 n)
• Update time to insert a new subscription or delete an

existing subscription: O(log2k−1 n)
• Time to query coverings: O(log2k−1 n + m) where m is

the number of coverings reported
• Space complexity: O(n log2k−1 n)
Using this data structure, to decide whether to stop forward-

ing a new subscription (s, r) when it arrives at a broker, we
follow the algorithm below:

1) Compute idx(s, r) and insert it to the index tree
2) Search the index tree to find one subscription (s′, r′)

such that idx(s′, r′) dominates idx(s, r)
a) IF no such (s′, r′) is found, forward (s, r)
b) ELSE check the original covering condition

i) IF ‖ s − s′ ‖ ≤ r − r′, stop forwarding (s, r)
ii) ELSE forward (s, r)

3) END
This algorithm uses the index tree to quickly find a sub-
scription covering the new subscription in the index space.
This subscription (s′, r′), if any, could be a true covering
subscription (case 2b(i)) or a false covering subscription (case
2b(ii)). In either case, we use the original covering condition
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Fig. 3. Subscription radii: The uniform model and Pareto model

‖ s − s′ ‖ ≤ r − r′ (meaning (s′, r′) ⊇ (s, r)) to verify.
Therefore, we never withhold a subscription if it is not covered
by any subscription.

We may sometimes forward a new subscription even when
it is covered by some existing subscription. This case occurs if
the subscription (s′, r′) returned in Step (2) does not actually
cover (s, r) (case 2b(ii)) but another subscription not returned
by Step (2) does. However, this case is rare with the probability
less than (2/π)k. If it occurs, it just creates some redundant
traffic but does not affect the correctness of the pub/sub
system. The time complexity to process a new subscription is
O(log2k−1 n) to find (s′, r′) plus O(d) to check the original
covering condition; hence, O(log2k−1 n + d).

Cancellation of an existing subscription (s, r) is simple.
First, we compute idx(s, r) and remove it from the index tree.
Second, we search the index tree for all subscriptions (s′, r′)
such that idx(s′, r′) is dominated by idx(s, r) and advertise
(s′, r′) forward based on an underlying subscription routing
protocol (which we assume to exist). The time complexity to
cancel a subscription is therefore O(log2k−1 n+m), where m
is the number of dominated points found.

IV. SIMULATION STUDY

We conducted a simulation-based study to evaluate per-
formance of the random projection approach. Because the
time and space complexity of this approach can be obtained
theoretically, our performance study was focused on its effec-
tiveness; i.e., the probability of error in covering detection.
In Section III, we have obtained theoretically an approximate
upper bound of this error for the case that subscriptions follow
a uniform distribution. In this section, we present the actual
results obtained from our simulation.

We generated 10,000 spherical subscriptions. The centers
of these subscriptions were generated uniformly in random as
points in the d-dimension unit cube. The radii were chosen
in the range (0, 1) according to two distribution models: the
uniform distribution and the Pareto distribution. The latter
one, also known as the 80-20 rule, represents the case that
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most subscriptions are specific (i.e., small radii), only a few
being expansive (i.e., large radii). The subscriptions radii for
all 10,000 subscriptions in both models are drawn in Figure
3.

For each given subscription, assumed to be one of the
generated subscriptions, our technique was used to find its
coverings among the other 9999 subscriptions. Because our
theoretical work guarantees that no false non-covering is
possible, the metric evaluated was the frequency of false
coverings; i.e., that of the case that the a covering detected
is not true covering.

We studied the proposed technique for various dimensionali-
ties d ∈ {4, 8, 12, 16, 20}, for each case under various numbers
of random projections k ∈ {1, 2, ..., d/2}. The results are
plotted in Figures 4,5,6,7,8, where we also include the ap-
proximate upper-bound (2/π)k on the probability of covering
error mentioned in Proposition 2.4. These figures demonstrate
the following:

• In general, the frequency of error is low (e.g., less than
20% for k ≥ 2). Furthermore, the error is less for the
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Fig. 6. d = 12, k = {1, 2, ..., 6}
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Fig. 7. d = 16, k = {1, 2, ..., 8}
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Fig. 8. d = 20, k = {1, 2, ..., 10}

Pareto model than the uniform model (more than twice
less). In other words, if the sizes of the subscriptions are
skewed, the technique is more accurate. This result is
encouraging because in practice the 80-20 rule should
represent the user preferences better than the uniform
model.

• The actual frequency of error is significantly less than
the theoretical bound for the case of low dimensionality
(small d) or few random projections (small k). The
theoretical bound is used to prove the asymptotic property
of our technique. This simulation result shows that in
practice the technique can actually perform better than
that theoretically analyzed.

• When d is high (16 or 20) and k also high (k ≥
6), the technique performs worse for the uniform case
than the (2/π)k upper-bound. This is possible because
our theoretical analysis is approximate. However, when
this happens, the error frequency is already small. For
instance, when d = 20 and k = 6, the error for the
uniform case is less than 10% and for the Pareto case
less than 3%).

In summary, the simulation study substantiates the high
approximation accuracy of the random projection approach.

V. RELATED WORK

The design of a distributed publish/subscribe network typ-
ically involves two main tasks. The first task is to design
a communication architecture for efficiently disseminating
subscriptions and events over the network. The second task
is to design mechanisms for efficient storage of subscriptions
and fast matching of subscriptions with events.

The simplest communication architecture is the broadcast
approach, in which a subscription traverses a broadcast tree
to reach all broker nodes. This approach however has its
disadvantages. First, not all the broker nodes receive events
satisfying a given subscription, thus it is redudant to store a
subscription at every broker node. Second, broadcasting incurs
an extremly high communication cost, which is not desirable
for a large publish/subscribe network or a network with limited
resources such as a sensor network.

A much better option for the communication architecture
is to replicate a subscription in a set of select nodes where
satisfying events may likely be sent to. Most techniques of this
option employ a Distributed Hash Table (DHT) [16]–[18]. A
DHT is used to send a subscription or event to a node that is
the result of the hash function. The goal is that the node storing
a subscription and that receiving a satisfactory event are either
identical or within a proximixity of each other. Scribe [19] uses
Pastry [18] to map a subscription to a node based on topic
hashing, thus those subscriptions and events with the same
topic are mapped to the same node. Meghdoot [20] transforms
each subscription into a multidimensional point and employs
the CAN DHT structure [16] to hash this point to get the node
that will store this subscription. Rather than CAN and Pastry,
[21] uses the Chord DHT [17] instead. A technique that can
be used atop any such DHT structure was proposed in [22].



The aforementioned communication architectures are built
on top of an existing DHT overlay. [23] proposes a decentral-
ized architecture based on an unstructured overlay. This tech-
nique, called Sub-2-Sub, uses an epidemic-based algorithm
[24] to automatically cluster together subscriptions for similar
events. Therefore, an event is delivered to only nodes that have
relevant subscriptions.

In addition to the communication task, it is important to
have a mechanism that allows for efficient storage of subscrip-
tions and fast matching algorithms. Several structures already
exist, including the Matching Tree [25], [26], Binary Decision
Diagram [27], and SIFT [1], [28]. These early designs are
focused mainly on the matching aspect (i.e., matching an event
against the subscriptions).

When the size (number and dimension) of the subscrip-
tions is large, the task of maintaining a structure for the
subscriptions is not trivial. We need not only fast matching
algorithms, but also convenient ways to add to or remove
subscriptions from the storage. The set of subscriptions can
be simplified by merging overlapping subscriptions or finding
covering relationships among them. Instead of disseminating
subscriptions separately, similar ones can be merged to reduce
the number of subscriptions and thus the resultant traffic [7],
[29], [30]. Subscription covering [7]–[10], [31] is our paper’s
topic. By not forwarding subscriptions that are already covered
by an earlier forwarded subscriptions, we can also reduce the
size of the subscriptions as well as the traffic involved. Most
techniques [7], [8], [31] attempt to find subscription covering
exactly, thus inefficient for a large number of subscriptions
in high dimension. The works in [9], [10] are similar to our
work in the aspect that they also aim at finding coverings
approximately without affecting the overall correctness of
the system. [9] uses a Monte Carlo Sampling approach to
check the covering condition quickly. [10] maps the covering
condition between the subscriptions in high dimension to the
dominance condition between points on a uni-dimension Space
Filling Curve, so that coverings can be found faster. Compared
to these two techniques, the uniqueness of our solution is
two-fold. First, our approach based on Random Projections
is unique. Second, while [9], [10] assume rectangular sub-
scriptions, we address spherical subscriptions and have shown
that directly approximating them with rectangular ones does
not lead to good accuracy.

VI. CONCLUSIONS

Subscription covering is potentially very useful for improv-
ing the performance of any pub-sub system. It helps reduce not
only the size of any broker’s routing table, but also the network
traffic due to subscription/event propagation. Overusing it,
however, creates additional burden that may adversely slow
down the entire system.

The best way to utilize subscription coverings is to use it
only when it remains efficient. The current solutions are aimed
at finding the exact coverings, which are inefficient for large
pub-sub networks. We have proposed a novel solution that
finds the coverings approximately but with a high accuracy.

We project the subscription/event space onto a few random
unit vectors, where covering detection in the projection space
is much more efficient. As an approximation of the exact ap-
proach, a broker may sometimes waste bandwidth to forward
a new subscription even when it is covered by an existing
subscription. However, a desirable property of our approximate
approach is that this case occurs rarely with a probability
exponentially approaching zero as more random projections
are used. Our research is unique also because it is the first to
address spherical subscriptions.

Our future work includes extending the random-projection
framework to the case of rectangular subscriptions and imple-
menting a system based on the proposed technique.
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