
Computer Networks 54 (2010) 1739–1749
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Enabling content-based publish/subscribe services in cooperative
P2P networks

Duc A. Tran *, Cuong Pham
Department of Computer Science, University of Massachusetts, 100 Morrissey Blvd, Boston, MA 02125, USA
a r t i c l e i n f o

Article history:
Received 5 September 2009
Received in revised form 22 December 2009
Accepted 8 February 2010
Available online 12 February 2010
Responsible Editor: Qian Zhang

Keywords:
P2P
Publish/subscribe
Prefix tree
Search
1389-1286/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.comnet.2010.02.003

* Corresponding authors. Tel./fax: +1 617 287 645
E-mail addresses: duc@cs.umb.edu (D.A. Tran)

(C. Pham).
a b s t r a c t

P2P is a popular networking paradigm in today’s internet. As such, many research and
development efforts are geared toward services that can be useful to the users of P2P net-
works. This paper is focused on the content-based publish/subscribe service and our prob-
lem is to devise an efficient mechanism that enables this service in any given P2P network
of cooperative nodes. Most techniques require some overlay structure added on top of the
network. We propose an efficient solution called PUB-2-SUB which works with any
unstructured network topology. In addition, multiple independent publish/subscribe appli-
cations can run simultaneously on a single instance of PUB-2-SUB. The proposed technique
is based on two key components: the virtualization component and the indexing compo-
nent. The virtualization component assigns to each node a unique binary string virtual
address and, accordingly, a unique zone partitioned from the universe of binary strings.
The indexing component hashes queries and publications to binary strings and, based on
their overlapping with the node zones, chooses subscription and notification paths appro-
priately and deterministically. PUB-2-SUB works best for P2P-based cooperative networks
such as data grid networks and institutional collaborative networks. Our theoretical find-
ings are complemented by a simulation-based evaluation.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Search applications can be categorized into two models:
request/response and publish/subscribe. The former is the
traditional, where a query is submitted on demand expect-
ing immediate results; if none exists, a response indicating
so is returned. Contrarily, a query in the publish/subscribe
model is submitted and stored in advance, for which the
results might not yet exist but the query subscriber ex-
pects to be notified when they later become available. This
model is thus suitable for search applications where que-
ries await future information, as opposed to the traditional
applications where the information to be searched must
pre-exist.
. All rights reserved.

2 (D.A. Tran)
, cpham@cs.umb.edu
This paper is focused on the publish/subscribe model
and our goal is to devise a mechanism that can be inte-
grated into a given P2P network to enable applications of
this model. In particular, we are interested in distributed
networks where the participating nodes are cooperative,
reliable, and rather static. In these networks, such as grid
computing networks and institutional communication
networks, P2P can be adopted as an effective way to share
resources, minimize server costs, and promote boundary-
crossing collaborations [1–4]. Such cooperative P2P net-
works can enhance applications in various fields, including
education and academia [5], science [6], health [7], and
business [8], to name a few. A publish/subscribe function-
ality is useful for these networks. For example, a monitor in
a P2P-based geographical observation network [2] will be
able to subscribe a query to receive alerts of fire occur-
rences so that necessary rescue efforts can be dispatched
quickly; or in a P2P-based scientific information sharing

http://dx.doi.org/10.1016/j.comnet.2010.02.003
mailto:duc@cs.umb.edu
mailto:cpham@cs.umb.edu
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1740 D.A. Tran, C. Pham / Computer Networks 54 (2010) 1739–1749
network [5], a subscriber will be notified when new scien-
tific information is published.

To enable publish/subscribe applications, a simple way is
to broadcast a query to all the nodes in the network or to
employ a centralized index of all the queries subscribed
and information published [9–11]. This mechanism is nei-
ther efficient nor scalable if applied to a large-scale network.

Consequently, a number of distributed publish/sub-
scribe mechanisms have been proposed. They follow two
main approaches: structure-based or gossip-based. The
first approach [12–17] requires the nodes to be organized
into some overlay structure and develops publish/sub-
scribe methods on top of it. Examples of such an overlay
are those based on Distributed Hash Tables [18–21] and
Skip Lists [22]. The other approach [23–25] is for unstruc-
tured networks, in which the subscriber nodes and pub-
lisher nodes find each other via exchanges of information
using existing peer links, typically based on some form of
randomization.

The structure-based approach is favored for its effi-
ciency over the gossip-based approach. However, when ap-
plied to a given network, the former introduces an
additional overhead to construct and maintain the re-
quired overlay structure. Also, there may be practical cases
where the new links, that are part of the new structure, are
not allowed due to the policy or technicality restrictions of
the given network.

The gossip-based approach’s advantage is its applicabil-
ity to any unstructured network without an additional
overlay structure. But, due to the nature of gossiping, a
query or a publication of new information must populate
a sufficiently large portion of the network to be able to find
each other at some rendezvous node with a high probabil-
ity. The costs can be expensive as a result, including the
communication cost to disseminate the query or publish
the new information, the storage cost to replicate the
query in the network, and the computation cost to evaluate
the query matching condition.

We propose PUB-2-SUB – a publish/subscribe mecha-
nism which, like the gossip-based approach, does not
change the connectivity of the given network, but is aimed
at a much better performance. PUB-2-SUB allows any
number of independent publish/subscribe applications to
run simultaneously. It is based on two key design compo-
nents: the virtualization component and the indexing com-
ponent. The virtualization component assigns to each node
a unique binary string called a virtual address so that the
virtual addresses of all the nodes form a prefix tree. Based
on this prefix tree, each node is associated with a unique
zone partitioned from the universe of binary strings. The
indexing component hashes queries and publications to
binary strings and, based on their overlapping with the
node zones, chooses subscription and notification paths
appropriately and deterministically.

Because PUB-2-SUB is based on directed routing, it has
the potential to be more efficient than the gossip-based ap-
proach. Our evaluation study shows that PUB-2-SUB re-
sults in lower storage and communication costs than
BubbleStorm [23] – a recent gossip-based search tech-
nique. In terms of computation cost, PUB-2-SUB requires
only a node to evaluate its local queries to find those
matching a given information publication. The proposed
technique also incurs small notification delay and is robust
under network failures.

The remainder of this paper is organized as follows. We
discuss the related work in Section 2. We propose the de-
tails of the PUB-2-SUB mechanism in Section 3. We present
our simulation results in Section 4. We conclude the paper
in Section 5.
2. Related work

Many structure-based publish/subscribe techniques de-
signed for P2P networks [12–17] use DHT [18–21] as the
underlying overlay structure. This structure is favored be-
cause of its capability to grow the network and adapt to
other network dynamics such as node departures and
additions. When DHT is applied to enable publish/sub-
scribe applications, the basic approach is to design a hash
function that maps a subscription and a matching publica-
tion to rendezvous nodes that are either identical or in
close proximity.

For example, Scribe [12], Hermes [26] (both based on
Pastry DHT [20]), and Bayeux [27] (based on Tapestry
DHT [21]) use topic-based hashing, thereby a subscription
and a matching publication can find each other quickly be-
cause they must belong to the same topic and thus sent to
the same node. Alternatively, the authors of [13–17] pro-
pose hashing based on the actual content rather than the
topic, thus providing more flexible ways to express a sub-
scription. For example, Meghdoot [13], which employs the
CAN DHT [18], imposes no restrictions over subscriptions
and allows them to be specified in terms of range predi-
cates over all attributes in a schema. If this schema
contains d attributes, the network is constructed as a
2d-dimensional CAN overlay to disseminate queries and
publish information. A technique that can operate atop
any DHT structure is proposed in [15].

Structures other than DHT have also been used. In Sub-
2-Sub [28], an overlay is built on top of the network to
form ‘‘rings” of nodes, each ring containing similar sub-
scriptions (based on some similarity measure). When a
publication of new information reaches a ring, it can visit
the nodes on this ring to find all the matching queries with
a high hit rate. To expedite this procedure, a number of
random links (connecting each node to randomly selected
neighbors) and random overlapping links (connecting each
node to randomly chosen nodes that share common inter-
ests) are also maintained in the overlay. Other non-DHT
structure-based techniques include [17] which uses R-tree
[29], and GosSkip [30] which uses Skip Lists [22], as the
structure of the overlay.

Among the techniques that do not require any struc-
tured overlay, the common approach is gossiping. In these
techniques (e.g., [23–25]), a node can communicate only
with its neighbors via neighbor links that are defined by
the original P2P network. Because broadcasting a subscrip-
tion or a publication to all the nodes is too expensive, gos-
sip-based techniques try to be more efficient by limiting
the scope of broadcasting: the goal is to reach a number
of nodes, not all but large enough so that the dissemination

D.A. Tran, C. Pham / Computer Networks 54 (2010) 1739–1749 1741
paths of a subscription and that of a matching publication
intersect somewhere with a high probability. A recent
technique demonstrative of this approach is BubbleStorm
[23]. In an unstructured network of n nodes, BubbleStorm
replicates each query at q nodes ðq ¼ Oð

ffiffiffi
n
p
ÞÞ and sends

each publication to d ¼ c2n=q nodes where c is a certainty
factor. The probability that there is a common rendezvous
node for any (query, publication) pair is r ¼ 1� expð�c2Þ
(e.g., c = 3 corresponds to a hit probability of r = 99.99%).
Another gossip-based technique is Quasar [24] which en-
ables group-based publish/subscribe applications espe-
cially for P2P social networks.

Our technique (PUB-2-SUB) does apply an overlay
structure on the underlying network. However, the differ-
ence with the earlier structure-based techniques is that the
PUB-2-SUB structure uses only existing links provided by
the underlying network, not introducing any new links be-
tween the nodes. Thus, PUB-2-SUB can work with any
unstructured P2P network. Compared to gossip-based
techniques, PUB-2-SUB is instead based on directed rout-
ing to disseminate query and publication messages more
efficiently. We compare PUB-2-SUB to BubbleStorm in
Section 4.

3. The PUB-2-SUB technique

Consider a cooperative P2P network fS1; S2; . . . ; Sng that
is constructed and maintained according to its built-in
underlying protocols. The nodes are supposed to remain
functional as much as possible although there may be fail-
ures that cannot be avoided, and whenever a new node
joins or a failure occurs we assume that this network can
re-organize itself. A requirement is that we cannot modify
the existing connectivity of the network; all communica-
tion must be via the provided links.

3.1. Basic idea

PUB-2-SUB is based on two key design components: the
virtualization component and the indexing component.
Fig. 1. Virtual address instan
The virtualization component assigns to each node a un-
ique virtual address. The indexing component determines
the corresponding subscription and notification paths for
given queries and publications, in which routing is based
on the virtual addresses of the nodes.

3.1.1. Virtualization
A virtualization procedure can be initiated by any node

to result in a ‘‘virtual address instance” (VA instance),
where each node is assigned a virtual address (VA) being
a binary string chosen from f0;1g�. Suppose that the initi-
ating node is S�. In the corresponding VA instance, denoted
by INSTANCE ðS�Þ, we denote the VA of each node Si by
VAðSi : S�Þ. To start the virtualization, node S� assigns itself
VAðS� : S�Þ ¼£ and sends a message inviting its neighbor
nodes to join INSTANCE ðS�Þ. If a neighbor Si is already part
of the instance, it ignores this invitation; otherwise, by
joining, Si is called a ‘‘child” of S� and receives from S� a
VA that is the shortest string of the form VAðS� : S�Þþ
‘0�1’ unused by any other child node of S�. Once assigned
a VA, node Si forwards the invitation to its neighbor nodes
and the same VA assignment procedure repeats. In general,
the rule to compute the VA for a node Sj that accepts an
invitation from node Si is: VAðSj : S�Þ is always the shortest
string of the form VAðSi : S�Þ þ ‘0�1’ unused by any other
child node currently of Si.

Eventually, every node is assigned a VA and the VAs
altogether form a prefix-tree rooted at node S�. We call this
tree a VA-tree and denote it by TREEðS�Þ. For example,
Fig. 1(a) shows the VA-tree with VAs assigned to the nodes
as a result of the virtualization procedure initiated by node
1. Fig. 1(b) shows this tree as a spanning tree rooted at
node 1 covering all the nodes. It is noted that the links of
this spanning tree already exist in the original network
(we do not create any new links). In these two figures,
the nodes’ labels (1,2, . . . ,24) represent the order they join
the VA-tree. Each time a node joins, its VA is assigned by its
parent according to the VA assignment rule above. Thus,
node 2 is the first child of node 1 and given VA(2:1) =
VA(1:1) + ‘1’ = ‘1’, node 3 is the next child and given
ce inititated by node 1.

1742 D.A. Tran, C. Pham / Computer Networks 54 (2010) 1739–1749
VA(3:1) = VA(1:1) + ‘01’ = ‘01’, and node 4 last and given
VA(4:1) = VA(1:1) + ‘001’ = ‘001’. Other nodes’ VAs are as-
signed similarly. For example, consider node 18 which is
the third child of node 8 (VA ‘011’). The VA of node 18 is
the shortest binary string that is unused by any other child
node of node 8 and of the form VA(8:1) + ‘0*1’. Because the
other children 16 and 17 already occupy ‘0111’ and
‘01101’, node 18’s VA is ‘011001’.

A VA-tree resembles the shortest-delay spanning tree
rooted at the initiating node; i.e., the path from the root
to a node should be the quickest path among those paths
connecting them. It can be built quickly because only a sin-
gle broadcast of the VA invitation is needed to assign VAs
to all the nodes. The length of any VA cannot exceed
degreemax � h where degreemax is the maximum nodal de-
gree in the network and h the height of the VA-tree. In a
typical P2P network, this height should be at most c

ffiffiffi
n
p

where c is a small constant.
In INSTANCEðS�Þ, each node Si is associated with a

‘‘zone”, denoted by ZONEðSi : S�Þ, consisting of all the bin-
ary strings str such that: (i) VAðSi : S�Þ is a prefix of str,
and (ii) no child of Si has VA a prefix of str. In other words,
among all the nodes in the network, node Si is the one
whose VA is the maximal prefix of str. We call Si the ‘‘des-
ignated node” of str and use NODEðstr : S�Þ to denote this
node. For example, using the virtual instance TREEð1Þ in
Fig. 1(a), the zone of node 11 (VA ‘00101’) is the set of bin-
ary strings ‘00101’, ‘001010’, and all the strings of the form
‘0010100 . . . ’, for which node 11 is the designated node.

The following is true for the zone assignments:

1. ZONEðSi : S�Þ \ ZONEðSj : S�Þ–;, for every i–j.
2.
Sn

i¼1ZONEðSi : S�Þ ¼ f0;1g�.
3.
S
fZONEðS0 : S�ÞjS0 is Si or a descendant of Sig ¼ fstr 2 f0;

1g�jVAðSi : S�Þ is a prefix of str}, for every i.

These properties are important to designing our index-
ing component.

3.1.2. Indexing
For each publish/subscribe application under deploy-

ment, the information of interest is assumed to have a
fixed number of attributes called the dimension of this
application. PUB-2-SUB supports any dimension and al-
lows multiple applications to run on the network simulta-
neously, whose dimension can be different from one
another. We use the term ‘‘event” to refer to some new
information that a node wants to publish. The queries of
interest are those that specify a lower-bound and an
upper-bound on each event attribute. For ease of presenta-
tion, we assume for now that events are unidimensional.
Later in Section 3.4, we will discuss how PUB-2-SUB en-
ables applications of any dimensionality.

Without loss of generality, we represent an event x as a
k-bit binary string (the parameter k should be chosen to be
larger than the longest VA length in the network). A query
Q is represented as an interval Q ¼ ½ql; qh�, where
ql; qh 2 f0;1g

k, subscribing to all events x belonging to this
interval (events are ‘‘ordered” lexicographically). As an
example, if k ¼ 3, the events matching a query
[‘001’, ‘101’] are {‘001’, ‘010’, ‘011’,100’, ‘101’,111’}.
Assuming that every node has been assigned a VA as a
result of a virtualization procedure initiated by a node S�,
we require that (i) each query Q is stored at every node
Si such that ZONEðSi : S�Þ \ Q –;; and (ii) each event x is
sent to NODEðx : S�Þ – the designated node of string x. It
is guaranteed that if x satisfies Q then Q can always be
found at node NODEðx : S�Þ (because this node’s zone must
intersect Q). The dissemination algorithms to subscribe a
query and publish an event are presented below in Algo-
rithms 3.1 and 3.2, respectively.

Algorithm 3.1 (Query Subscription). Considering a query Q:
� Initially, the subscription starts at the subscriber node
of Q.

� At each node Si that receives Q.
1. Quit if Si already received this query.
2. Let Z ¼ fstr 2 f0;1gkjVAðSi : S�Þ is a prefix of str}.
3. IF (Z does not overlap Q) .

(a) Forward Q to the parent node of Si in TREEðS�Þ.
4. ELSE
(a) Q at Si if ZONEðSi : S�Þ intersects Q.
(b) Forward Q to all children of Si in TREEðS�Þ.
(c) IF (Z does not contain Q), forward Q to parent of Si

in TREEðS�Þ.
Algorithm 3.2 (Event Notification). Considering an event x:

� Initially, the notification starts at the publisher node
of x.

� At each node Si that receives x.
1. IF (VAðSi : S�Þ is not a prefix of x) THEN.

(a) Forward x to the parent node of Si in TREEðS�Þ.
2. ELSE
(a) Find the child node Sj such that VAðSj : S�Þ is a

prefix of x.
(b) IF (Sj exists) THEN Forward x to Sj.
(c) ELSE Search node Si for those queries matching x.
Fig. 2 shows an example with k = 7. Suppose that node
12 wants to subscribe a query Q = [‘0110001’, ‘0110101’],
thus looking to be notified upon any of the following
events
{‘0110001’, ‘0110010’, ‘0110011’, ‘0110100’, ‘0110101’}.
Therefore, this query will be stored at nodes {8,17,18},
whose zone intersects Q. For example, node 8’s zone inter-
sects Q because they both contain ‘0110001’. The path to
disseminate this query is 12 ? 5 ? 2 ? 1 ? 3 ? 8 ?
{17,18} (represented by the solid arrow lines in Fig. 2).
Now, suppose that node 22 wants to publish an event
x = <‘0110010’>. Firstly, this event will be routed upstream
to node 8 – the first node that is a prefix with ‘0110010’
(path 22 ? 16 ? 8). Afterwards, it is routed downstream
to the designated node NODE(‘0110010’:1), which is node
18 (path 8 ? 18). Node 18 searches its local queries to find
the matching queries. Because query Q = [‘0110001’,
‘0110101’] is stored at node 18, this query will also be
found.

Fig. 2. Solid-bold path: subscription path of query [‘0110001’, ‘0110101’]; dashed-bold path: notification path of event < ‘0110010’>.

D.A. Tran, C. Pham / Computer Networks 54 (2010) 1739–1749 1743
The storage and communication costs for a query’s sub-
scription depend on its range; the wider the range, the lar-
ger costs. For an event, the communication cost measured
as the number of hops traveled to publish an event is OðhÞ
where h is the tree height ðh ¼ Oð

ffiffiffi
n
p
Þ in most cases). The

delay to notify a matching subscriber is the time to travel
this path; hence, also OðhÞ. The computation cost should
be small because only one node – the designated node
NODEðx : S�Þ – needs to search its stored queries to find
those matching x. Our evaluation study in Section 4 indeed
finds these costs reasonably small.

3.2. Update methods

There may be changes in the network such as when a
new node is added or an existing node fails. PUB-2-SUB
is adaptable to these changes. It can update the network
virtualization accordingly together with the effort to avoid
query loss and notification failure. Supposing that the net-
work is virtualized according to the VA instance
INSTANCEðS�Þ, we present the update methods below.

3.2.1. Node addition
Consider a new node Snew that has just joined the net-

work according to the network’s underlying join protocol.
As a result, it is connected to a number of neighbors. We
need to add this node to INSTANCEðS�Þ. First, this node com-
municates with its neighbors and asks the neighbor Sneighbor

with the minimum tree depth to be its parent; tie is broken
by choosing the one with fewest children. This strategy
helps keep the tree as balanced as possible so its
height can be short and workload fairly distributed among
the nodes. The neighbor will then assign Snew a VA that
is the shortest unused binary string of the form
VAðSneighbor : S�Þ þ ‘0�1’. For example, suppose that
VAðSneighbor : S�Þ=‘1001’ and the children of Sneighbor in the
tree treeVAðS�Þ other than Snew have already obtained the
following VAs: ‘10011’, ‘100101’, ‘10010001’. The VA for
Snew would be VAðSnew : S�Þ=‘1001001’.

Because ZONEðSneighbor : S�Þ is changed, the next task is
for the parent node Sneighbor to delete those queries that
do not intersect ZONEðSneighbor : S�Þ. Also, this parent node
needs to forward to Snew the queries that intersect
ZONEðSnew : S�Þ.
3.2.2. Node removal
When a node fails to function, it is removed from the

network according to the underlying maintenance proto-
col. This removal however affects the connectedness of
the VA instance in place. Because the VAs of the child
nodes are computed based on that of the parent node,
the child nodes of the departing node need to find a new
parent so the VA instance remains valid.

Consider such a child node Schild. This node selects a new
parent among its neighbors. The new parent, say node
Sparent , computes a new VA for Schild (similar to node addi-
tion). Then, Schild re-computes the VAs for its children and
informs them of the changes. Each child node follows the
same procedure recursively to inform all its descendant
nodes downstream. The query transfer/forwarding from
Sparent to Schild and, if necessary, from Schild to the descendant
nodes of Schild is similar to the case of adding a new
node.

In addition, because each descendant node Si of the re-
moved node is now assigned a new VA and thus a new
zone, the queries that are stored at Si before the VA adjust-
ment might no longer intersect its new zone. These queries
can be either deleted or re-subscribed to the network
depending on the priority we can set at the first time they
are subscribed to the network. If a query is marked as
‘‘high-priority”, it is stored in the network permanently un-
til the subscriber determines to unsubscribe it (the unsub-
scription procedure is similar to the subscription
procedure). On the other hand, if a query is marked as
‘‘low-priority”, it is associated with a lease time after
which the query will expire and be deleted. How to imple-
ment these two types of priority is determined by the
application developer.

Although PUB-2-SUB is designed for cooperative net-
works in which the number of node failures should be
small, it is still desirable to reduce the costs involved in a
query’s re-subscription resulted from a failure. One way
is to choose a proper parent Sparent for node Schild above. For-
tunately, in a network that is richly connected, which is the
case for many P2P networks, the former grandparent of
Schild may already be a neighbor of Schild and thus can serve
as the new parent for Schild. As a result, many queries that
have been stored at Si also intersect the new zone of Si

and thus do not need to be re-subscribed.

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45

N
um

be
r o

f Q
ue

rie
s

Base-2 Logarithm of Range Size

Fig. 3. Histogram of query ranges in the heavy-tail query model.

1744 D.A. Tran, C. Pham / Computer Networks 54 (2010) 1739–1749
The worst case is when the root node fails in which we
have no way to recover other than rebuilding the entire VA
instance. To avoid this unfortunate case, we propose that
the root of a VA instance be a dedicated node deployed
by the network administrator. In actual implemention, it
is possible to deploy another reliable node serving as the
backup for the root node in case the latter fails.

3.3. Multiple VA-instances

Because query subscription and event notification pro-
cedures are based on the VA-tree, the root node and those
nearby become potential hotspots. To alleviate this bottle-
neck problem, a solution is to build, not one, but multiple
VA-instances. We can build m VA-instances initiated by
dedicated nodes randomly placed in the network

S�1; S
�
2; . . . ; S�m

� �
. After m virtualization procedures, each

node Si will have m VAs, VAðSi : S�1Þ,VAðSi : S�2Þ; . . ., and
VAðSi : S�mÞ, respectively corresponding to the m VA-
instances.

In the presence of multiple VA-instances, each query is
subscribed to a random VA-instance and each event is pub-
lished to every VA-instance. A node near the root of a VA-
tree might be deep in other VA-trees and so the workload
and traffic are better shared among the nodes. Using multi-
ple VA-instances also increases reliability. Because an
event is notified to every VA-tree, the likelihood of its find-
ing the matching queries should remain high even if a path
this event is traveling is disconnected because of some
failure.

Although the storage and communication costs per
query should not increase, the computation and communi-
cation costs per event increase linearly with the number of
VA-instances. We will discuss these effects in our evalua-
tion study.

3.4. Multidimensionality

In the description of PUB-2-SUB we have expressed an
event as a unidimensional k-bit binary string and a query
as a unidimensional interval. In practice, however, an event
can have multiple attributes and as such it is usually repre-
sented as a numeric value in d dimensions where d is the
number of attributes. To specify a subscription, a query is
often specified as a d-dimensional rectangular range of val-
ues. PUB-2-SUB can work with events and queries of this
general form.

First, we need a hash mechanism f that hashes a d-
dimensional value x to a unidimensional k-bit binary string
xf ¼ f ðxÞ and a d-dimensional range Q to a unidimensional
interval Q f ¼ f ðQÞ of k-bit strings such that if x 2 Q then
xf 2 Qf . For this purpose, we propose to use a ðk=2Þ-order
Hilbert Curve mapping [31]. This mapping preserves not
only the containment relationship but also the locality
property. Thus, small Q in the original space is mapped to
small Q f in the unidimensional space with a high probabil-
ity. Then, to subscribe a query Q we follow Algorithm 3.1
using the hash interval Q f . Similarly, to publish an event
x we route it to the designated node of xf according to
Algorithm 3.2. When the event x reaches this node, locally
stored queries are evaluated to find those matching x; the
query evaluation with the event is based on the original
values of the query and event (Q and x), not the hash values
(Qf and xf).
4. Evaluation study

We believe that PUB-2-SUB can be simulated with other
simulators for P2P networks, such as PeerSim [32], P2PSim
[33], and OverSim [34]. However, because our purpose is to
substantiate the efficiency of PUB-2-SUB, we chose to de-
velop a home-grown simulator which was simpler to de-
velop, more flexible to tune, yet still guaranteeing
correctness. Our simulator was event-driven and written
in C. The simulated network consisted of 1000 nodes
whose topology was a Waxman random graph generated
with the BRITE generator [35]. Unlike highly dynamic
free-to-grow P2P networks, a cooperative P2P network
(e.g., grid networks) should be designed so that the node
degrees are not so skewed as in the power-law distribution
(a similar argument is given in [36]). Thus, although PUB-
2-SUB can work with any topology, we choose to discuss
in this section the results for the simulated network as a
uniform, not power-law, random graph. This network con-
sists of 2766 peer-to-peer links; hence, 5.5 neighbors per
node.

An event was represented as a k-bit string and a query
an arbitrary interval of k-bit strings (as discussed in Sec-
tion 3.4, other event/query models can be transformed to
this model). A query or event was initiated by a random
node chosen uniformly. To cover a large domain of possible
events, we set k to 50 bits, thus able to specify up to 250 dif-
ferent events. From this domain, 10,000 events were cho-
sen uniformly in random. The subscription load consisted
of 10,000 queries, each having a range chosen according
to the following Zipf’s law: in the set of possible ranges

{20,21, . . . , 249}, range 2i is picked with probability
1=iaP50

j¼1
ð1=jaÞ

. The number of events belonging to a query thus

could be as large as half the entire domain size (249) or just
one (exact match). We considered two query range mod-
els: a ¼ 0 representing the uniform distribution, and
a ¼ 0:8 representing a heavy-tail distribution where a vast
majority of the queries are specific, i.e., short range, with

0

100

200

300

400

500

0 2000 4000 6000 8000 10000

N
um

 o
f R

ep
lic

as

Query ID

Single VA Instance

uniform (avg = 14.888700)
heavy-tail (avg = 4.255900)

0

100

200

300

400

500

0 2000 4000 6000 8000 10000

N
um

 o
f H

op
s

Query ID

Single VA Instance

uniform (avg = 25.601500)
heavy-tail (avg = 15.060300)

Fig. 4. Query subscription costs.

D.A. Tran, C. Pham / Computer Networks 54 (2010) 1739–1749 1745
an average size of 212 (see Fig. 3). The heavy-tail model re-
flects many real-world applications.

We evaluated PUB-2-SUB in the following aspects: sub-
scription efficiency, notification efficiency, notification de-
lay, failure effect, load balancing, and effect of using
multiple VA-instances. We also compared PUB-2-SUB to
BubbleStorm [23] – a recent search technique designed
for unstructured P2P networks. Two versions of Bubble-
Storm were considered: (1) BubbleStorm-64%: each query
or event is sent to

ffiffiffi
n
p

nodes, resulting in a 64% query/event
matching success rate (when there is no failure), and (2)
BubbleStorm-98%: each query or event is sent to 2

ffiffiffi
n
p

nodes, resulting in a 98% success rate (when there is no
failure). The evaluation results are discussed below.

4.1. Subscription efficiency

This efficiency is measured in terms of the storage cost
and the communication cost. The storage cost is computed
as the number of nodes that store a given query, and the
communication cost as the number of hops (nodes) that
have to forward this query during its subscription
procedure.

Fig. 4 shows these costs for every query, which are
sorted in non-decreasing order. It is observed for either
cost that all queries result in a small cost except for a very
0

10

20

30

40

50

60

P2S:uniform P2S:heavy-tail BubbleStorm:64% BubbleStorm:98%

N
um

be
r o

f R
ep

lic
as

 p
er

 Q
ue

ry

P2S vs. BubbleStorm

Fig. 5. PUB-2-SUB vs. BubbleStorm: storage cost.
few with a high-cost. These high-cost queries are those
with long ranges. As such, they intersect the zones of many
nodes and thus have to travel more to be stored at these
nodes. Despite so, on average, a query is replicated at only
15 nodes (uniform case) and 4.3 nodes (heavy-tail case),
resulting in a communication cost of 25.6 hops (uniform
case) and 15 hops (heavy-tail case).

These costs are much lower than that incurred by Bub-
bleStorm. Fig. 5 shows that BubbleStorm-64% stores an
average query at 33 nodes, more than twice the storage
cost of PUB-2-SUB (uniform) and eight times the cost of
PUB-2-SUB (heavy-tail). The storage cost of BubbleStorm-
98% is even higher. In terms of the communication cost,
as seen in Fig. 6(a), a query in BubbleStorm-64% and Bub-
bleStorm-98% has to travel 33 hops and 66 hops, respec-
tively, which are also higher than the communication
cost of PUB-2-SUB.
4.2. Notification efficiency

This efficiency is measured in terms of the communica-
tion cost and the computation cost. The communication
cost is computed as the number of hops, i.e., nodes that
have to forward a given event during its publication proce-
dure, and the computation cost as the number of queries
evaluated to match this event.

Because an event is routed based on the nodes’ VAs, its
communication cost is independent of the query model
used, uniform or heavy-tail. Fig. 7(a) shows that this cost
is distributed normally from zero hops (best-case) to 25
hops (worst case), having an average of 12 hops. The
event communication cost is also much lower (by approx-
imately three times at least) when compared to Bubble-
Storm (Fig. 6(b)). This study together with the study of
the subscription efficiency are evident that PUB-2-SUB
clearly outperforms BubbleStorm in both storage cost
and communication cost.

In terms of computation cost, Fig. 7(b) shows that in the
worst case about 1400 queries need to be evaluated to find
all those that match a given event. This number is however,
only 14% of the entire query population. On average, the
computation cost is only 563 query evaluations (uniform

0

10

20

30

40

50

60

P2S:uniform P2S:heavy-tail BubbleStorm:64% BubbleStorm:98%

N
um

be
r o

f H
op

s
pe

r Q
ue

ry
P2S vs. BubbleStorm

(a) Query subscription

0

10

20

30

40

50

60

P2S:uniform P2S:heavy-tail BubbleStorm:68% BubbleStorm:98%

Av
g.

 N
um

 o
f H

op
s

pe
r E

ve
nt

P2S vs. BubbleStorm

(b) Event notification

Fig. 6. PUB-2-SUB vs. BubbleStorm: communication cost.

5

10

15

20

25

0 2000 4000 6000 8000 10000

N
um

 o
f H

op
s

Tr
av

el
ed

Event ID

Single VA Instance

avg = 11.936700

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000

N
um

 o
f Q

ue
rie

s
Ev

al
ua

te
d

Event ID

Single VA Instance

uniform (avg = 562.887300)
heavy-tail (avg = 457.698300)

Fig. 7. Event notification costs.

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20

N
um

 o
f N

ot
ifi

ca
tio

ns

Notification Delay

Fig. 8. Histogram of publisher-to-subscriber notification delay.

1746 D.A. Tran, C. Pham / Computer Networks 54 (2010) 1739–1749
case) and 458 query evaluations (heavy-tail case), corre-
sponding to 5.63% and 4.58% of the query population,
respectively.

4.3. Notification delay

When an event is published, there might be more than
one query subscribing to this event. To represent the noti-
fication delay for each (event, query) matching pair, we
compute the ratio a=b where a is the hopcount-based dis-
tance the event has to travel from the publisher node to the
subscriber node and b is the hopcount-based distance di-
rectly between these two nodes. This ratio is at least 1.0
because even if the publisher knows the subscriber, it must
already take b hops to send the event to the subscriber. In
practice, because the publisher and the subscriber initially
do not know each other, it is impossible to obtain a perfect
1.0 ratio.

Fig. 8 plots the histogram of notification delay incurred
by PUB-2-SUB. Approximately, 70% of the notifications
have a delay not exceeding 2.0 (i.e., twice the perfect delay)
and 90% have a delay not exceeding 3.0 (i.e., three times
the perfect delay). Thus, despite a few (event, query) pairs
with high notification delay, a vast majority of events can
notify their matching queries reasonably quickly.

D.A. Tran, C. Pham / Computer Networks 54 (2010) 1739–1749 1747
4.4. Failure effect

Although PUB-2-SUB is designed for cooperative P2P
networks where all the nodes are supposed to be opera-
tional as much as possible, node failures are inevitable.
0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

R
ec

al
l

Query ID

Uniform Query Model

10% fail (avg = 0.81)
30% fail (avg = 0.74) R

ec
al

l

Fig. 9. Effect of Failures: 10% of nod

0
0.002
0.004
0.006
0.008

0 200 400

1-VA (avg num store

0
0.002
0.004
0.006
0.008

0 200 400

3-VA (avg num store

0
0.002
0.004
0.006
0.008

0 200 400
NodeI

5-VA (avg num store

0
0.02
0.04
0.06
0.08

0.1
0.12

0 200 400 600 800 1000

1-VA (avg num evaluated events = 10.000000)

0
0.02
0.04
0.06
0.08

0.1
0.12

0 200 400 600 800 1000

3-VA (avg num evaluated events = 30.000000)

0
0.02
0.04
0.06
0.08

0.1
0.12

0 200 400 600 800 1000
NodeID

5-VA (avg num evaluated events = 50.000000)

0.
0

0.
0

0.
0

0.

0.
0

0.
0

0.
0

0.

0.
0

0.
0

0.
0

0.

Fig. 10. Load b
When a node stops functioning, an event might fail to no-
tify its subscribers. To evaluate PUB-2-SUB’s effectiveness
under such a failure, we compute ‘‘recall” – the percentage
of the returned events that match a given query out of all
the matching events. If there is no failure, the recall for
0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000
Query ID

Heavy-Tail Query Model

10% fail (avg = 0.94)
30% fail (avg = 0.91)

es fail and 30% of nodes fail.

600 800 1000

d queries = 148.887000)

600 800 1000

d queries = 144.510000)

600 800 1000
D

d queries = 127.350000)

0
005
.01
015
.02
025
.03
035

0 200 400 600 800 1000

1-VA (avg num fwd msgs = 375.382000)

0
005
.01
015
.02
025
.03
035

0 200 400 600 800 1000

3-VA (avg num fwd msgs = 592.805000)

0
005
.01
015
.02
025
.03
035

0 200 400 600 800 1000
NodeID

5-VA (avg num fwd msgs = 793.679000)

alancing.

1748 D.A. Tran, C. Pham / Computer Networks 54 (2010) 1739–1749
every query is 100%. Upon a failure, a high recall is desir-
able because it implies that the system remains effective.
We consider the case where 10% of the nodes fail simulta-
neously and the case where 30% fail.

Fig. 9(a) shows the results for the uniform-query model
case, where it is observed that 75% of the queries are suc-
cessfully notified by all the matching events (i.e., re-
call = 100%) even when 30% of the nodes fail. The
difference between the 10%-fail case and the 30%-fail case
is that in the latter case most of the remaining queries (the
remaining 25%) fail to receive any matching event while in
the former case about half of the queries do not receive any
matching event and the other half receiving at least some
portion of the matching events. On average, the recall for
the 10%-fail case is 81%, and for the 30%-fail case is 74%.

Higher recall is obtained when the query model is hea-
vy-tail (see Fig. 9(b)). The average recall is 91% when 30% of
the nodes fail and 94% when 10% fail. The results are
encouraging because in practice the query range should
follow the heavy-tail model more often than the uniform
model. This study is demonstrative of PUB-2-SUB’s sus-
tainable effectiveness when a large portion of the network
fails to operate.

4.5. Load balancing and effect of using multiple VA-instances

We compute for each node Si the storage load
Lstore

i =
Pn

j¼1Lstore
j , computation load Lcomp

i =
Pn

j¼1Lcomp
j , and com-

munication load Lcomm
i =

Pn
j¼1Lcomm

j , and investigate the vari-
ation in each type of load. Here, Lstore

i is the number of
queries stored at node Si; L

comp
i the number of events evalu-

ated at node Si, and Lcomm
i the number of queries/events for-

warded by node Si.
When a single VA is used, the root node of the VA-tree

and those nearby are likely to have higher workload than
those deeper in the tree. Although this problem is not
avoidable, Fig. 10 (top diagrams) demonstrates that such
high-loaded nodes represent a minor network population.
Among the remaining nodes the workload is quite bal-
anced, especially for storage load (Fig. 10(a) (top diagram)).
On average, a node has to store 149 queries (1.5% of all the
queries; see Fig. 10(a) (top diagram)), evaluate 10 events
(1% of all the events; see Fig. 10(b) (top diagram)), and for-
ward 794 queries and events (4% of all queries and events;
see Fig. 10(c) (top diagram)). The workload per node is
therefore small.

As discussed in Section 3.3, using multiple VA-instances
is a way to improve load balancing. This improvement is
evident in Fig. 10 which shows significantly fewer nodes
with peak workloads as we increase the number of VA-in-
stances from one to three (Fig. 10 (middle diagrams)) to
five (Fig. 10 (bottom diagrams)). Further, the storage cost
also gets better. When five VA-instances are used, an aver-
age node stores 128 queries, less than 149 queries if a sin-
gle VA is used.

The computation and communication costs per node
are however proportionally increased if more VA-instances
are used. This is understandable because each event is pub-
lished to all the VA-instances. Using multiple VA-instances
is thus a tradeoff between (i) better load balancing and
storage cost versus (ii) worse communication and compu-
tation costs. If there are few events in the network com-
pared to the number of subscription queries, we would
rather use multiple VA-instances. Otherwise, a single VA
instance should be used.

5. Conclusions

Many distributed computing networks have adopted
P2P as an effective way to share resources, reduce server
costs, and promote collaboration. Useful to these networks
is a mechanism that enables publish/subscribe applica-
tions. We have proposed such a mechanism, called PUB-
2-SUB, which can be integrated into any unstructured net-
work. Using PUB-2-SUB, any number of content-based
publish/subscribe applications can be deployed simulta-
neously. Unlike the gossip-based approach previously rec-
ommended for unstructured networks, the proposed
technique is based on directed routing and incurs less stor-
age and communication costs. This is evident in an evalu-
ation study in which PUB-2-SUB is compared to a
representative technique of the other approach. It is also
found that our technique results in low computation cost
and low notification delay and remains highly effective in
cases when many nodes in the network stop to function.

We do not recommend PUB-2-SUB for use in highly dy-
namic networks with the nodes being on and off fre-
quently. Instead, PUB-2-SUB works best for P2P-based
cooperative networks in which the nodes are supposed to
be functional most of the time and failures do not happen
too often. Thus, data grid networks and institutional col-
laborative networks can take full advantage of the pro-
posed technique.

Acknowledgment

This work was supported in part by the National Sci-
ence Foundation under award number CNS-0753066. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect those of the National Science
Foundation.

References

[1] X. Sun, J. Liu, E. Yao, X. Chen, A scalable P2P platform for the
knowledge grid, IEEE Transactions on Knowledge and Data
Engineering 17 (12) (2005) 1721–1736. doi:http://dx.doi.org/
10.1109/TKDE.2005.190.

[2] Y. Teranishi, H. Tanaka, Y. Ishi, M. Yoshida, A geographical
observation system based on P2P agents, in: PERCOM’08:
Proceedings of the 2008 6th Annual IEEE International Conference
on Pervasive Computing and Communications, IEEE Computer
Society, Washington, DC, USA, 2008, pp. 615–620. doi:http://
dx.doi.org/10.1109/PERCOM.2008.63.

[3] N. Shalaby, J. Zinky, Towards an architecture for extreme P2P
applications, in: Parallel and Distributed Computing and Systems
Conference (PDCS), Cambridge, MA, 2007.

[4] M. Cai, M. Frank, J. Chen, P. Szekely, Maan: A multi-attribute
addressable network for grid information services, GRID’03:
Proceedings of the 4th International Workshop on Grid Computing,
IEEE Computer Society, Washington, DC, USA, 2003, p. 184.

[5] U. Liebel, Sciencenet search-engine-based on-yacy-P2P-technology,
January, 2008, http://liebel.fzk.de/collaborations/sciencenet-search-
engine-based on-yacy-P2P-technology.

[6] T. Hey, A.E. Trefethen, Cyberinfrastructure for e-science, Science 308
(5723) (2005) 817–821.

http://dx.doi.org/10.1109/TKDE.2005.190
http://dx.doi.org/10.1109/TKDE.2005.190
http://dx.doi.org/10.1109/PERCOM.2008.63
http://dx.doi.org/10.1109/PERCOM.2008.63

D.A. Tran, C. Pham / Computer Networks 54 (2010) 1739–1749 1749
[7] K.A. Peterson, P. Fontaine, S. Speedie, The electronic primary care
research network (ePCRN): a new era in practice-based research, The
Journal of the American Board of Family Medicine 19 (2006) 93–97.

[8] IBM, Ibm grid and grow express: a solution for competitive business,
August (2005). http://www-03.ibm.com/linux/grid/gridandgrow.
shtml.

[9] E.N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S.
Parthasarathy, J.B. Park, A. Vernon, Scalable trigger processing, in:
Proceedings of the 15th International Conference on Data
Engineering, IEE Computer Society, Sydney, Austrialia, 1999. pp.
266–275.

[10] J. Chen, D.J. DeWitt, F. Tian, Y. Wang, Niagaracq: a scalable continuous
query system for internet databases, SIGMOD Record 29 (2) (2000)
379–390. doi:http://doi.acm.org/10.1145/335191.335432.

[11] F. Fabret, H.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, D. Shasha,
Filtering algorithms and implementation for very fast publish/
subscribe systems, in: SIGMOD’01: Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, ACM
Press, New York, NY, USA, 2001, pp. 115–126. doi:http://
doi.acm.org/10.1145/375663.375677.

[12] M. Castro, P. Druschel, A. Kermarrec, A. Rowstron, SCRIBE: a large-
scale and decentralized application-level multicast infrastructure,
IEEE Journal on Selected Areas in Communications (JSAC) 20 (8)
(2002) 1489–1499.

[13] A. Gupta, O.D. Sahin, D. Agrawal, A.E. Abbadi, Meghdoot: content-
based publish/subscribe over P2P networks, in: Middleware’04:
Proceedings of the 5th ACM/IFIP/USENIX International Conference
on Middleware, Springer-Verlag New York, Inc., New York, NY, USA,
2004, pp. 254–273.

[14] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, A.P. Buchmann, A peer-
to-peer approach to content-based publish/subscribe, DEBS’03:
Proceedings of the 2nd International Workshop on Distributed
event-based systems, ACM Press, New York, NY, USA, 2003, pp. 1–8.

[15] I. Aekaterinidis, P. Triantafillou, Internet scale string attribute
publish/subscribe data networks, in: CIKM’05: Proceedings of the
14th ACM International Conference on Information and knowledge
Management, ACM Press, 2005, pp. 44–51.

[16] D.A. Tran, T. Nguyen, Publish/subscribe service in can-based P2P
networks: dimension mismatch and the random projection
approach, in: IEEE Conference on Computer Communications and
Networks (ICCCN’08), IEEE Press, Virgin Island, USA, 2008.

[17] S. Bianchi, P. Felber, M. Gradinariu, Content-based publish/subscribe
using distributed R-trees, Euro-Par, 2007, 537–548.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable
content addressable network, in: ACM SIGCOMM, San Diego, CA,
2001, pp. 161–172.

[19] I. Stoica, R. Morris, D. Karger, M. Kaashock, H. Balakrishman, Chord: a
scalable peer-to-peer lookup protocol for internet applications, in:
ACM SIGCOMM, San Diego, CA, 2001, pp. 149–160.

[20] A. Rowstron, P. Druschel, Pastry: scalable, distributed object location
and routing for large-scale peer-to-peer systems, in: IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, 2001, pp. 329–350.

[21] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, J. Kubiatowicz,
Tapestry: a resilient global-scale overlay for service deployment,
IEEE Journal on Selected Areas in Communications 22 (1) (2004) 41–
53.

[22] W. Pugh, Skip lists: a probabilistic alternative to balanced trees,
Communications of the ACM 33 (1990) 668–676.

[23] W.W. Terpstra, J. Kangasharju, C. Leng, A.P. Buchmann, BubbleStorm:
resilient, probabilistic, and exhaustive peer-to-peer search, in:
SIGCOMM’07: Proceedings of the 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, ACM, New York, NY, USA, 2007, pp. 49–60.
doi:http://doi.acm.org/10.1145/1282380.1282387.

[24] B. Wong, S. Guha, Quasar: a probabilistic publish/subscribe system
for social setworks, in: Proceedings of the 7th International
Workshop on Peer-to-Peer Systems (IPTPS’08), Tampa Bay, FL, 2008.

[25] C. Gkantsidis, M. Mihail, A. Saberi, Random walks in peer-to-peer
networks: algorithms and evaluation, Performance Evaluation 63 (3)
(2006) 241–263. doi:http://dx.doi.org/10.1016/j.peva.2005.01.002.

[26] P. R. Pietzuch, J. Bacon, Peer-to-peer overlay broker networks in an
event-based middleware, DEBS’03: Proceedings of the 2nd
International Workshop on Distributed Event-Based Systems, ACM,
New York, NY, USA, 2003, pp. 1–8.

[27] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, J. D. Kubiatowicz,
Bayeux: an architecture for scalable and fault-tolerant wide-area
data dissemination, NOSSDAV’01: Proceedings of the 11th
international Workshop on Network and Operating Systems
Support for Digital Audio and Video, ACM, New York, NY, USA,
2001, pp. 11–20.

[28] S. Voulgaris, E. Rivire, A.-M. Kermarrec, M. van Steen, Sub-2-sub:
self-organizing content-based publish subscribe for dynamic large-
scale collaborative networks, in: Fifth International Workshop on
Peer-to-Peer Systems (IPTPS 2006), 2006.

[29] A. Guttman, R-trees: a dynamic index structure for spatial searching,
in: ACM SIGMOD Conference on Management of Data, 1984, pp. 47–
57.

[30] R. Guerraoui, S. Handurukande, K. Huguenin, A.-M. Kermarrec, F. Le
Fessant, E. Riviere, GosSkip, an efficient, fault-tolerant and self-
organizing overlay using gossip-based construction and skiplists
principles, in: IEEE International Conference on Peer-to-Peer
Computing, 2006.

[31] J.K. Lawder, P.J.H. King, Using space-filling curves for
multidimensional indexing, in: BNCOD 17: Proceedings of the 17th
British National Conference on Databases, Springer-Verlag, London,
UK, 2000, pp. 20–35.

[32] M. Jelasity, A. Montresor, G.P. Jesi, S. Voulgaris, The Peersim
simulator, http://peersim.sf.net.

[33] P2PSim, A simulator for P2P protocols, http://pdos.csail.mit.edu/
p2psim.

[34] I. Baumgart, B. Heep, S. Krause, OverSim: a scalable and flexible
overlay framework for simulation and real network applications, in:
Ninth International Conference on Peer-to-Peer Computing (IEEE
P2P’09), 2009, pp. 87–88. doi:10.1109/P2P.2009.5284505.

[35] A. Medina, A. Lakhina, I. Matta, J. Byers, Brite: an approach to
universal topology generation, IEE Computer Society, Washington,
DC, USA, 2001. p. 346.

[36] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and replication in
unstructured peer-to-peer networks, in: ICS’02: Proceedings of the
16th ACM International Conference on Supercomputing, ACM Press,
New York, NY, USA, 2002, pp. 84–95.

Duc A. Tran is an Assistant Professor in the
Department of Computer Science at the Uni-
versity of Massachusetts at Boston, where he
leads the Network Information Systems Lab-
oratory (NISLab). He received a Ph.D. degree in
Computer Science from the University of
Central Florida (Orlando, Florida) in 2003. His
interests are in the areas of networking and
distributed systems, particularly in support of
information systems that can scale with both
network size and data size. The results of his
work have led to research grants from the

National Science Foundation (NSF), a Best Paper Award at ICCCN 2008,
and a Best Paper Recognition at DaWak 1999. He has engaged in many
professional activities, serving as a multi-time Review Panelist for the

NSF, Guest-Editor for two international journals, TPC Chair for IRSN 2009
and GridPeer 2009, TPC Vice-Chair for AINA 2007, TPC member for 30+
international conferences, and referee and session chair for numerous
journals/conferences.

Cuong (Charlie) Pham is a Ph.D. student in
the Department of Computer Science at the
University of Massachusetts at Boston and a
research member of NISLab. He received a BS
degree in Computer Science from Bowman
Technical State University in Moscow, Russia
in 2007. His research interests are P2P net-
works and wireless sensor networks. He has
received a Student Travel Award from the NSF
and a Research Excellence Award from the
Department of Computer Science (UMass
Boston), both in 2009.

http://www-03.ibm.com/linux/grid/gridandgrow.shtml
http://www-03.ibm.com/linux/grid/gridandgrow.shtml
http://doi.acm.org/10.1145/335191.335432
http://doi.acm.org/10.1145/375663.375677
http://doi.acm.org/10.1145/375663.375677
http://doi.acm.org/10.1145/1282380.1282387
http://dx.doi.org/10.1016/j.peva.2005.01.002
http://peersim.sf.net
http://pdos.csail.mit.edu/p2psim
http://pdos.csail.mit.edu/p2psim
http://dx.doi.org/10.1109/P2P.2009.5284505

	Enabling content-based publish/subscribe services in cooperative P2P networks
	Introduction
	Related work
	The PUB-2-SUB technique
	Basic idea
	Virtualization
	Indexing

	Update methods
	Node addition
	Node removal

	Multiple VA-instances
	Multidimensionality

	Evaluation study
	Subscription efficiency
	Notification efficiency
	Notification delay
	Failure effect
	Load balancing and effect of using multiple VA-instances

	Conclusions
	Acknowledgment
	References

