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Abstract

We propose a P2P search solution, called EZSearch, that enables efficient multidimensional search for remotely located contents that
best match the search criteria. EZSearch is a hierarchical approach; it organizes the network into a hierarchy in a way fundamentally
different from existing search techniques. EZSearch is based on Zigzag, a P2P overlay architecture known for its scalability and robust-
ness under network growth and dynamics. The indexing architecture of EZSearch is built on top of the Zigzag hierarchy, that allows both
k-nearest-neighbor and range queries to be answered with low search overhead and worst-case search time logarithmic with the network
size. The indices are fairly distributed over a small number of nodes at a modest cost for index storage and update. The performance
results of EZSearch drawn from our performance study are encouraging.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most important problems in information
retrieval is similarity search. Informally, the problem is:
given a similarity query, whether it is a k-nearest-neighbor
(k-NN) query or a range query, we seek a set of contents
(or data objects) that are the most relevant to the search
criteria according to some semantic distance function.
Our goal is a decentralized solution to this problem for
P2P networks.

Search techniques have been proposed for unstructured
P2P networks. Most of them, however, are based on query
flooding (e.g., [4]), which is communicationally inefficient,
or based on random walking (e.g., [15]), which is ineffective
for similarity queries. Therefore, a structuralization of the
network is more favorable, which should include two con-
stituent components: a communication architecture and an
indexing architecture. Their design must consider the fol-
lowing issues:
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• Communication architecture: Without central servers, we
need a distributed overlay to interconnect the nodes for
efficient navigation between them. A main problem in
designing this overlay is due to the dynamics of P2P net-
works; nodes can join, leave, publish, and remove data
at any time and so connections and data coherence
may be lost frequently. The overlay should be self-
adjustable in a way to minimize the effect of such
changes. The overlay must be robust in that failure
recovery is fast and graceful to avoid interruption in
the on-going service. To be part of the network, a node
needs not know everything about the network. For effi-
ciency, a node should keep track of just a small number
of other nodes and process a small share of service load.
Since we target large-scale networks, the overlay must be
scalable with the network size.

• Indexing architecture: The accumulative volume of dis-
tributed data in a P2P network is large and potentially
keeps growing. Therefore, instead of employing a num-
ber of centralized servers (either dedicated or selected
among participating nodes) to carry the load for the
entire network, we should let every node in the network
share the load of indexing and searching. Then arise the
questions: how to determine which node to store an
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index? publish or remove an index? achieve index-load
balancing? deal with the curse of dimensionality? orga-
nize and manage these distributed indices so that search
can be performed fast and efficiently? etc. The indexing
architecture, built atop the communication architecture,
must answer these questions.

1.1. Existing solutions

The existing structural search solutions fall into two
main approaches: flat-based and hierarchy-based. In the
flat-based approach, the communication architecture orga-
nizes the nodes such that each node is mapped to a non-
overlapping region of a multi-dimensional space and adja-
cency links are added between nodes if their corresponding
regions are adjacent [1,11], and/or satisfy some relationship
[17]. The indexing architecture stores in each node the indi-
ces of all the objects that directly, or indirectly via a trans-
formation, belong to the region assigned to this node.
Search for an object is reduced to routing to the node
whose region contains the object. Nodes with similar data
may also be clustered [9] and additional links between dis-
tant nodes may be added [9,17] to reduce the routing dis-
tance among them. Examples of the flat-based approach
include DHT [3,11,12,17,21], small-world model [9], and
Voronoi-diagram [1] based search techniques.

The flat-based approach is less efficient in high dimen-
sionality because of the many adjacency links a node has
to maintain with neighbor nodes. The number of neighbors
is typically X(d) where d is the dimension. This dimension
can be in the hundred’s as in the case of image and docu-
ment retrieval, causing the communication architecture a
significant maintenance overhead. Several techniques
[9,13,16,18] employ multidimensional reduction methods
to reduce the data space to some manageable dimensional-
ity. However, as a tradeoff of dimensional reduction,
search in the lower dimensionality cannot be of the same
quality as in the original dimensionality; it either must
search a wider scope or the results may only be partial.

The hierarchy-based approach [8,10] organizes the
nodes into a hierarchy and provides a node-to-index map-
ping to this hierarchy so that it can utilize a multidimen-
sional indexing tree structure in traditional databases
[14]. The success of traditional multidimensional indexing
has been well-documented, making the hierarchy-based
approach potentially more suitable than the flat-based
counterpart for high-dimensional retrieval. A hierarchy is
also more scalable and tends to cope better with network
dynamics.

1.2. Contributions

Research in the hierarchical approach has been sparse,
the main reason due to the lack of an efficient hierarchical
communication architecture that can best work with a
successful multidimensional indexing scheme such as the
R-tree [6] and kd-tree [2]. In the present paper, we propose
a fundamental change in the communication architecture
used in the search system. Our proposed search solution,
called EZSearch, uses the Zigzag hierarchy to significantly
alleviate the above problems. Zigzag is a hierarchy of
dual-head clusters and provides the following dimension-
invariant features:

• Nodal degree is bounded by a constant, limiting the
amount of search traffic coming in or exiting every node

• The number of nodes that a node needs to know is
bounded by a constant on the average

• The hierarchy diameter is logarithmic with the network
size, therefore a search can be completed in logarithmic
time

• Cluster splitting/merging is infrequent and requires at
most a constant number of link changes

• A node’s failure/departure is handled regionally and
requires at most a constant number of link changes

Because the hierarchies used by existing techniques can-
not provide all these features, EZSearch has a more effi-
cient and robust communication foundation than the
others. We propose a scheme for the indexing architecture
atop the Zigzag overlay. The challenge of this task is to
decide how clusters are formed, split, and merged under
network dynamics so that the indexing costs can be mini-
mized and balanced. Our indexing scheme addresses effec-
tively the issues of communication cost, storage cost, and
the update cost due to network changes.

The Zigzag hierarchy is a result of our earlier work [20].
Our idea of using it as the overlay for P2P search is initi-
ated in [19]. As a significant extension from [19], the present
paper studies extensively and comprehensively all the cases
involved in the design of EZSearch. We provide search
algorithm for kNN queries. We propose algorithms of
more detail for node addition and departure, cluster merg-
ing and split, and index publication. We have also con-
ducted a new and extensive performance study and
present the results in the present paper. None of these
extensions are included in the preliminary work [19].

The remainder of this paper is organized as follows.
We present the Zigzag hierarchy in Section 2. Next in
Section 3, we propose indexing and search mechanisms
on top of Zigzag and how to construct and maintain this
hierarchy under network dynamics. We provide the results
of our simulation study in Section 4. We conclude the
paper in Section 5 with pointers to our future research.

2. Zigzag hierarchy

A Zigzag hierarchy of N nodes is a multi-layer hierarchy
of clusters. The size of a cluster is bounded by [z, 3z] where
z P 4. Parameter z, called the z-factor of the hierarchy,
controls the size of the cluster and so the height of the hier-
archy. The size range [z, 3z] provides flexibility for the hier-
archy to adapt with nodes joining and leaving. In each
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cluster, two nodes are designated as the ‘‘head’’ and the
‘‘associate-head’’, respectively. The clusters at a layer of
the hierarchy are formed by the heads of the layer right
below. The layer 0 contains all the nodes. The top layer
contains only one cluster and since it does not have any
layer above it, this cluster may have any size in [2, 3z]. It
is easy to prove that the number of layers of this hierarchy
is in [log3zN, logzN + 1].

Fig. 1 shows a possible Zigzag-4 hierarchy (the z-factor
is 4) of 52 nodes. All 52 nodes appear at layer 0. They are
partitioned into 13 clusters, each containing four nodes.
From left to right, the head and associate-head of these
clusters, respectively, are node 2 and node 1, node 5 and
node 6, node 9 and node 10, node 13 and node 14, etc.
All the layer-0 heads (i.e., nodes 2, 5, 9, 13, 17, 22, 26,
29, 33, 37, 41, 45, and 49) appear at layer 1. Since there
are 13 such nodes at layer 1, which is more than 3z = 12
nodes, we partition them again into 2 smaller clusters to
satisfy the cluster size condition. The head and associate
head of the first layer-1 cluster are nodes 22 and 17, respec-
tively. The head and associate-head of the other layer-1
cluster are chosen to be nodes 26 and 29, respectively.
The layer-1 cluster heads (nodes 22 and 26) automatically
appear at layer 2 and form a single cluster. We do not need
to partition in this layer anymore because the cluster size is
2, which is already less than 3z.

We denote by head(.) and ahead(.) the head and associ-
ate-head, respectively, of a cluster or a node. Below are the
terms we use for the rest of the paper:

• Foreign head: If X and Y are clustermates at layer j > 0
and Z is a clustermate of X at layer j � 1, then Y is
called a ‘‘foreign head’’ of Z. E.g., in Fig. 1, node 2 is
a foreign head of nodes 6, 7, 8, 10, 11, 12, 14, 15, 16,
18, 19, 20, 21, 23, and 24.

• Super cluster: A layer-j cluster is the ‘‘super cluster’’ of
any layer-(j � 1) cluster whose head appears in the
layer-j cluster.

• Sibling cluster: Two clusters are ‘‘sibling’’ if they have
the same super cluster.

We define links between nodes in the Zigzag hierarchy
as follows:

• Intra-cluster links: In a cluster, the associate-head links
to every other non-head node. E.g., in Fig. 1, associ-
ate-head 17 of its layer-1 cluster has a link to all of its
22 26

1395 17 22 26 291

3 4

6

7 8

10

11 12

14

15 16

18

19 20

21

23

2

24

25

27 28

30

31 32

othershead associate-head

33 38 42 45
34

35 36

37

39 40

41

43 44

46

47 48

49 50

51 52

1395

17 22 26 29

2 33 37 41 45 49

Fig. 1. A zigzag-4 hierarchy of 52 nodes.
layer-1 non-head clustermates (nodes 2, 5, 9, 13). An
exception applies to the highest-layer cluster, where all
nodes link to the head.

• Inter-cluster links: The associate-head of a cluster must
be linked from one of its foreign heads. E.g., in Fig. 1,

associate-head 18 at layer 0 has a link from node 13,
which is one of node 18’s foreign heads.

The above rules guarantee a near-balanced tree struc-
ture including all the nodes; we call this tree the Zigzag
tree. This tree has height bounded by 2logzN + 1 and node

degree bounded by 3z � 1. To maintain the hierarchy, each
node must track the existence of its clustermates, its parent
node, and its child nodes. However, traffic is only for-
warded along the hierarchy links and thus limited by its
node degree. Under network dynamics, the Zigzag hierar-
chy is highly robust. Due to additions of new nodes and
failures/departures of exiting nodes, a cluster may overflow
or underflow, in which case it has to be split, or merged
with another cluster, respectively. Zigzag provides the fol-
lowing robustness properties (see [20] for complete proofs
and algorithms): (1) Recovery of a node failure requires at
most O(z) link changes; and (2) A cluster split or merger

requires at most O(z) link changes. All these overheads
are independent of the network size, making the Zigzag
hierarchy a highly scalable communication architecture.

3. Indexing and search mechanisms

EZSearch organizes nodes into a Zigzag hierarchy and
assigns to each cluster an index zone. All the zones at layer
0 form a complete disjoint partitioning of the entire index
space. At higher layers, the zone of a cluster is the union
the zones of all the clusters that call it their supercluster.
Therefore, the index zone of the top-most cluster is the
entire index space. Without loss of generality, an object x

is described as a point (x1, x2, . . . ,xd) in the unit d-dimen-
sion hypercube.

The description of a cluster C’s zone (denoted by
zone(C)) is stored at its associate-head ahead(C). In addi-
tion, each node P stores a list of pairs (chi, zone(chi)) for
each child chi of P in the Zigzag tree, where zone(chi) is
the index zone covered by this child. The index zone cov-
ered by a node P, denoted by zone(P), is the union of its
child zones. If P has no child, zone(P) = ;.

For example, we consider the hierarchy in Fig. 1. Sup-
pose that the index zones owned by the 13 layer-0 clusters
are I1, I2, ... , I13 (respectively, from left to right); e.g.,
zone(1) = I1, zone(5) = I2, zone(9) = I3, etc. Because node
9 has two children (peer 1 and peer 14), node 9 stores the
information {(1, I1), (14, I4)} and the description of its zone
zone(9) = I1 [ I4. The index zone assignments are similar
for other nodes and shown in Fig. 2. Since nodes other
than the heads and associate-heads at layer 0 do not man-
age any index zone, they are not present in this figure.

A valid index zone in EZSearch must be a set of disjoint
hyperrectangles. An example for 2-dimensionality is given



Fig. 2. Index zone assignments of the 52-node Zigzag-4 hierarchy shown
in Fig. 1.
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in Fig. 3 which shows the index zones of several nodes of
the hierarchy illustrated by Fig. 1 and 2. Each layer-0 clus-
ter’s zone Ii (i = 1, 2, . . . , 13) is a rectangle. All these rectan-
gles form a complete partitioning of the unit square. The
set of gray rectangles therefore represents zone(17) while
the set of striped rectangles represents zone(45).

The actual indices are physically stored at the head
nodes of layer 0. Once an index zone is determined for each
cluster, the index of an object x is stored in the cluster (to
be exact, the head of this cluster), whose zone contains x.
For cost-effectiveness and search efficiency, the index zone
assignment should achieve the following criteria:

• Indexing cost: The distance between the node that owns
an object and the node that stores this object’s index
should be short, so that the cost of index publication
and maintenance is kept small. This is already achieved
by EZSearch because the Zigzag hierarchy guarantees
that the path length between any two nodes is bounded
by O(log(N)). We should, however, need to minimize the
number of indices that may be migrated due to cluster
split/merge events.

• Index balancing: The indices are stored only at the head
nodes of layer 0. It is desirable that the index storage is
fairly distributed over these nodes. This balancing also
helps the search traffic be fairly distributed on the
hierarchy
Fig. 3. Examples of index zones in 2-dimension for the hierarchy in Fig. 1
and Fig. 2: the set of gray rectangles and set of striped rectangles represent
the index zones of node 17 and 45, respectively. Each single rectangle
represents an index zone at layer 0.
• Index locality: Each index zone may contain more than
a hyperrectangle and so it is not always guaranteed that
all indices covered by the same cluster are near each
other. Therefore, index locality should be preserved in
every cluster so that a range search can be done quickly
and efficiently. In Fig. 3, both zone(17) (gray rectangles)
and zone(45) (striped rectangles) are not optimal
because each contains indices far away from each other.

In the following subsections, we first present how search
can be conducted given an existing zone assignment, and
then discuss how to obtain a good zone assignment, to con-
struct the hierarchy, and to main these two components
under network dynamics.

3.1. Search algorithms

Given the index zones already assigned to the nodes, we
provide search algorithms for range and kNN queries
below.

3.1.1. Range queries

A range query can be specified as a hyperrectangle. The
query follows the links in the Zigzag tree to branches that
lead to the index zones overlapping with the query. Each
time a query visits a node, the query is forwarded to the
node’s parent if the visited zone does not strictly contain
the query. The query is also forwarded to those child nodes
whose zone overlaps with the query. As a result, there may
be multiple instances of the same query, called subqueries,
travelling different branches of the hierarchy. All the sub-
queries will eventually reach the layer-0 clusters whose zone
overlaps with the query region, where relevant objects will
be collected.

Our search algorithm guarantees completeness. In other
words, it retrieves all the results that satisfy the query.
Until layer 0 is visited, the search requires only overlap
checking instead of computing the intersections between
the visited index zones with the query, and so avoids the
complexity and time of doing the latter in high
dimensionality.

The search path length is at most the diameter of the
Zigzag tree, and therefore O(logzN). The search time also
depends on how long it takes a visited node to check
whether its zone overlaps with the query. Since the query
is a hyperrectangle and the node’s zone is a set of hyperrec-
tangles, checking for overlap should be very quick. The
search overhead is proportional to the total number of
nodes contacted by all the subqueries. This overhead
depends on the range of the original query; in our perfor-
mance study, we found this overhead indeed very small.

3.1.2. k-NN query

Consider a k-NN query that finds the k objects most
similar to the query point q = (q1, q2, . . . ,qd). First, we
apply the range-query search algorithm on q to find the
layer-0 cluster whose zone contains q. This search is quick
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with little overhead because q is a point, not a range. Sup-
pose that the query reaches the cluster C such that
q 2 zone(C). The associate-head of C takes the steps below:

1. If zone(C) contains fewer than k objects, compute e0 as
the maximum distance between q and the objects in
zone(C). Otherwise, e0 is the distance between q and
the object k-closest to Q in zone(C).

2. Submit a range query qe0
¼ ½q1 � e0; q1 þ e0� � ½q2�

e0; q2 þ e0� � . . .� ½qd � e0; qd þ e0�, but only accept
objects x whose distance with q is less than ex. Denote
the result set by RESULT.

3. There are two cases:
(a) If jRESULTjP k, select the best k objects from

RESULT and send the location links to the node
initiating q.

(b) If jRESULTj < k, set e = �0 and follow the algo-
rithm below to find the remaining top k 0 = (k �
jRESULTj) objects:
i. Compute range query q 0 = q2enqe. Submit query

q 0 but only accept objects x whose distance with
q is less than 2e. Denote the result set by
RESULT 0.

ii. If jRESULT 0jP k 0, return the best k 0 objects
from RESULT 0 to the node initiating q. Other-
wise, set e = 2e, k 0 = k 0 � jRESULT 0j, and repeat
Step (i).
The results are always correctly found. The worst-case
search path length to get all k nearest objects is
D = O(logzN) + p · D 0, where D 0 is the length due to Step
3b and p the probability that Step 3b occurs. Since e is
doubled each time Step 3b(i) is re-encountered, there are
no more than log2(1/e0) times of running Step 3b(i).
Therefore, D 0 = log2(1/e0)O(logzN), and so, D = (1 + p ·
log2(1/e0))O(logzN). In the next section, we discuss mecha-
nisms for construction and maintenance of the network
and index zones. One of our goals is to construct fairly-
sized index zones at layer 0. If this goal is achieved, assum-
ing that an average node contributes at least one object, the
size of each zone at layer 0 is at least N/(3z). This size is
greater than z when N is large enough, and, therefore, we
need not run algorithm 3b and the worse-case search path
length is O(logzN). The search overhead should be small
because the search overheads for finding cluster C and
for processing range query Qe0

are small.

3.2. Hierarchy construction: initial case

Initially, there is only one node in the network. It serves as
the head and associate-head of its self-formed cluster C. This
cluster grows larger as subsequent nodes join. The index zone
of this cluster is zone(C) = I = [0,1)d. When the cluster over-
flows, C is partitioned into two smaller clusters, C0 and C1,
whose sizes are in the interval [z, 3z]; some nodes of C forms
cluster C0, the remainder forming cluster C0.
We propose to partition I along a dimension l into
two halves I0l = [0, 1)l�1 · [0,1/2) · [0, 1)d�l and I1l =
[0,1)l�1 · [1/2, 1) · [0,1)d�l, each to be owned by C0 and
C1. It is possible that a node in cluster C0 has an object
in I1l; in this case, we ‘‘migrate’’ the index of this object
to C1. Similarly, if a node in cluster C1 has an object in
I0l, this object’s index is stored in cluster C0. We want
to minimize the number of such indices while balancing

the index load between cluster C0 and C1. For this pur-
pose, the following simple algorithm is run at node
head(C):

1. To balance index load, select dimension l such that

ð
P

P2CnP
1l �

P
P2CnP

0lÞ
2 is minimum where nP

0l ¼
cardinalityðfobjectxinP jx 2 I0lgÞ and nP

1l ¼ cardinality
ðfobjectxinP jx 2 I1lgÞ.

2. To keep index migration overhead low, partition C into
C1 and C2 such that jC1j, jC2j 2 [z, 3z] and

P
P2C0

nP
1lþP

P2C1
nP

0l is minimum. This summation can be expressed
as

X
P2C

nP
0l þ

X
P2C0

ðnP
1l � nP

0lÞ ð1Þ

So, to minimize (1), we greedily add z nodes P with least
value of ðnP

1l � nP
0lÞ to C0 (initially empty), and then keep

adding nodes with least value of ðnP
1l � nP

0lÞ as long asP
P2C0
ðnP

1l � nP
0lÞ decreases and jC0j < 3z/2.

As a result of this algorithm, we have two newly created
clusters C0 and C1 with the index zones I0l and I1l, respec-
tively. For each cluster Ci we randomly selects two nodes as
its head head(Ci) and associate-head ahead(Ci) (the old
head of cluster C, however, is preferred to remain head
of the newly created cluster it belongs to). For those objects
that belong to a node in cluster Ci but map to points in
zone I(1�i)l, their index will be stored at head(C1�i) of clus-
ter C1�i. The description of the index zone of cluster Ci is
stored at its associate-head ahead(Ci), as required by the
zone assignment policy.

Once the newly created clusters have designated their
head and associate-head, the heads will automatically
belong to layer 1 and form a new cluster. Since layer 1
now is the highest layer, only the head needs to be desig-
nated; this head is randomly chosen between the two mem-
ber nodes. The index zone owned by this cluster is the
union of the zones owned by its child clusters; in this case,
it is I0l [ I1l = I.
3.3. Hierarchy construction: incremental update

We assume that a Zigzag hierarchy of nodes currently
exists with the corresponding zone assignment. This section
details algorithms for the following sub-problems: (1) a
node publishes or removes an object, (2) a new node joins
the network, and (3) an existing node departs from the
network.
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3.3.1. Object publication and removal

Suppose that a node P wants to publish an object x.
The index of this object is to be stored at the layer-0 cluster
whose index zone contains x. For this purpose, P generates
a publication request in the form of a point query q = x

and then the range-query search algorithm is used to
find the destination cluster. Object removal is similar to
object publication, except that after finding the cluster
whose zone covers the deleted object, the corresponding
associate head removes the index of this object from its
index database.

3.3.2. Node join

A node Pnew wants to join the network. It will be added
to the cluster C with highest index load at layer 0. This pol-
icy helps balance the index load among clusters. Indeed, if a
cluster has a heavy index load, it will be split quickly
because many new nodes join this cluster and make it over-
flow. The question is how Pnew knows this special cluster C?
The answer is simple. In the current version of data struc-
tures at each node, a non-leaf node on the Zigzag tree
stores (chi,zone(chi) for each child chi. We extend this struc-
ture by allowing a non-leaf node to also store the ID of the
child that, among all the children, leads to a layer-0 cluster
storing the most indices. As a result, the root of the Zigzag
tree always knows the ID of the cluster at layer-0 with max-
imal index load. The join request travels the following path
to reach the cluster C for Pnew to join: (1) Pnew sends the
join request to an existing node Pcon; (2) Pcon forwards
the request upstream until reaching the root node Proot;
and (3) Proot informs Pnew of the layer-0 cluster C with max-
imum index load. Pnew will contact the associate-head node
of C to join it.

The join results in only one new link added to the Zigzag
tree. The join delay consists of two delays: delay due to
searching for cluster C and delay due to publication of
new objects. In the worst case, the length of the longest tra-
vel path is O(logzN), and so we expect the join delay to be
short. The join overhead consists of the total number of
nodes contacted during the search for cluster C and new
object publications; therefore, it is at most O(mlogzN)
where m is the number of objects whose index needs
migrating.

3.3.3. Node removal

A node may leave the network intentionally or fail to
exist in the network. Either way, the layer-0 clustermates
of the quitting node can detect this departure because
members of the same cluster periodically keep track of each
other’s existence. Let us name the departing node Pquit and
its layer-0 cluster C. There are two cases:

• The highest layer of Pquit is layer 0 (i.e., it does not
appear at any higher layer): We do not need to process
further unless Pquit is the associate-head of C. If Pquit is
the associate-head, a random non-head node Ppromoted in
C will be selected by head(C) to assume the associate-
head role. Furthermore zone(Ppromoted) is set to the index
zone associated with cluster C. Ppromoted knows this
information from head(C).

• The highest layer of Pquit is layer iPP1: Since Pquit must
be the head of every layer-i cluster it belongs to (i < iP), a
different node has to be selected as the new head for each
of such clusters. The solution is straightforward. A ran-
domly selected layer-0 non-associate-head clustermate
of Pquit, say node Ppromoted, will assume the position of
Pquit in every cluster Pquit used to be part of. In addition,
since Pquit is the head of its layer-0 cluster, it may store
some indices; these indices will be transferred to
Ppromoted.

In the case Pquit departs due to a failure, all the indices it
stores (if any) are lost and, also, the indices of the objects of
Pquit stored remotely become invalid. To address this, it is
recommended that we employ the following mechanism. If
a node P1 has an object x whose index is stored at another
node P2, these two nodes ‘‘ping’’ each other periodically to
check their existence. The ping period should be long
enough to avoid heavy communication overhead. If P1

does not hear from P2, P1 re-publishes x. Similarly, if P2

does not hear from P1, the former deletes all the indices
associated with P1. This mechanism also helps the removal
of an object become very quick because we would not have
to search for the node that stores the index for the deleted
object; this node is already known by the owner of the
object.

Since the zone covered by a node is the union of the chil-
dren’s zones, index zones are updated accordingly for those
nodes that change links as a result of a node’s removal. The
maximum number of nodes that change links is at most the
number of children of the departing node; hence, at most
3z � 1. The overhead to deal with the departure of a node
is therefore small and independent of the system size.
3.4. Hierarchy construction: cluster split and merging

As nodes join and depart a cluster may overflow or
underflow, in which case it must be split into smaller clus-
ters or merged with another cluster, respectively. This task
involves two main steps: (1) In a cluster’s split we must
decide which nodes belong to each new cluster, while in a
cluster’s merger we must decide which other cluster to
merge with; (2) Once such a decision is made, the Zigzag
hierarchy will be updated accordingly with no more than
O(z) link changes. Since our earlier work [20] provides
the algorithms for Step (2), in the present paper we present
only the criteria and algorithms for Step (1).
3.4.1. Cluster split

We consider splitting an overflowed cluster C at layer h

into two clusters Ca and Cb. Let P ¼ fP 1; P 2; . . . P ng
(n = 3z + 1) define the set of nodes in C. We present the
algorithm for h P 1 in this section. This algorithm can be
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modified to work with the case h = 0 and so the this case is
omitted here due to lack of space.

Let C1, C2, . . . ,Cn be the clusters headed by P1,
P2, . . . ,Pn, respectively, at level h � 1. The set of nodes P
is halved to form Ca = {P1, P2, . . . , Pºn/2ß} and Cb =
{Pºn/2ß+1,.., Pn}. Hence,

zoneðCaÞ ¼
[

P i2Ca

zoneðCiÞ ð2Þ

zoneðCbÞ ¼
[

P i2Cb

zoneðCiÞ ð3Þ

We find Ca and Cb such that volume(box(Ca) \ box(Cb)) is
minimum, where box(Ci) is the minimal hyperrectangle
bounding zone(Ci). This criterion guarantees that each
cluster’s index zone contains indices close to each other.
Since an index zone may contain many hyperrectangles,
computing the intersection between two zones may be time
consuming. Therefore, we propose the following heuristic
algorithm:

• For each dimension t, sort C1, C2, . . .,Cn into the ordered
list Ct1 ;Ct2

; . . . ;Ctn such that the t-dimension maximum
coordinate of boxðCtiÞ is non-decreasing. Then, let
Ca ¼ fP t1 ; P t2

; ::; P tbn=2cg and Cb ¼ fP tbn=2cþ1
; ::; P tng, and

compute

boxa ¼ box
[

P ti2Ca

boxðCtiÞ

0
@

1
A ð4Þ

boxb ¼ box
[

P ti2Cb

boxðCtiÞ

0
@

1
A ð5Þ

V t ¼ volumeðboxa \ boxbÞ ð6Þ

• After all dimensions are considered, select the dimension
t and the corresponding Ca and Cb that minimizes the
value Vt.

Since box(Ci) can be computed off-line by the associate-
head of cluster Ci (i.e., during its the idle time), the above
algorithm runs in O(d(zlog2z + dz) time. The algorithm is
run at the associate-head of cluster C. A cluster split does
not result in index migration unless the split occurs at layer
0. Therefore, the main overhead of a cluster split is due to
O(z) link changes and the reassignment of index zone to the
nodes that change links.

3.4.2. Cluster mergence

We consider merging an underflowed cluster C at layer h

with another cluster C 0. We find C 0 among the sibling clus-
ters of C such that (1) jC + C 0j 2 [z, 3z], and (2) vol-

ume(box(C [ C 0)) is minimum.
These criteria guarantee that the combined zone con-

tains indices close to each other and looks similar to the
form of a hyperrectangle. As a result, the intersection of
a query with this zone will result in few subqueries. Since
there are no more than O(z) sibling clusters, we can devise
an algorithm that finds the best sibling C 0 in O(zdh) time.
In the worst case, h = O(logzN), and so this complexity is
O(zdlogzN). To speed up this algorithm, we can approxi-
mate volume(box(C [ C 0)) by

volumeðboxðboxðCÞ [ boxðC0ÞÞÞ ð7Þ

and hence reducing the running time to O(zd). The algo-
rithm to find C 0 is run at the associate-head of cluster C.

Since the true indices are stored at layer 0 and higher
layers only store the description of index zones, a cluster
merging does not result in index migration unless the mer-
ger occurs at layer 0. Therefore, the main overhead of a
cluster merging is due to O(z) link changes and the reas-
signment of index zone to the nodes that change links.

4. Performance evaluation

We verified the correctness of EZSearch and assessed its
performance via simulation. Since we wanted to model a
highly dynamic network, we set the z-factor to a small
number z = 5 so that cluster split and merging occur often.
With this z-factor, no cluster contains more than 15 nodes
or fewer than 5 nodes. We also let the nodes join the net-
work according to a Poisson process at a rate k = 6 arrivals
per second. Each node had an active session, after which it
quitted the network. The session’s period was generated
according to a Pareto distribution with pdf ðx; k; x0Þ ¼
kxk

0=xkþ1 for x > x0. Pareto has been widely used to model
the node lifetime in a distributed network [5]. We set
k = 1.5 and x0 = 10 min as also used in [5]. With this
configuration, the expected lifetime of a node was
EX = kx0/(k � 1) = 30 min and the minimum lifetime was
x0 = 10 min.

A data object was generated as a d-D uniformly random
point in [0, 1)d. We considered three cases: 3-dimension, 6-
dimension, and 9-dimension. A node has randomly
between 0 and 10 objects. We allowed for a total number
of 12,035 nodes to join and quit the network. When the
network stabilized (i.e., no more node joined or departed),
it contained 8900 nodes and approximately 45,000 indices.
We then started querying the network with 800 kNN and
range queries posted by random nodes:

• 400 range queries: The range of a query can be 5%, 10%,
15%, or 20% of the index space, each case generating 100
queries

• 400 k-NN queries: k can be 5, 10, 15, and 20, each case
generating 100 queries

During the network construction phase, we collected the
statistics about the control overhead per node, index stor-
age overhead, its distribution in the network, and index
migration overhead due to each cluster split and merging.
During the query phase, for each query, the search always
attempted to return all the results that satisfy the query,
and we collected the information about the search time
and search overhead. In the following section, for the sake
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of convenience, we use the ‘‘present tense’’ instead of ‘‘past
tense’’ in discussing the results.

4.1. Node overhead

To assess the efficiency of the Zigzag hierarchy, we com-
pute the number of links (i.e., degree) of each node and the
contact list (i.e., number of neighbors that each node needs
to keep track of in order to maintain the hierarchy struc-
ture of the network). A node should have a small degree
to limit the search traffic passing through it. A node should
also have a short contact list so it does not have to check
the existence of too many nodes; hence, less communica-
tion involved.

Fig. 4 shows that no node has to forward or receive
search traffic on more than 13 links. This is close to the
bound 3z � 1 = 14 found in our theoretical analysis (see
Section 2). Fig. 5 provides the number of contact nodes
that each node has to keep track of in order to maintain
the network hierarchy. It is understandable that since we
use a hierarchy, the nodes appearing at high layers of the
hierarchy should have more contact nodes. However, the
worst-case node needs to know only about 30 other nodes
(out of 8900 nodes in the network), and more than 80% of
the nodes each need to know fewer than 10 other nodes.
This overhead is considered small; it is still a lot smaller
the overhead in many existing DHT-based techniques, in
which the number of contacts per node is at least the num-
ber of dimensions. In many applications, the dimensional-
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Fig. 5. The number of contact nodes for each node in the network.
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Fig. 4. The node degree for every node in the network.
ity could be more than 100. The Zigzag hierarchy is
therefore highly efficient.
4.2. Index migration overhead

Due to the dynamics of the network, clusters may be
split or merged to satisfy the cluster-size bounds, and so
indices may have to be moved between nodes. One goal
of EZSearch is to keep the overhead of index migration
low. During the hierarchy construction phase, there are
almost 2000 cluster gers. Figs. 6 and 7 plot the number
of indices moved after each cluster split/merger for two
cases: 3-D and 9-D, respectively. In both cases, each cluster
split or merger causes 30 moved indices on average. When
the network is growing larger, some splits and mergers
result in more indices moved but never more than 92
migrations (out of 45,000 indices in the network). Also,
many splits and mergers result in just a few index migra-
tions (less than 20). Therefore, EZSearch addresses the net-
work dynamics very well, even when we increase the
dimension from 3-D to 9-D. This study substantiates our
use of the Zigzag hierarchy as a highly efficient communi-
cation architecture for information retrieval.
4.3. Index storage overhead

Load balancing is desirable in any distributed system. It
is achieved in EZSearch as illustrated in Figs. 8 and 9.
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Fig. 7. 9-Dimension: index migration overhead.

3D: Number of indices migrated

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000

Split/Merge Event ID

Fig. 6. 3-Dimension: index migration overhead.
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Fig. 8. 3-Dimension: the distribution of indices over all layer-0 clusters.
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Fig. 9. 9-Dimension: the distribution of indices over all layer-0 clusters.
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These two figures plot the number of indices stored at each
layer-0 cluster for 3-D and 9-D, respectively. In both cases,
the head of each cluster at layer-0 stores about 40 indices
and never more than 90 indices. This is a tiny storage over-
head if we consider the fact that there are more than 45,000
objects in the network. Similar to the study of index migra-
tion overhead, increasing the dimensionality does not affect
the index load-balancing and small-overhead properties.
0

0.1

5NN 10NN 15NN 20NN

kNN scope

Fig. 12. Effect of k on kNN queries: percentage of the network nodes that
are visited during each range search.
4.4. Search efficiency

In our evaluation study, EZSearch always attempts to
return all the objects that satisfy each query (i.e., 100%
precision and 100% recall). To measure search efficiency,
we record the number of nodes visited by each query.
Figs. 10–12 show the percentage of this number to the
network size for the cases of range queries and kNN,
respectively. There are 100 queries for each case (range
query or kNN) and the result plotted in the figures is the
average value over all these 100 queries.
4.4.1. Range queries

As expected, more nodes are visited if we increase either
the range of the query or the dimensionality of the data
space. This is a common problem in all multi-dimensional
search techniques. However, EZSearch provides quite good
results. When the query asks for 5% of the entire data
space, it visits only 5% of all the nodes in the network when
the data dimensionality is 3, and only 18% when the dimen-
sionality is 9. When the query asks for 20% of the data
space, only 12% of the node is visited in the 3-D case and
22% in the 9-D case. This study illustrates that the search
efficiency decreases only linearly with the dimensionality
and the query range, rather than exponentially as in many
other search techniques that suffer the curse of dimension-
ality problem.

4.4.2. KNN queries
The curse of dimensionality does not seem to be a severe

problem either for kNN queries as illustrated by Fig. 12.
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When the dimensionality is low (3-D), the search for kNN
queries is quite efficient. A 5NN query visits only 20% of
the nodes while a 20NN query visits less than 30% of the
nodes. When the dimension is 9, a 20NN query visits
approximately a half of the network. This is not as desir-
able as we want. This is probably because we use simplified
algorithms for cluster split and merging (see Section 3.4.1
and Section 3.4.2). Enhancing these algorithms will cer-
tainly improve the efficiency of the search in general and
especially for kNN queries in high-dimensionality Fig. 13.
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Fig. 14. Effect of volume on range queries: search time for each query.
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Fig. 15. Effect of k on kNN queries: search time for each query.
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4.5. Search time

To measure search time, we record the time it takes to
process each query from the time it is posted until when
all the results are returned. The search time is averaged
over all 100 queries for each type. Our simulation is run
on a HP Worsktation 6200 Intel Pentium 4 3Ghz CPU
1GB DRAM with Debian Linux. The simulation is central-
ized and the absolute search time does not reflect the true
search time in a distributed setup because communication
time is not included. However, in a real-world setup, we
expect the communication time to be small because of
the short routing path between every two nodes. Also,
studying the relative differences between search times may
be meaningful for implying the effect of dimensionality
and query range.

Similar to the case of search overhead, increasing the
range of the query also increases the search time because
we search for more objects (see Fig. 14 for range queries
and Fig. 15 for kNN queries). However, it is noted that
increasing the dimensionality plays only a small impact
on the search time (see Fig. 16 for range queries and
Fig. 17 for kNN queries). This is a desirable property that
shows the robustness of EZSearch under the effect of
dimensionality and query range.
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Fig. 16. Effect of dimensionality on range queries: search time for each
query.
4.6. Comparison with DPTree

To the best of our knowledge, the hierarchical P2P
search approach most related to EZSearch is DPTree [8].
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Fig. 13. Effect of dimensionality on kNN queries: Percentage of the
network nodes that are visited during each range search.
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While EZSearch uses Zigzag, DPTree uses Skipnet [7] as
the communication overlay and an R-tree-like balanced
tree as the indexing architecture, mapping each node of
the overlay to a branch of the index tree. A nice property
of DPTree is load balancing; however, it is a complex struc-
ture with many details undisclosed. Its indexing robustness
under network dynamics and its scalability with data
dimensionality have yet to be evaluated. For example,
DPTree was evaluated only for 2 dimensions and it remains
unclear about the cost of rebuilding the index tree and
migrating indices upon structural changes in the overlay.
Also, DPTree’s effectiveness may vary depending on its
parameter setting. Therefore, it is difficult for us to com-
pare EZSearch with DPTree experimentally on a fair basis.
We will nevertheless, in our future work, try to obtain fur-
ther information on DPTree for a meaningful comparison.

5. Conclusions

We have presented EZSearch – a system design for mul-
tidimensional search in P2P networks. The fundamental
uniqueness of EZSearch is its use of the Zigzag hierarchy
for connecting the nodes and so EZSearch inherits from
Zigzag a highly efficient foundation for communication
purposes. EZSearch implements an indexing architecture
on top of Zigzag. We have shown that this indexing archi-
tecture is robust under the network dynamics. It distributes
the index storage overhead fairly over the network nodes.
Equally importantly, it allows fast range and kNN query
searches with the search path length logarithmic with the
network size. EZSearch keeps the search overhead reason-
ably small and is scalable with the query range and data
dimensionality.

EZSearch can be enhanced in several ways. For exam-
ple, since EZSearch is a hierarchical approach, high-layer
nodes likely have to process more query load the low-layer
nodes. EZSearch can be extended with a role-switch algo-
rithm that switches the positions of high-layer nodes with
low-layer nodes to achieve better fairness. Or, better algo-
rithms for cluster split and merge events may be devised to
improve the effectiveness of EZSearch’s handling kNN
queries in high dimensionality. We would also like to com-
pare EZSearch with other hierarchical techniques such as
DPTree [8] with real data traces.

Acknowledgements

The authors thank the US National Science Foundation
for sponsoring this research (Grant CNS-0615055, PI: D.
A. Tran). We are also thankful to the reviewers for their
valuable comments on our work.
References

[1] F. Banaei-Kashani, C. Shahabi, SWAM: A family of access methods
for similarity-search in peer-to-peer data networks, in: ACM Inter-
national Conference on Information and Knowledge Management,
Washington, DC, November 2004.

[2] J.L. Bentley, Multidimensional binary search trees used for associa-
tive searching, Communications of the ACM 18 (9) (1975) 509–517.

[3] A.R. Bharambe, M. Agrawal, S. Seshan, Mercury: Supporting
scalable multi-attribute range queries, in: ACM SIGCOMM, Port-
land, OR, August–September 2004.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker,
Making gnutella-like p2p systems scalable, in: ACM SIGCOMM,
Karlsruhe, Germany, 2003.

[5] P.B. Godfrey, S. Shenker, I. Stoica, Minimizing churn in distributed
systems, in: ACM Sigcomm, Pisa, Italy, December 2006.

[6] A. Guttman, R-trees: A dynamic index structure for spatial searching,
in: ACM SIGMOD Conference on Management of Data, 1984, pp.
47–57.

[7] N.J.A. Harvey, M.B. Jones, S. Saroiu, M. Theimer, A. Wolman,
Skipnet: A scalable overlay network with practical locality properties,
in: USENIX Symposium on Internet Technologies and Systems,
Seattle, WA, March 2003.

[8] M. Li, W.-C. Lee, A. Sivasubramaniam, DPTree: A balanced tree
based indexing framework for peer-to-peer networks, in: IEEE
International Conference on Networking Protocols, Boston, MA,
November 2006.

[9] M. Li, W.-C. Lee, A. Sivasubramaniam, D.L. Lee, A small world
overlay network for semantic based search in p2p systems, in: IEEE
International Conference on Network Protocols, Berlin, Germany,
October 2004.

[10] A. Mondal, Yilifu, M. Kitsuregawa, P2PR-tree: An r-tree-based
spatial index for peer-to-peer environments, in: ICDE/EDBT PhD
Workshop, Crete, Greece, 2004.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A
scalable content addressable network, in: ACM SIGCOMM, San
Diego, CA, August 2001, pp. 161–172.

[12] A. Rowstron, P. Druschel, Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems, in: IFIP/
ACM International Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, November 2001, pp. 329–350.

[13] O.D. Sahin, A. Gulbeden, F. Emekci, D. Agrawal, A.E. Abbadi,
PRISM: Indexing multi-dimensional data in p2p networks using
reference vectors, in: ACM Multimedia Conference, Singapore,
November 2005.

[14] H. Samet, Foundations of Multidimensional and Metric Data
Structures, Morgan Kaufman Publishers, 2006.

[15] N. Sarshar, P.O. Boykin, V.P. Roychowdhury, Percolation search in
power law networks: Making unstructured peer-to-peer networks
scalable, in: IEEE Conference on P2P Computing, Zurich, Switzer-
land, August 2004.

[16] C. Schmidt, M. Parashar, Flexible information discovery in decen-
tralized distributed systems, in: IEEE International Symposium on
High-Performance Distributed Computing, Seattle, WA, June 2003.

[17] I. Stoica, R. Morris, D. Karger, M. Kaashock, H. Balakrishman,
Chord: A scalable peer-to-peer lookup protocol for internet applica-
tions, in: ACM SIGCOMM, San Diego, CA, August 2001, pp. 149–
160.

[18] C. Tang, Z. Xu, S. Dwarkadas, Peer-to-peer information retrieval
using self-organizing semantic overlay networks, in: ACM SIG-
COMM, Karlsruhe, Germany, 2003.

[19] D.A. Tran, Hierarchical semantic overlay approach to p2p similarity
search, in: USENIX Annual Technical Conference, Anaheim, CA,
April 2005.

[20] D.A. Tran, K. Hua, T. Do, A peer-to-peer architecture for media
streaming, IEEE Journal on Selected Areas in Communications –
Special Issue on Advances in Service Overlay Networks 22 (1) (2004).

[21] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, J.
Kubiatowicz, Tapestry: a resilient global-scale overlay for service
deployment, IEEE Journal on Selected Areas in Communications 22
(1) (2004).



D.A. Tran, T. Nguyen / Computer Communications 31 (2008) 346–357 357
Duc A. Tran is an Assistant Professor of Com-
puter Science at the University of Massachusetts
in Boston, where he supervises the Network
Information Systems Lab. Dr. Tran conducts
research in the areas of Computer Networks,
Distributed Systems, and Multimedia Systems.
His work has been funded by the NSF and the
Ohio Board of Regents. Dr. Tran has served as a
Vice Program Chair for IEEE AINA 2007,
journal guest-editor, TPC member for 14 inter-
national conferences, and referee for numerous

ACM/IEEE publications. His Ph.D. degree in Computer Science was
from the University of Central Florida in 5/2003, where he also received

the Distinguished Doctoral Research Award, IEEE-Orlando Outstanding
Graduate Student Award, and the Order of Pegasus Award.
Thinh Nguyen has been an Assistant Professor at
Oregon State University since 2004. He earned a
B.S. from the University of Washington, and an
M.S. and Ph.D. from U.C. Berkeley in 2000 and
2003, respectively. During 2003–2004, he was a
post-doctoral research associate at Lawrence
Livermore National Laboratory. During 1996–
1998, he was a graphics researcher at Intel’s
Microcomputer Research Lab. He also spent 6
months at Microsoft, optimizing DirectX6 for
Pentium III. Dr. Nguyen’s current research

interests include networking, signal processing, computer graphics,
machine learning, data analysis and data mining.


	Hierarchical multidimensional search in peer-to-peer networks
	Introduction
	Existing solutions
	Contributions

	Zigzag hierarchy
	Indexing and search mechanisms
	Search algorithms
	Range queries
	k-NN query

	Hierarchy construction: initial case
	Hierarchy construction: incremental update
	Object publication and removal
	Node join
	Node removal

	Hierarchy construction: cluster split and merging
	Cluster split
	Cluster mergence


	Performance evaluation
	Node overhead
	Index migration overhead
	Index storage overhead
	Search efficiency
	Range queries
	KNN queries

	Search time
	Comparison with DPTree

	Conclusions
	Acknowledgements
	References


