
Support Vector Classification Strategies for
Localization in Sensor Networks
Duc A. Tran

Department of Computer Science
University of Dayton
Dayton, OH 45469

Email: duc.tran@udayton.edu

Thinh Nguyen
Department of Electrical and Computer Engineering

Oregon State University
Corvallis, OR 97331

Email: thinhq@eecs.oregonstate.edu

Abstract— We consider the problem of estimating the geo-
graphic locations of nodes in a wireless sensor network where
most sensors are without an effective self-positioning functional-
ity. A solution to this localization problem is proposed, which
uses Support Vector Machines (SVM) and mere connectivity
information only. We investigate two versions of this solution,
each employing a different multi-class SVM strategy. They are
shown to perform well in various aspects such as localization
error, processing efficiency, and effectiveness in addressing the
border issue.

I. INTRODUCTION

Wireless sensor networks are typically consisted of inex-
pensive sensing devices with limited resources. In most cases,
sensors are not equipped with any GPS-like receiver, or when
such an unit is installed it does not function due to environ-
mental difficulties. On the other hand, knowing the geographic
locations of the sensor nodes is critical to many tasks of a
sensor network such as network management, event detection,
geography-based query processing, and routing. Therefore, an
important problem is to devise an accurate, efficient, and fast-
converging technique for estimating the sensor locations given
that the true location information is minimally or un- known.

To this problem, we explore the applicability of Support
Vector Machines (SVM). SVM is a classification method with
two main components: a kernel function and a set of support
vectors. The support vectors are obtained via the training phase
given the training data. New data is classified using a simple
computation involving the kernel function and support vectors
only. For sensor localization, we define a set of geographical
regions in the sensor field and classify each sensor node into
these regions. Then its location can be estimated inside the
intersection of the containing regions. The training data is the
set of beacons, and the kernel function is defined based on
hop counts only.

A. Existing Work

There are many dimensions to categorize existing tech-
niques, such as centralized vs. decentralized, beacons vs.
beacon-less, and ranging vs. ranging-free.

In the centralized approach [1], [2], the information (e.g.,
connectivity, pair-wise distance measure) about the entire
network into one place, where the collected information is

processed centrally to estimate the sensors’ locations. This ap-
proach is obviously impractical for large-scale sensor networks
due to high computation and communication costs.

Examples of distributed techniques are the relaxation-based
techniques ([3], [4]) and coordinate-system stitching tech-
niques ([5]–[8]). Some other distributed techniques (e.g., [8]–
[16]) assume the existence of nodes with known location,
called the beacons, and extrapolate unknown locations from
the beacon locations.

Most current techniques assume that the distance between
two neighbor nodes can be measured via a ranging process.
This process is subject to noise and incurs complexity/cost in-
creasing with accuracy requirement. For a large sensor network
with low-end sensors, it is often not affordable to equip them
all with ranging capability. Few range-free techniques [6], [9],
[16]–[19] have been proposed for this type of networks.

B. Our contribution

Our approach only assumes that beacon nodes exist and only
connectivity information may be used for location estimation.
It does not require a sensor to be able to hear directly
from any beacon node. Compared to the existing ranging-free
techniques, none (except one) satisfies all these assumptions.
In [16], [19], a node must be able to hear directly from a
large number (or all) of beacons; we relax this requirement.
[17], [18] require specialized assisting moving subjects such
as an aerial vehicle to generate light onto the sensor field or
a mobile node to assist pair-wise distance measurements; we
do not require any such additional devices.

The approach that shares the same requirements with our
work is Diffusion [6], [9], where each node is repeatedly
positioned as the centroid of its neighbors until convergence.
Figure 1 illustrates two main problems of this approach: the
convergence problem (i.e., many averaging loops result in long
localization time and significant bandwidth consumption), and
the border problem (i.e., nodes near the edge of the sensor field
are poorly positioned). The latter also occurs in many existing
techniques. Our technique is fast to converge and we will show
in our performance study that it almost eliminates the border
problem.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x−coordinate (m)

y−
co

or
di

na
te

 (
m

)

Fig. 1. Diffusion: 1000 sensors on a 100m x 100m field, with 50 random
beacons. A line connects the true and estimated positions of each sensor node.
Note the border problem after 10,000 averaging loops

C. Paper Organization

We provide a brief background on SVM in the next section.
We describe how SVM can be applied to the sensor localiza-
tion problem and propose two alternate solutions in Section
III. Evaluation results are presented in Section IV. Finally, we
conclude this paper with pointers to our future research in
Section V.

II. SUPPORT VECTOR MACHINE CLASSIFICATION

Consider the problem of classifying data in a data space X
into either one of two classes: G or ¬G (not G). Suppose that
each data point x has a feature vector �x in some feature space
�X ⊆ �n. We are given k data points x1, x2, ..., xk, called the
“training points”, with labels y1, y2, ..., yk, respectively (where
yi = 1 if xi ∈ G and −1 otherwise). We need to predict
whether a new data point x is in G or not.

Support Vector Machines (SVM) [20] is an efficient method
to solve this problem. For the case of finite data space (e.g.,
location data of nodes in a sensor network), the steps typically
taken in SVM are as follows:

• Define a kernel function K: X×X → �. This function
must be symmetric and the k×k matrix [K(xi, xj)]ki,j=1

must be positive semi-definite (i.e., has non-negative
eigenvalues)

• Maximize

W (α) =
k∑

i=1

αi − 1
2

k∑

i,j=1

yiyjαiαjK(xi, xj) (1)

– subject to

k∑

i=1

yiαi = 0 (2)

0 ≤ αi ≤ C, i ∈ [1, k] (3)

Suppose that {α∗
1, α∗

2, ..., α∗
k} is the solution to this

optimization problem. We choose b = b∗ such that yihK(xi) =
1 for all i with 0 < α∗

i < C. The training points corresponding
to such (i, α∗

i)’s are called the support vectors. The decision

rule to classify a data point x is: x ∈ G iff sign(hK(x)) =
1, where

hK(x) =
∑

i=1→k, xi is a support vector

α∗
i yiK(x, xi)+b∗ (4)

According to Mercer’s theorem [20], there exists a feature
space �X where the kernel K defined above serves as the inner
product of �X (i.e., K(x, z) = <�x·�z> for every x, z ∈ X). The
function hK(.) represents the hyperplane in �X that maximally
separates the training points in X (G points in the positive side
of the plane, ¬G points in the negative side). It is provable
that SVM has bounded classification error when applied to
test data. We present LSVM next.

III. LSVM: LOCALIZATION BASED ON SVM

A. Network model

We consider a large wireless sensor network of N nodes
{S1, S2, ..., SN} deployed in a 2-d geographic area [0, D] ×
[0, D] (D > 0). (We assume 2 dimensions for simplicity, even
though LSVM can work with any dimensionality.) Each node
Si has a communication range r(Si) which we assume is the
same (r > 0) for every node. Two nodes can communicate with
each other if no signal blocking entity exists between them
and their geographic distance is less than their communication
range. Two nodes are said to be “reachable” from each other
if there exists a path of communication between them. We
assume the existence of k < n beacon nodes {Si} (i =
1 → k) that know their own location and are reachable from
each other. We need to devise a distributed algorithm each
remaining node Sj (j = k + 1 → N) can use to estimate its
location.

Many existing localization techniques require that each node
be within the communication range of some (or all) beacon
nodes (e.g., [17], [19]). We relax these strict requirements by
only assuming that each node is able to reach to a beacon
node. Therefore, our proposed technique, LSVM, is applicable
to more types of sensor networks.

B. SVM model

Let (x(Si), y(Si)) denote the true (to be found) coordinates
of node Si’s location, and h(Si, Sj) the hop-count length of
the shortest path between nodes Si and Sj . Each node Si

is represented by a vector si = <h(Si, S1), h(Si, S2), ...,
h(Si, Sk)>. The training data for SVM is the set of beacons
{Si} (i = 1 → k). We define the kernel function as a Radial
Basis Function because of its empirical effectiveness [21]:

K(Si, Sj) = e−γ‖si−sj‖2
2 (5)

where ‖ . ‖2 the l2 norm, and γ > 0 a constant to be computed
during the cross-validation phase of the training process.

We consider the following geographic regions:

• M vertical regions, called x-regions, {rx
0 , rx

1 , .., rx
M−1}

where each region rx
i is the rectangle containing all points

with x-coordinate x ∈ [iD/M, (i + 1)D/M]

cx8

cx4

cx5cx3cx1 cx7

cx12

cx6cx2

cx13cx11cx9 cx15

cx14cx10

0

0

0 0 0 0

1

1

1

1

1 11

0

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

D/2 D0 D/22D/23
D/M

Fig. 2. Decision tree for the x dimension: label 0 coming out of a
classification node cxi means “not belong to cxi”, while label 1 means
otherwise. In this example, m = 4.

• M horizontal regions, called y-regions, {ry
0 , ry

1 , .., ry
M−1}

where each region ry
i is the rectangle containing all points

with y-coordinate y ∈ [iD/M, (i + 1)D/M]

Our goal is to predict which x-region rx
i and y-region ry

i

that each sensor S belongs to. We then simply use the center
point of the cell [iD/M, (i+1)D/M]× [jD/M, (j+1)D/M]
as the estimated position of node S. The parameter M (or
m) controls how close we want to localize a sensor. If the
above prediction is indeed correct, the location error for node
S is at most D/(M

√
2). However, every SVM is subject

to some classification error, and so we should maximize the
probability that S is classified into its true cell, and, in case
of misclassification, minimize the localization error.

C. Classification Strategies

A component of SVM is to define the target classes for
classification. We propose two strategies for this purpose:
the multi-class strategy (MCS) and the decision-tree strategy
(DTS). They are presented in the following subsections.

1) Multi-class strategy (MTS): We define the following 2M
classes:

• M classes for the x dimension {cx0, cx1, ..., cxM−1}:
Each class cxi contains nodes with the x-coordinate ∈
[iD/M, (i + 1)D/M].

• M classes for the y dimension {cy0, cy1, ..., cyM−1}:
Each class cyi contains nodes with the y-coordinate ∈
[iD/M, (i + 1)D/M].

Obviously, each class represents a geographic region rx
i (or

ry
i) defined earlier. Consider a sensor node S. We formulate

the problem of estimating its x-coordinate as a multi-class
SVM classification, where the number of classes is M . Multi-
class SVM is a generalized version of the traditional SVM,
or binary SVM, where the number of classes is 2. Many
algorithms have been proposed for multi-class SVM. The most
popular methods are (see overview in [22]): the “one vs. one”
algorithm, the “one vs. all” algorithm, and the “DAGSVM”
algorithm. We can use any of these algorithms. Supposing
that node S is classed into the x-class cxi and the y-class cyi,
its estimate location is [(i + 1/2)D/M, (j + 1/2)D/M].

2) Decision-tree strategy (DTS): The multi-class strategy
typically involves M(M − 1)/2 binary SVM classifications
for each dimension. The decision-tree strategy proposed below
uses only M − 1 binary classifications in the training phase
and log2M binary classifications in the decision phase. We
define the following 2M − 2 classes (where M = 2m):

• M−1 classes for the x dimension {cx1, cx2, ..., cxM−1}:
Each class cxi contains nodes with the x-coordinate
greater or equal to iD/M .

• M −1 classes for the y dimension {cy1, cy2, ..., cyM−1}:
Each class cyi contains nodes with the y-coordinate
greater or equal to iD/M .

Firstly, we train on these 2M − 2 classes separately based on
binary SVM classification. Then, we organize the classifiers
for each dimension into a binary decision tree. Let us focus on
the x-dimension, whose decision tree is illustrated in Figure
2. Each tree node is an x-class and the two outgoing links
represent the outcomes (0: “not belong”, 1: “belong”) of
classification on this class. The classes are assigned to the tree
nodes such that if we traverse the tree in the order {leftchild
→ parrent → rightchild}, the result is the ordered list cx1 →
cx2 → ...→ cxM . Given this decision tree, each sensor S can
estimate its x-coordinate using the following algorithm:

Algorithm 3.1 (X-dimension Localization): Estimate the x-
coordinate of sensor S:

1) i = M/2 (start at root of the tree cxM/2)
2) IF (SVM predicts S not in class cxi)

a) IF (cxi is a leaf node) RETURN x′(S) =
(i−1/2)D/M

b) ELSE Move to leftchild cxj and set i = j

3) ELSE
a) IF (cxi is a leaf node) RETURN x′(S) =

(i+1/2)D/M
b) ELSE Move to rightchild cxt and set i = t

4) GOTO Step 2)
Similarly, a decision tree is built for the y-dimension classes

and each sensor S estimates its y-coordinate y′(S) based on
the y-dimension localization algorithm (like Algorithm 3.1).
The estimated location for node S, consequently, is (x′(S),
y′(S)). Using these algorithms, localization of a node requires
visiting log2M classifiers of each decision tree, after each visit
the geographic range that contains node S downsizing by a
half. Table I provides a comparison between the multi-class
and decision tree strategies in terms of the number of binary
classifications involved in the training phase, testing phase,
and the amount of SVM model information (counted for both
x- and y-dimensions).

D. Network protocols

We recall that the information that a node S needs to
localize itself is consisted of the following (according to
Formula 4):

• The support vectors {Si:(i, yi, α∗
i)} and b∗ for each class

• The hop-count distance from each beacon node to S, so
that the kernel function (see Formula 5) can be computed

TABLE I

MULTI-CLASS STRATEGY VS. DECISION-TREE STRATEGY: TRAINING

TIME, TESTING TIME, AND AMOUNT OF SVM MODEL INFORMATION

Strategy Training Testing #SVM models
MCS/One vs. one M(M − 1) M(M − 1) M(M − 1)
MCS/One vs. all 2M 2M 2M

MCS/DAGSVM M(M − 1) 2log2
M(M+1)

2
M(M − 1)

DTS 2M − 2 2log2M 2M − 2

TABLE II

NETWORK CONNECTIVITY SUMMARY

Radius Min degree Max degree Avg degree Netw. Diameter
r=7m 2 27 14 25 (hops)
r=10m 8 48 28 16 (hops)

Who computes those values and how are they communi-
cated to node S? We divide the entire process into 3 phases:
training phase, advertisement phase, and localization phase.

1) Training Phase: We assume that a beacon is selected
as the head beacon. The head beacon will later run the SVM
training algorithm and therefore should be the most resourceful
node. This is a feasible assumption because the head node
can be a base station or sink node of the sensor network. The
training phase is conducted among the beacon nodes. Firstly,
each beacon node sends a HELLO message to every other
beacon node. After this round, a beacon knows its hop-count
distance from each other beacon node. Next, each beacon
node sends an INFO message to the head beacon, containing
the location of the sending node and its pairwise hop-count
distances from the other beacon nodes. After this round, the
head beacon knows the location of every beacon and hop-
count distance between every two beacons. The head beacon
then runs the SVM training procedure using either the multi-
class strategy or the decision-tree strategy. As a result, we
obtain the SVM model information that will be disseminated
to every node in the network.

2) Advertisement Phase: The head beacon broadcasts the
SVM model information to all the sensors in the network.
Therefore, each node S possesses all the information needed
to compute hK(S) in Formula 4, except for the hop-count
distance h(S, Si) to each beacon node Si. For this purpose,
each beacon node, except for the head beacon, broadcasts a
HELLO message to the entire network, so that upon receipt
of this HELLO message, each node can obtain the hop-count
distance to the beacon.

3) Localization Phase: After receiving the SVM model
information from the advertisement phase, each non-beacon
node follows the x-dimension localization and y-dimension
localization algorithms (see Algorithm 3.1) to estimate its
location (x′(S), y′(S)).

IV. SIMULATION STUDY

We conducted a simulation study to assess the location
accuracy of our approach. A network of 1000 sensors located
in a 100m × 100m 2-D area was simulated, where uniform
random distribution is used for generating sensor locations

and the beacon sensors. We compared the multi-class strategy
(MCS) and decision-tree strategy (DTS) together under the
effects of beacon population, network density, and the border
problem. We considered two levels of network density, 7m
and 10m communication ranges, summarized in Table II,
and three different beacon populations: 5% of the network
size (k = 50 beacons), 15% (k = 150 beacons), and 25%
(k = 250 beacons). We used the libsvm [21] software for
SVM classification. For the multi-class strategy, we employ
the one vs. one method as recommended by [21], [22]. The
γ parameter in Equation 5 and C parameter in Inequality 3
were automatically determined by the mechanisms of libsvm.
We set m = 7 (i.e., M = 128) throughout the study.

Figures 3 and 4 plot the average, max, and standard devia-
tion of location errors for the range-10m network and range-
7m network. It is observed that DTS always provides better
results than MCS. When only 5% of the network serve as
beacons, DTS’s localization error is 6m on average while that
of MCS is 11m (almost double). The main reason is probably
because DTS uses a lot fewer binary SVM classifications than
MCS, thus resulting in smaller accumulative error after the
entire prediction process ends. The gap between these two
strategies is narrowed down as more nodes serve as beacons.

Regarding the beacon population size, it is understandable
that when this population is larger, the localization gets more
accurate. Both strategies provide good results when 25% of
the network serve as beacons, in which case the error is about
2-3m and no more than 15m. The standard deviation is also
small (about 2m), which implies that most sensors’ locations
are very well estimated.

Often occurring in many existing localization techniques
is the border problem, in which border sensors are usually
positioned with larger error than sensors inside the field. Figure
5 plots the location errors of all sensors in the network sorted
in the order of sensors close to the center of the field first and
sensors near the edge last. If the border problem exists, we
should see an up-hill curve pattern from the left to the right
side of the graph. However, this pattern is rarely seen in this
figure; the majority of errors have similar values, implying
that the border problem is well-addressed in our proposed
approach. This desirable property is understandable. Because
the location of each sensor is estimated only based on distances
to the beacons and independently of other sensors, whether a
sensor is near the border of lies inside should not have a big
impact on the location error.

V. CONCLUSION

We have presented an approach based on the concept of
SVM to localize nodes in a large-scale sensor networks. In
our SVM model, the beacon nodes serve as the training
points and the kernel function uses only mere connectivity
information. Therefore, the proposed approach can be used
for networks that do not require expensive ranging and spe-
cialized (and/or mobile) devices. It can be realized using two
alternative strategies: the multi-class strategy (MCS) and the
decision-tree strategy (DTS). Our simulation study have shown

Communication range 10m�

0�

2�

4�

6�

8�

10�

12�

5%� 15%� 25%�

Beacon population (% network size)�

A
vg

. L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

MCS-r10�

DTS-r10�

(a) Average location error

Communication range 10m�

0�

5�

10�

15�

20�

25�

30�

35�

40�

5%� 15%� 25%�

Beacon population (% network size)�

M
ax

 L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

MCS-r10�

DTS-r10�

(b) Max location error

Communication range 10m�

0�

1�

2�

3�

4�

5�

6�

7�

5%� 15%� 25%�

Beacon population (% network size)�

L
o

ca
ti

o
n

 E
rr

o
r

S
td

. D
ev

. (
m

)� MCS-r10�

DTS-r10�

(c) Standard deviation

Fig. 3. MCS vs. DTS (communication range 10m): Statistics on location error of each technique under different beacon populations.

Communication range 7m�

0�

2�

4�

6�

8�

10�

12�

5%� 15%� 25%�

Beacon population (% network size)�

A
vg

. L
o

ca
ti

o
n

 E
rr

o
r

(m
)� MCS-r7�

DTS-r7�

(a) Average location error

Communication range 7m�

0�

5�

10�

15�

20�

25�

30�

35�

40�

5%� 15%� 25%�

Beacon population (% network size)�

M
ax

 L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

MCS-r7�

DTS-r7�

(b) Max location error

Communication range 7m�

0�

1�

2�

3�

4�

5�

6�

7�

5%� 15%� 25%�

Beacon population (% network size)�

L
o

ca
ti

o
n

 E
rr

o
r

S
td

. D
ev

. (
m

)� MCS-r7�

DTS-r7�

(c) Standard deviation

Fig. 4. MCS vs. DTS (communication range 7m): Statistics on location error of each technique under different beacon populations.

that both MCS and DTS provide good localization accuracy
and alleviate the border problem effectively. We, however,
recommend DTS because of his superior performance over
MCS. Our future research includes a comparison between
DTS with other existing localization techniques as well as its
performance in networks with coverage holes. We also plan a
prototype implementation of DTS.

REFERENCES

[1] L. Doherty, L. E. Ghaoui, and K. S. J. Pister, “Convex position
estimation in wireless sensor networks,” in IEEE Infocom, April 2001.

[2] Shang, Juml, Zhang, and Fromherz, “Localization from mere connec-
tivity,” in ACM Mobihoc, 2003.

[3] C. Savarese, J. Rabaey, and J. Beutel, “Locationing in distributed ad-
hoc wireless sensor networks,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, Salt Lake city, UT, 2001.

[4] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Anchor-
free distributed localization in sensor networks,” in ACM Sensys, 2003.

[5] S. Capkun, M. Hamdi, and J.-P. Hubauz, “Gps-free positioning in
mobile ad hoc networks,” in Hawai International Conference on System
Sciences, 2001.

[6] L. Meertens and S. Fitzpatrick, “The distributed construction of a global
coordinate system in a network of static computational nodes from inter-
node didstances,” Kestrel Institute, Tech. Rep., 2004.

[7] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distributed network
localization with noisy range measurements,” in ACM Sensys, Baltimore,
MA, November 2004.

[8] D. Niculescu and B. Nath, “Ad hoc positioning system (aps),” in IEEE
Globecom, 2001.

[9] N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heidemann, “Scalable ad
hoc deployable rf-based localization,” in Grace Hopper Celebration of
Women in Computing Conference, Vancouver, Canada, October 2002.

[10] A. Savvides, H. Park, and M. Srivastava, “The bits and flops of the n-hop
multilateration primitive for node localization problems,” in Workshop
on Wireless Networks and Applications (in conjunction with Mobicom
2002), Atlanta, GA, September 2002.

[11] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic fine-grained
localization in ad hoc networks of sensors,” in ACM International
Conference on Mobile Computing and Networking (Mobicom), Rome,
Italy, July 2001, pp. 166–179.

[12] S. Simic and S. S. Sastry, “Distributed localization in wireless ad hoc
networks,” University of California at Berkeley, Tech. Rep., 2002.

[13] C. Whitehouse, “The design of calamari: an ad hoc localization sys-
tem for sensor networks,” Master’s thesis, University of California at
Berkeley, 2002.

[14] D. Niculescu and B. Nath, “Ad hoc positioning system (aps) using aoa,”
in IEEE Infocom, 2003.

[15] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a global coordinate
system from local information on an ad hoc sensor network,” in
International Symposium on Information Processing in Sensor Networks,
2003.

[16] T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher, “Range-free
localization schemes in large scale sensor networks,” in ACM Conference
on Mobile Computing and Networking, 2003.

[17] R. Stoleru, J. A. Stankovic, and D. Luebke, “A high-accuracy, low-cost
localization system for wireless sensor networks,” in ACM Sensys, San
Diego, CA, November 2005.

[18] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Mobile-
Assisted Localization in Wireless Sensor Networks,” in IEEE INFO-
COM, Miami, FL, March 2005.

[19] X. Nguyen, M. Jordan, and B. Sinopoli, “A kernel-based learning
approach to ad hoc sensor network localization,” IEEE Transactions
on Sensor Networks, vol. 1, pp. 134–152, 2005.

[20] V. N. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.
[21] C.-C. Chang and C.-J. Lin, LIBSVM – A library for Support

Vector Machines, National Taiwan University. [Online]. Available:
http://www.csie.ntu.edu.tw/ cjlin/libsvm

MCS: Border Effect�

0�

5�

10�

15�

20�

25�

30�

35�

40�

1� 88� 175� 262� 349� 436� 523� 610� 697� 784� 871� 958�

Sensor ID�

L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

(a) MCS: 50 beacons, r = 10m

DTS: Border Effect�

0�

5�

10�

15�

20�

25�

30�

35�

40�

1� 88� 175� 262� 349� 436� 523� 610� 697� 784� 871� 958�

Sensor ID�

L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

(b) DTS: 50 beacons, r = 10m

MCS: Border Effect�

0�

2�

4�

6�

8�

10�

12�

14�

1� 88� 175� 262� 349� 436� 523� 610� 697� 784� 871� 958�

Sensor ID�

L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

(c) MCS: 250 beacons, r = 10m

DTS: Border Effect�

0�

2�

4�

6�

8�

10�

12�

14�

1� 88� 175� 262� 349� 436� 523� 610� 697� 784� 871� 958�

Sensor ID�

L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

(d) DTS: 250 beacons, r = 10m

MCS: Border Effect�

0�

5�

10�

15�

20�

25�

30�

35�

40�

1� 88� 175� 262� 349� 436� 523� 610� 697� 784� 871� 958�

Sensor ID�

L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

(e) MCS: 50 beacons, r = 7m

DTS: Border Effect�

0�

5�

10�

15�

20�

25�

30�

35�

40�

1� 88� 175� 262� 349� 436� 523� 610� 697� 784� 871� 958�

Sensor ID�

L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

(f) DTS: 50 beacons, r = 7m

MCS: Border Effect�

0�

2�

4�

6�

8�

10�

12�

14�

16�

18�

1� 88� 175� 262� 349� 436� 523� 610� 697� 784� 871� 958�

Sensor ID�

L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

(g) MCS: 250 beacons, r = 7m

DTS: Border Effect�

0�

2�

4�

6�

8�

10�

12�

14�

16�

18�

1� 82� 163� 244� 325� 406� 487� 568� 649� 730� 811� 892� 973�

Sensor ID�

L
o

ca
ti

o
n

 E
rr

o
r

(m
)�

(h) DTS: 250 beacons, r = 7m

Fig. 5. The border problem: Location error for every sensor, sorted in the order of nodes near the center of the field first and nodes near the edge last.

[22] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multi-class
support vector machines,” IEEE Transactions on Neural Networks,

vol. 13, pp. 415–425, 2002.

