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Abstract—Maintenance is an important issue in distributed
storage systems. In many cases, such as in archival storage where
data access is infrequent, the workload due to maintaining a
system is dominant and much heavier than that to answering
retrieval queries. Erasure coding, widely used in many distributed
storage systems for its high reliability, is efficient for access but
not so efficient for maintenance. In this paper, we investigate
an extension of this method with the purpose of improving
maintenance efficiency and provide an analysis on the tradeoff
of this extension.

Index Terms—Erasure Coding, Distributed Storage, Mainte-
nance Efficiency

I. I NTRODUCTION

In recent years, with the rapid growth of the Internet and
users’ generated content, reliability is an important issue for
any distributed data storage system that wants to provide 24-
hour service to its users (e.g., online banking, Google search,
Facebook access, to name a few). To have a high degree of
availability, the data should be replicated across many servers,
so that when some servers go down, the alive ones can still
provide the requested data. Erasure coding has been suggested
as a more reliable method of replication than full replication
[14], [17]. Erasure coding involves two steps. First, the original
data is split intok equi-size blocks. Second, these blocks are
used to generaten encoded blocks each being stored at a
random server. This way, we can reconstruct the original data
by obtaining anyk encoded blocks. Therefore, we can tolerate
up to n − k server failures.

A problem with erasure coding is the maintenance cost.
To recover from the loss of an encoded block, three tasks
are required: (1)k encoded blocks need to be retrieved from
k servers; (2) the original data needs to be reconstructed
from thesek blocks; (3) a new encoded block needs to be
generated to replace the lost one. In a large-scale distributed
storage system with millions of files stored across thousands
of servers, failures occur very frequently resulting in many
encoded blocks lost. The maintenance cost incurred by per-
forming all the three tasks above can be too expensive in
terms of both communication and computation, because the
entire file needs to be reconstructed just to replace a single
block. This cost is dominant in archival systems where data is
accessed infrequently but we need to make sure that the data
is always there when needed.

This paper is focused on such archival systems. Specifically,

we investigate REC1 – an extension of traditional erasure
coding (TEC) with the purpose to reduce the maintenance
cost. Instead of storing a single copy for each encoded block,
REC stores multiple copies and distribute these copies on the
servers in a way that is convenient to recover from any failure.
REC results in the same file availability as TEC but offers
much better efficiency when it comes to maintenance. We
have implemented REC in a real-world prototype on top of the
CitySense network [1]. CitySense is a wireless mesh network
deployed in Cambridge, MA to monitor its environment.

The remainder of this paper is structured as follows. Section
II discusses related work. Section III describes REC’s details.
Section IV presents the result of our analysis on the tradeoff
of REC in comparison to TEC. Section V describes the
implementation of REC on CitySense network. Section VI
concludes our paper.

II. RELATED WORK

Erasure coding is widely implemented in distributed storage
systems [14]- [17]. It is desirable for its efficient use of storage
space given the same data availability [17]. There are different
erasure coding techniques such as Reed-Solomon [19], LDPC
[20], Tornado [21], LT [22], Raptor [23], to name a few,
each having its own class of applications. For instance, in a
BitTorrent-like file sharing system, the Tornado code is used
to generate encoded blocks without the need to predefine the
number of blocks to generate. With Tornado code, the receiver
keeps receiving encoded blocks until it can decode to get the
original file. Usually the number of encoded blocks requiredto
decode in this case is high. In applications where this number
needs to be small, Reed-Solomon is more appropriate.

The maintenance of redundant data blocks is critical in
many large-scale reliable distributed storage systems [2]- [10].
In these systems, server failures are inevitable and the lost
encoded blocks need to be replaced to maintain the data
availability over time. Several techniques have been proposed
to make the maintenance more efficient. For example, FARM
[9] stored multiple copies of encoded blocks but because of
its randomness in choosing where to store these copies, the
time to search for the missing blocks might be significant.
CFS [8] distributes encoded blocks across a number of servers
which are organized in a Chord [25] overlay network. In

1REC = redundant erasure coding



contrast, REC is suitable for a server farm instead of an overlay
network of servers like Chord. OceanStore [4] replicates the
original file blocks instead of encoded blocks. Network Coding
(NC) is used in [11] to reduce the bandwidth required for
maintenance. The idea is to retrieve fewer encoded blocks
than usual but sufficient to reconstruct the original file, by
combining encoded blocks at immediate nodes pro-actively.
REC does not use NC while requiring less bandwidth to
replace the missing blocks.

Total Recall [7] suggests that it is not always a must to
repair a lost block and the decision to do this depends on the
severity (transient or permanent) of the failure. Total Recall
organizes servers in a Chord ring for ease of decentralized
management and uses erasure coding for encoding data blocks.
A similar work, Carbonite [2] is also about repair policy,
but aims at pure replication instead of erasure coding. Unlike
these two techniques, all server failures in REC are considered
permanent and require immediate repair.

III. PROPOSEDSOLUTION

We consider a large-scale distributed archival storage system
of N servers andM files that need to be archived, with
following requirements:

• a ∈ (0, 1): a real value representing the server availability,
defined as the probability that a server is alive at any
given time.

• A ∈ (0, 1): a real value representing the file availability,
defined as the probability that a file is accessible at any
given time.

• S: a real value representing the storage requirement to
store each file (system redundancy factor). Assuming that
each file’s size is one byte, the storage requirement in the
system for each file isS (bytes).

In TEC(kT , nT ), where kT and nT are the number of
original data blocks and the number of encoded blocks,
respectively, each fileB is divided intok blocks of equal size,
{BT

1 , BT
2 , ..., BT

kT
}, which are used to generaten encoded

blocks, {B′T
1 , B′T

2 , ..., B′T
nT

}. Each of these encoded blocks
is stored at a random server. Therefore, we have a group of
nT servers to store thenT encoded blocks for each file. The
file availability of this scheme is, according to [11]

ATEC(nT , kT ) = 1 −

kT −1
∑

i=0

(

nT

i

)

ai(1 − a)nT −i (1)

The storage requirement is

STEC = nT /kT (2)

Based on Eqs. 1 and 2, givenA, a and S, we can choose
the values fornT and kT accordingly. Figure 1(a) shows an
example of TEC(kT ,nT ).

We propose REC below as an extension of TEC in order
to achieve better efficiency for maintenance. There are three
parameters for REC: (1)kR: the number of original data
blocks; (2) nR: the number of encoded blocks; and (3)r:
the number of copies per encoded block, called the block
redundancy factor

A. Data Encoding and Storage

Similar to TEC, each fileB is divided intok blocks of equal
size,{BR

1 , BR
2 , , BR

kR
}, which are used to generaten encoded

blocks,{B′R
1 , B′R

2 , , B′R
nR

}. A group ofnR random servers is
selected to store these encoded blocks. The difference between
REC and TEC is thatr copies of each encoded block are
stored instead of one copy. The storage requirement of REC,
therefore, is

SREC = r × nR/kR (3)

Across the nR randomly selected servers, the
r copies for the encoded blocks are placed
in a round-robin fashion as follows: server 1:
{B′R

1 , B′R
2 , ..., B′R

r }, server 2: {B′R
2 , B′R

3 , ..., B′R
r+1},

..., server i: {B′R
i , B′R

i+1, ..., B
′R
(i+r) mod nR

},..., server
n: {B′R

n mod nR
, B′R

(n+1) mod nR
, ..., B′R

(n+r) mod nR
}.

An example is shown in Figure 1(b), wherer = 2. There are
nR encoded blocks distributed over thenR randomly selected
servers. The number of copies for each encoded blockr = 2,
thus each server stores two different encoded blocks in round-
robin fashion. The first server stores{B′R

1 , B′R
2 }, the second

{B′R
2 , B′R

3 }, and the last{B′R
nR

, B′R
1 }.

To retrieve the original file, we need to getkR different
encoded blocks. This can be done by contacting anym =
⌈kR

r
⌉ servers that do not store a common encoded block of

the file; for example, the following group of servers:

server 1: {B′R
1 , B′R

2 , ..., B′R
r }

server r+1:{B′R
r+1, B

′R
r+2, ..., B

′R
2r }

server 2r+1:{B′R
2r+1, B

′R
r+2, ..., B

′R
3r }

...

server (m-1)r+1:{B′R
(m−1)r+1, B

′R
(m−1)r+2, ..., B

′R
mr}

However, it is not always the case that all of thesem servers
are alive. In the worst case, we have to contactkR − r +
1 servers to reconstruct the file (these servers correspond to
the case that thekR − r + 1 servers are consecutive servers).
Therefore, the file availability is

AREC(nR, kR) = 1 −

kR−r
∑

i=0

(

nR

i

)

ai(1 − a)nR−i (4)

Based on Eqs. 3 and 4 and givenAREC = A, a andSREC =
S, we can choose the values fornR andkR accordingly.

B. Maintenance

When a server fails, all the files that have blocks stored
in this server are affected. For each affected file, we need to
replace the failed server with an alive server which will store
the lost blocks for this file. For example, consider a fileB
distributed in a group of servers{1, 2, ...,n}. When server
i fails, we need to find a server among the servers outside
this group to replace this server. We need to obtain the lost
blocks{B′R

i
, B′R

i+1, ..., B
′R
(i+r) mod nR

} and store them in the
new server.
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Fig. 1. Maintenance: REC vs.TEC

The key advantage of REC is that these lost blocks can be
obtained easily by contacting only two servers:(i − 1) and
(i + 1). The blocks are just copied from these servers to the
new server without the need to perform an expensive 3-step
reconstruction of TEC mentioned earlier. Back to the example
in Figure 1(b), when servernR − 1 failed, a new server is
chosen to be the replacement in the ordered server-list, and
this server get the missingB′R

nR−1 andB′R
nR

from servernR−2
andnR in the server-list.

IV. A NALYSIS

We analyze REC and TEC for six configurations of
server availability (a ∈ {0.8, 0.9}) and file availabil-
ity (A ∈ {0.999, 0.9999, 0.99999}). The parameters for
REC(r, nR, kR, SR) and TEC(nR, kR, SR) are calculated
based on Eqs. 1-2 and Eqs. 3-4, respectively.

A. a = 0.8

Table I and Table II show the parameters for REC and
TEC that can be used in a real data archival system with
server availabilitya = 0.8 to achieve file availability from
three-nine to five-nine. For TEC, it is desirable to a have
small value for kT because the maintenance of a single
encoded block requires at leastkT other encoded blocks to
be retrieved. In Table I, although we can achieve a three-
nine file availability with a low system redundancy factor
ST = 1.484848, the corresponding number of original data
blocks kT = 66 is too high, much higher than the case
kT = 9 whose storage requirement increases only by about
34% (ST = 2.0). Therefore,kT = 9, nT = 18 should be the
best choice for TEC to achieve three-nine file availability.At a
very high file availability of five-nine, the system redundancy
factor required for TEC is less than 2.84, which is reasonable
for today’s most distributed storage systems.

On the other hand, as shown in Table II, to achieve the
same file availability of TEC, REC requires more storage. We

should choose the values forkR, nR, andr so that this cost
is minimum. The best choices for (r, kR, nR) are (2, 67,
98), (2, 64, 98) and (2, 58, 93) in order to achieve three-
nine, four-nine, and five-nine file availability, respectively. The
storage required by REC is less than 1.5 times that required
by TEC and this gap is getting smaller as we increase the
requirement on file availability (three-nine to four-nine to five-
nine). The values fornR andkR in these choices are large but
within a reasonable range (all less than 100), because REC is
designed for archival purposes where access is infrequent and
maintenance is much more needed.

B. a = 0.9

In this study, we assume a more stable network where the
server availability isa = 0.9. Table III and Table IV show
the parameters for REC and TEC to achieve file availability
from three-nine to five-nine. In this more stable network, the
storage requirement of TEC drops from 2 to 1.625 (18%
drop) in the case of three-nine, and, in the case of five-nine,
from 2.8333 to 2.5 (11%). The same trend applies to REC,
where the storage cost is reduced by 17% (from 2.92 to 2.46)
and 18% (from 3.2 to 2.6) in the cases of three nine and
five-nine, respectively.

Figure 2 shows the ratio of the system redundancy factor
of REC to that of TEC (SREC/STEC). It is observed that
as better file availability is required, REC is getting closer to
TEC in terms of storage cost. For example, whena = 0.9
and A = 0.99999, TEC and REC require almost identical a
storage cost.

V. I MPLEMENTATION ON CITY SENSE

We have implemented REC on Citysense [1] which is a city-
wise wireless sensor network open for research. This network
consists of some 100 sensor nodes (indoor and outdoor).
Outdoor nodes are mounted on top of street light poles in



TABLE I
TEC PARAMETERS WITHa = 0.8

A = 0.999

kT nT ST

9 18 2.000000
11 21 1.909091
13 24 1.846154
15 27 1.800000
17 30 1.764706
24 40 1.666667
29 47 1.620690
31 50 1.612903
34 54 1.588235
36 57 1.583333
39 61 1.564103

A = 0.999 continued
kT nT ST

41 64 1.560976
44 68 1.545455
47 72 1.531915
49 75 1.530612
52 79 1.519231
55 83 1.509091
57 86 1.508772
60 90 1.500000
63 94 1.492063
66 98 1.484848

A = 0.9999

kT nT ST

9 20 2.222222
29 50 1.724138
31 53 1.709677
36 60 1.666667
38 63 1.657895
43 70 1.627907
48 77 1.604167
53 84 1.584906
58 91 1.568966
61 95 1.557377
63 98 1.555556

A = 0.99999

kT nT ST

6 17 2.833333
9 22 2.444444
14 30 2.142857
34 60 1.764706
36 63 1.750000
43 73 1.697674
45 76 1.688889
50 83 1.660000
52 86 1.653846
55 90 1.636364
57 93 1.631579

TABLE II
RECPARAMETERS WITHa = 0.8

A = 0.999

r kR nR SR

2 67 98 2.925373
3 68 98 4.323529
4 69 98 5.681159
5 13 18 6.923077
6 14 18 7.714286
7 15 18 8.400000
8 16 18 9.000000
9 17 18 9.529412

A = 0.9999

r kR nR SR

2 64 98 3.062500
3 65 98 4.523077
4 64 95 5.937500
5 65 95 7.307692
6 14 20 8.571429
7 15 20 9.333333
8 16 20 10.000000
9 17 20 10.588235

A = 0.99999

r kR nR SR

2 58 93 3.206897
3 59 93 4.728814
4 60 93 6.200000
5 61 93 7.622951
6 60 90 9.000000
7 12 17 9.916667
8 13 17 10.461538
9 14 17 10.928571

TABLE III
TEC PARAMETERS WITHa = 0.9

A = 0.999

kT nT ST

8 13 1.625000
24 33 1.375000
28 38 1.357143
33 44 1.333333
38 50 1.315789
43 56 1.302326
48 62 1.291667
53 68 1.283019
54 69 1.277778
59 75 1.271186
64 81 1.265625
65 82 1.261538
70 88 1.257143
76 95 1.250000

A = 0.9999

kT nT ST

7 13 1.857143
10 17 1.700000
13 21 1.615385
24 35 1.458333
33 46 1.393939
37 51 1.378378
42 57 1.357143
47 63 1.340426
51 68 1.333333
56 74 1.321429
61 80 1.311475
67 87 1.298507
72 93 1.291667
77 99 1.285714

A = 0.99999

kT nT ST

4 10 2.500000
18 29 1.611111
25 38 1.520000
29 43 1.482759
33 48 1.454545
37 53 1.432432
46 64 1.391304
55 75 1.363636
60 81 1.350000
65 87 1.338462
70 93 1.328571
75 99 1.320000

TABLE IV
RECPARAMETERS WITHa = 0.9

A = 0.999

r kR nR SR

2 77 95 2.467532
3 78 95 3.653846
4 11 13 4.727273
5 12 13 5.416667
6 29 33 6.827586
7 30 33 7.700000
8 31 33 8.516129
9 32 33 9.281250

A = 0.9999

r kR nR SR

2 78 99 2.538462
3 79 99 3.759494
4 80 99 4.950000
5 11 13 5.909091
6 12 13 6.500000
7 16 17 7.437500
8 20 21 8.400000
9 32 35 9.843750

A = 0.99999

r kR nR SR

2 76 99 2.605263
3 77 99 3.857143
4 4 5 5.000000
5 8 10 6.250000
6 9 10 6.666667
7 24 29 8.458333
8 25 29 9.280000
9 26 29 10.038462
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the city of Cambridge, MA to monitor temperature, humidity,
precipitation, wind speed, pollution level, etc. Each sensor
node has an embedded PC running FreeBSD, providing the
storage capability of up to 1Gb, wireless communication
interface 802.11a/b/g radios, 8.5 dBi omni antennas. Most of
the nodes use wireless mesh for the connectivity, while some
nodes have connection with the internet, and act as the gateway
so that other nodes can be accessed from the Internet.

We chose CitySense as a testbed to implement REC be-
cause many nodes of CitySense fail frequently and as such
this network presents a practical system setup for testing
the correctness and feasibility of our storage scheme. The
implemented system provides a web interface and lets people
connect to the nodes to distribute their files and retrieve them
back when necessary. The erasure code used in our system is
Reed-Solomon (5,2), which is capable to tolerate three-server
failures and offer three-nine availability.

VI. CONCLUSIONS

In archival storage systems where data maintenance is
performed much more often than data access, it is desirable
to keep the maintenance cost low even if this comes with less
efficient data access. In this paper, we investigate a possible
extension of erasure coding with this purpose. The presented
scheme, REC, requires to contact only two servers to recover
from a server’s failure, whereas TEC, the traditional erasure
coding, would require to contact many more servers and
perform an expensive file reconstruction procedure. Therefore
REC offers an excellent maintenance efficiency. The tradeoff
of REC is that it requires more storage space and a higher cost
to access the data. However, as aforementioned, data access
is rare for an archival system, and our analysis have shown
that the storage space required by REC is albeit larger, but not
by a significant margin. This margin is getting smaller if the
system is more demanding on either server availability or file
availability. In other words, we recommend REC for systems
that are stable and that want an excellent file availability.
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