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Modeling video data poses a great challenge since they do not have as clear an underlying structure as 
traditional databases do. We propose a graphical object-based model, called VideoGraph, in this paper. 
This scheme has the following advantages: (1) In addition to semantics of video individual events, we 
capture their temporal relationships as well. (2) The inter-event relationships allow us to deduce 
implicit video information.  (3) Uncertainty can also be handled by associating the video event with a 
temporal Boolean-like expression. This also allows us to exploit incomplete information.  

The above features make VideoGraph very flexible in representing various metadata types extracted 
from diverse information sources. To facilitate video retrieval, we also introduce a formalism for the 
query language based on path expressions. Query processing involves only simple traversal of the 
video graphs.  
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1. Introduction  
We deal with the modeling aspect of VDBMSs [Elmagarmid (1997)] in this paper. Playing an 
important role in VDBMSs, this is the process of designing the high-level abstraction of raw 
video to facilitate various information retrieval and manipulation operations. It determines 
what features are to be used in the retrieval, and therefore in the indexing process. Other 
components, such as content analysis tools and query processing techniques, are also more or 
less dependent on it. A good model is essential to enabling a wider range of applications.  

Much research has been done in the area of video modeling/retrieval based on audio-
visual content, such as audio, color, texture and motion (e.g., [Zhong (1999), Rui (1999), Oh 
(2000), Ardizzone (1997), Chang (1997), Yoshitaka (1996), Dimitrova (1997)]). The 
advantage of this approach is that features can be extracted automatically. The low-level 
schemes, however, are very limited in expressing queries. For example, it would be difficult 
to ask for a video clip showing the sinking of the ship in the movie “Titanic” using only color, 
texture, and audio information. In contrast, video data models based on semantic content (e.g., 
[Swanberg (1993), Smith (1992), Jiang (1997)]) are capable of supporting more natural 
queries. They, however, must rely partially on manual annotation. A limitation of this 
approach is that semantic content can be ambiguous and context dependent. This problem can 
be controlled by limiting the context and providing multiple semantic descriptions for 
different types of applications.  

We focus on the semantic level in this paper. In particular, we consider two types of video 
semantics:  

1. Event Description: This type of description indicates the video segments that show a 
particular event. Some examples of event description are [“Ship colliding with 
iceberg”, 35th minute - 37th minute] and [“Captain dying”, 48th minute - 49th minute]. 
The first description indicates that the 2-minute video segment, from time 35th minute 
to time 37th minute, shows the scene of a ship colliding with an iceberg. Similarly, the 
second description indicates that the scene of the captain dying begins at the 48th 
minute and ends at the 49th minute of the video.  



 2

2. Inter-event Description: This type of description describes the temporal relationship 
between two events. Some examples of inter-event description are [“Ship collides 
with iceberg before it sinks “] and [“Captain dies after the ship sinks”]. This type of 
semantic information is not associated with any video segment. Instead, it states the 
temporal relationship between two events. As an example, such information can be 
obtained from the script. Under this circumstance, we can report on the order of 
various events, but not the exact locations of their occurrences in the video stream.  

We note that each event mentioned in an inter-event description may or may not have an 
explicit event description. In the first inter-event description given above, only the “colliding” 
event has an event description (i.e., from 35th minute to 37th minute). This situation arises in 
practice since information extractors are not perfect. As an example, an extractor based on 
explicit models may recognize a ship and the “colliding” scene, but lacks the knowledge to 
determine the “sinking” event.  

Existing semantic-level video data models [Swanberg (1993), Smith (1992), Hjelsvold 
(1994), Jiang (1997), Decleir (1999)] support only event, not the inter-event, descriptions. In 
this paper, we introduce a new model, called VideoGraph, which can accommodate both in 
one framework. This enables us to deduce implicit event descriptions, and therefore retrieve 
implicit video information as well. For instance, using the following metadata: [“Ship collides 
with iceberg before it sinks “], [“Captain dies after the ship sinks”], [“Ship colliding with 
iceberg”, 35th minute - 37th minute], and [“Captain dying”, 48th minute - 49th minute], we can 
imply the implicit temporal description [“Ship sinking”, 37th minute - 47th minute] This 
implicit semantic allows us to answer queries such as “showing the scene of the sinking ship”. 
Existing techniques based on only explicit descriptions would fail to process these queries. 
Our new capability is reminiscent of implicit information in a deductive database 
management system. To the best of our knowledge, video semantic implicity has not been 
exploited in literature.  

Another new feature considered in our model is the flexibility to associate an event with a 
temporal Boolean-like expression. This enhancement allows us to handle uncertainty. For 
instance, we can associate the event “Jack went aboard the ship” with the temporal 
description “[5th minute, 7th minute] or [9th minute, 10th minute].” This expression indicates 
that the event must be in one of the two video segments. Such conditions occur when we infer 
implicit video semantics from incomplete semantics. Thus VideoGraph can also deal with 
incomplete information, in addition to implicit information. To facilitate video retrieval, we 
present a formal query language for VideoGraph. The language is an extension to relational 
calculus with path expressions and has both a clear declarative and operational semantics. It is 
simple yet powerful enough to allow formulation of complex queries. Query processing 
involves only simple graph traversal. 

The remainder of this paper is organized as follows. We formally present the details of 
VideoGraph in Section 2. The query language formalism is described in Section 3. The 
algorithm for computing the implicit video information is presented in Section 4. We discuss 
related work in Section 5. Finally, Section 6 summarizes our approach and indicates some 
directions for future research. 

3. Video Data Model 
In this section, we introduce a video model called VideoGraph that provides the 
aforementioned features. Intuitively, a VideoGraph database is a set of edge labeled rooted 
graphs, each representing the semantics of a single video. Such a graph is a collection of 
nodes, each in turn representing a single event. Nodes are linked to each other based on their 
containment and temporal relationships [Allen (1983)]. The relationship between two nodes 
captures inter-event information involving the two corresponding events. A node may be 
associated with explicit temporal information or not. If not, its implicit information can still 
be obtained by reasoning on the graph. We will discuss this in section 4.  

VideoGraph is built on the concept of objects, each appearing as an internal node in the 
video graph. Prior to defining them, let us assume that ATYPE denotes the set of all integers, 
real numbers and strings. Let TYPE be a finite set containing special strings classified as data 
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types in the video database, in other words, TYPE = {type1, type2, .., typep, TIME} where typei 
is a string. Each type typei has a value domain, denoted as dom(typei), such that dom(typei) ⊆  
ATYPE if i ≤ p, and dom(TIME) = Ω that is defined later. In what follows, unless we explicitly 
mention, concepts to be defined are considered within the same context of a single video.  
Definition 2.1. [Atomic object] Let l1, l2 , .., ln (n ≥ 1) be strings in TYPE, v1, v2 , .., vn values  
such that vi ∈  dom(li). Let us consider a graph G containing a node O, called the root of G, 
and n nodes O1 , O2 , .., On with the following properties:  
� Node O stores a unique integer value. 
� For each i ∈  {1, 2, .., n}, node Oi stores value vi.  
� For each i ∈  {1, 2, .., n}, there is a directed link labeled li from O to Oi.  

Then node O is  said to be the atomic object represented by graph G and the value stored in 
the node is called the identifier of the atomic object. 
Definition 2.2. [Object] Objects are recursively defined as follows.  

1. Any atomic object is an object.  
2. Let G1, G2, .., Gn represent n objects, O1, O2 , .., Om be m single nodes (n +m > 0) and 

l1, l2, .., ln+m be n + m strings in TYPE. Then the graph G built below represents an 
object.  
� G contains a node O, which is called the root of G, nodes Oi’s and graphs Gj’s 

for i ∈  {1, 2, .., m} and j ∈  {1, 2, .., n}.  
� Node O stores a unique identifier for the object.  
� For each i ∈  {1, 2, .., n}, there is a directed link from O to the root of Gi labeled 

li.  
� For each i ∈  {1, 2, .., m}, there is a directed link from O to Oi labeled li+n and 

node Oi stores a value vi ∈  dom(li+n) 
We can say that node O is the object represented by graph G.  

Here after, for flexibility, the terms object and internal node are interchangeably used. That is, 
we implicitly refer to an object as an internal node and vice versa.  

Links between any two nodes in the above definitions are called c-links. If a node O1 has 
a c-link labeled l departing from it and going to another node O2, then l is a component of O1 
and the type of node O2 with respect to O1. O2 is the value of component l of O1. Components 
of an object can be duplicated. Furthermore, if O2 is an internal node, it is also called a 
sub-object of O1 which in turn is said to be a super-object of O2.  

We divide the set of objects into two classes, key objects and non-key objects. Informally, 
a key object is an object that has temporal related information telling what parts of the video 
associate with the object. That can be complete or incomplete (that is, the exact video 
segment for an event is not known). Before giving the formal definition of a key object, we 
need to describe a new type for video temporal values.  
Definition 2.3. [I-expression] I-expressions (i stands for “interval”) are defined as follows:  

1. For any t1 and t2 integers (t1 ≤ t2), [t1, t2] is an i-expression. It is also classified as an 
interval.  

2. If p and q are two i-expressions, then so are (p & q) and (p | q). The meaning of 
operations “&” and “|” is that if an object associates with an i-expression p & q (or p 
| q), then it associates with both (or one) of p and q.  

Let  Ω denote the set of all i-expressions. We recall that dom(TIME) = Ω. I-expressions tell 
how to look up the video and they can be used to express incomplete information. For 
instance, [15, 18] & [25, 30] corresponds to a set of two video segments, one represented by 
[15, 18] and the other one by [25, 30]; [25, 28] | [15, 20] corresponds to only one video 
segment, [25, 28] or [15, 20], but it is not known to be which.  

Definition 2.4. [Key object] If O is an object having TIME as a component and its 
corresponding TIME value is an i-expression, then O is categorized as a key object.  

A video graph is built on objects each corresponding to a single event in reality and their 
temporal relations reflects inter-event descriptions. An inter-event relation can be described as 
an element of the set REL = {ABBD, ABCD, ACBD, ACDB, AABD, AABB, ACBB}. Event 
I [a, b] has a relationship r with event II [c, d] (a ≤ c) if and only if (1) b = c: r = ABBD, (2) b 
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< c: r = ABCD, (3) c < b < d: r = ACBD, (4) d < b: r = ACDB, (5)  a = c and b < d: r = 
AABD, (6) a = c and b = d: r = AABB, (7) c < b = d: r = ACBB. 

Definition 2.5. [Video graph] Given a video V, let graphs G1, G2 , .., Gn (n ≥ 1) represent 
its objects, that are not sub-objects of any others, the video graph of V is an edge labeled 
rooted graph G defined as follows.  

•  The root A of the graph stores the identifier of V.  
•  G contains every graph Gi for i ∈  {1, 2, .., n}.  
•  For each i ∈  {1, 2, .., n}, there is a link from A to the root of Gi 

labeled SEM.  
•  If two internal nodes O1 and O2 of G have a temporal relation r ∈  

REL, then there is a directed link from O1 to O2 labeled r and classified as an 
r-link.  

A video database consists of a number of video graphs, each representing knowledge 
about an individual video in the database.  

The VideoGraph model encompasses both video data and the structure of them. Before 
going any further, let us give an example of a video database. We are interested in a single 
movie and the video graph for it is shown in Figure 1 where directed solid lines describe 
c-links and dotted curves describe r-links. In this video graph, the atomic objects are o4, o7, o9, 
o10,  o11 and o12. The key objects are o1, o3, o5, o8 and o10. The others are non-key objects. 
Note that o10 has incomplete temporal information ([12, 30] | [20, 40]) because it is not known 
that node o10 associates with which interval, [12, 30] or [20, 40]. VideoGraph allows different 
kinds of temporal information, which are encapsulated in one type Ω (i-expressions). This 
distinct property was not  possible  in previous  models. Hence, they have limited capabilities 
for utilizing  semantics extracted from diverse and dynamic knowledge sources because all 
events that do not have a temporal description or that have incomplete temporal information 
are not considered. 

The VideoGraph model can be considered an extension to OEM model (Object Exchange 
Model) [Papakonstantinou (1995)] for semi-structured data [Papakonstantinou (1995), 
Abiteboul (1997), Buneman (1997)]. However, while OEM was designed for general 
purposes, our VideoGraph deals with the problem of organizing semantic contents of videos 
in a way such that it helps users better retrieve and query the video in a special manner. 
VideoGraph differs from OEM in three considerable ways. First, in a video graph, the same 
object may appear at multiple places regarding its possible multiple occurrences in the video. 
Second, the temporal relations among VideoGraph objects are taken into account. They are 
represented by r-links in the video graph. Finally, in terms of data access, queries in video 
databases are essentially to search for part of the video satisfying some semantics or to obtain 
the semantic contents in a video segment. In comparison with previous video data models, 
VideoGraph has the following distinguishing features: (1) it is able to capture inter-event 
descriptions represented by r-links in the video graph; (2) the expression of incomplete 
information is made possible by using i-expressions; (3) non-key objects are stored in the 
database as key objects, whereas in other models only key objects are considered. 
Exceptionally, it allows the deduction of implicit information.  

3. Query Language  
We will now introduce a content-based mechanism to support users’ querying the video 
database. We begin by clarifying what kinds of outputs are allowed in the querying system. 
We focus on answers of the following types: (1) Video segments: When the user searches for 
video segments that satisfy some semantic constraint. (2) Semantic contents: When the user 
asks for information about a video clip. 
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Figure 1. An example of video graphs 

We limit our queries to retrievals only, however update queries can be easily embedded. 
The language is declarative and allows the user to describe the set of answers without being 
explicit about how they should be computed. Our video query language is based on path 
expressions formulated according to the graphical structure of the database. The queries are 
also expressed on the inter-object temporal relationships. Before formally presenting what the 
syntax and semantics of queries are, we give some necessary definitions.  

Without loss of generality, we consider only one video graph in the database which we 
are going to formulate queries on. Let o1 and o2 be two nodes and L labeled l be a link from o1 
to o2. Then we can express o1 = from(L) and o2 = to(L).  

Definition 3.1. [Strict Path Sample] A strict path sample is of the form l1 → l2 → … → ln 
where l1, l2, .., ln ∈  TYPE and ∀  i ∈  {1, 2, .., n-1}, there exist two c-links Li and Li+1 labeled li 
and li+1 respectively such that to(Li) = from(Li+1). 

Definition 3.2. [Path Sample] Let θ be either → or →→ and l1, l2, .., ln ∈  TYPE. A path 
sample is of the form l1 θ l2 θ .. θ ln where there exist components li1 , li2 , .., liki (i ∈  {1, 2, .., n-
1}) such that l1 → l11 →  l12 → .. → l1k1 → l2 → l21 → l22 → .. → l2k2 → .. → ln is a strict path 
sample.  

Our query language is based on the expression of paths. We allow the user to formulate 
any path he or she is interested in. The path may or may not exist in the graph, in other words, 
it either conforms to a path sample or does not conform to any. In order to facilitate users' 
querying, we introduce the notion of path expression.  

Definition 3.3. [Path Expression] Let O be an internal node, l be a label, θ be either → or 
→→. A path expression is recursively defined as follows: (1) O. is a trivial path expression, 
which contains only a node; (2) If α is a path expression, then so are αθ and αθ(O). 

A query will be run successfully if it contains path expressions, each conforming to some 
path sample of the video graph. Otherwise, the query returns nothing. For the semantics of the 
query, we define the validity property of a path expression below.  

Definition 3.4. [Path Validity] Let θ be either → or →→. The validity of a path 
expression is presented as follows:  

1. Any trivial path expression is a valid path expression  
2. A non-trivial path expression PE is valid if the conditions below 

hold:  
•  If O. θ l appears in PE, then there must exist a c-link L labeled l such 

that O = from(L) 
•  If l1 θ l2 appears in PE, l1 θ l2 must be a path sample  
•  If l1(O) θ l2 appears in PE, then l1 θ l2 must be a path sample and 

there must be two c-links, L1 labeled l1 and L2 labeled l2, such that O = to(L1) 
= from(L2)  

•  If l1 θ l2(O) appears in PE, l1 θ l2 must be a path sample and there 
must exist a c-link L labeled l2 such that O = to(L)  
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Having presented the above concepts, we are ready to give a description of queries and 
their semantics. We will see that the basic construct in the query language is an expression of 
the form:  

(TIME) ⇐  PathExpression, StartNode, SelectionCondition (1)
or  
(SEM) ⇐  PathExpression, StartNode, SelectionCondition (2) 
where TIME and SEM are called the filters of the query, PathExpression is a path 

expression, StartNode is a node (a node identifier to be exact), the starting node in the graph 
to traverse and look for the result of the query. It can be the root or any internal node. 
SelectionCondition denotes a formula describing the condition that the answer must satisfy. 
We will shortly define conditions and queries rigorously. The result of this query is, based 
upon which filter is used, the i-expression value of the object or a set of objects represented 
by PathExpression for which the formula SelectionCondition evaluates to true.  

The language for writing formula SelectionCondition is the heart of our query 
formulation. Our queries use three salient operators, ∇ , ⊕  and ⊗ . Given a node A, ∇ (A) gives 
the set of all nodes that are reachable from it by traversing the graph (Node B is said to be 
reachable from node A if and only if there exists a valid path expression starting with A and 
ending with B). ⊕ (A, B) returns the temporal relation between two internal nodes A and B. 
⊗ (A, ie) returns the temporal relation between the TIME value of internal node A and an 
i-expression ie. The result of ⊕  and ⊗  operations must be an element of the set REL.  

3. 1 Syntax of VideoGraph queries  
Definition 3.5. [Atomic Condition] Let assume that Θ is an operator in the set {<, =, >, ≥, 

≤}, PE and PE’ are path expressions, o1 and o2 are internal nodes, ie is an i-expression, r ∈  
REL, v ∈  ATYPE. An atomic condition has one of the forms:  (1) PE; (2) PE Θ v; (3) PE Θ 
PE’; (4) ⊕ (PE, PE’) = r; (5) ⊗ (PE, ie) = r; (6) o1 ∈  ∇ (o2). 

Definition 3.6. [Condition] Let p and q be themselves conditions, f(O) be a condition in 
which O appears, a condition is recursively defined to be one of the following: (1) any atomic 
condition; (2) ¬ p, p ∧  q, p ∨  q, or p ⇒ q; (3) ∃ O(f(O)), where O is a variable representing an 
internal node; (4) ∀ O(f(O)), where O is a variable representing an internal node  

In this definition, ∃  and ∀  are two quantifiers in traditional logic and are said to bind to 
the variable O.  

Definition 3.7. [Free variable] A variable is said to be free in a condition or a sub-
condition (a condition contained in a larger condition) if the (sub-)condition does not contain 
an occurrence of a quantifier that binds it.  

Now is time for the formal syntax of a VideoGraph query.  
Definition 3.8. [VideoGraph Query] A VideoGraph query is defined as an expression of 

the form:  
(TIME) ⇐  PE(O1, O2, .., On), SN, SC(O1, O2, ..,  On)  (3)
or  
(SEM) ⇐  PE(O1, O2, .., On), SN, SC(O1, O2, ..,  On)   (4)
where SN is a predefined node, Oi's (i = 1..n) are internal node variables and the only 

free variables in the formulas SC(O1, O2, ..,  On)  and PE(O1, O2, ..,  On), SC(O1, O2, ..,  On)  is 
a condition containing one or more occurrence of each Oi , PE(O1, O2, ..,  On) is a path 
expression containing one or more occurrence of each Oi, TIME, SEM are special symbols 
describing what kinds of output are to be returned, an i-expression (temporal information) or 
a set of nodes (objects).  

3. 2 Semantics of VideoGraph queries  
The answer to a VideoGraph query (SEM | TIME) ⇐  PE(O1, O2, ..,  On) , SN , SC(O1, O2, 

..,  On), as we noted earlier, is the set of all objects (graph nodes) if the filter is SEM or an 
i-expression otherwise that is obtained by computing PE(o1, o2, .., on) where o1, o2 , .., on, 
assigned to O1, O2, ..,  On  respectively, make SC(O1, O2, ..,  On)  evaluate to true. To 
complete this definition, we must state which value assignments to free variables in a 
condition make the condition true.  
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A query is evaluated in any given instance of the video database. Let each free variable Oi 
in a condition SC(O1, O2, ..,  On)  (we call it F for brevity) be bound to a value oi (a node in 
the graph). With respect to the video database and for the assignments of values to variables, 
the condition F must be true if one of the following holds:  

− F is an atomic condition PE, and PE is a valid path expression.  
− F is an atomic condition PE Θ v, and PE is a valid path expression which by 

traversing we can obtain a node value v’ (an atomic value or an object identifier) that 
makes the comparison v’ Θ v true.  

− F is an atomic condition PE Θ PE’, and PE, PE’ are valid path expressions which by 
traversing we can obtain two nodes whose values, v1 and v2, make v1 Θ v2 true.  

− F is an atomic condition ⊕ (PE, PE’ ) = r, and PE, PE’ are valid path expressions 
which by traversing we can obtain two internal nodes such that their implicit or 
explicit TIME values are related to each other by relation r.  

− F is an atomic condition ⊗ (PE, ie) = r, and PE is a valid path expression which by 
traversing we can obtain an internal node whose implicit or explicit temporal 
relationship with the i-expression ie is equivalent to relation r.  

− F is an atomic condition o1 ∈  ∇ (o2), and o1 is reachable from o2.  
− F is of the form ¬ p, and p is not true; or of the form p ∧  q, and both p and q are true; 

or of the form p ∨  q, and one of them is true; or of the form p ⇒ q, and q is true 
whenever p is true.  

− F is of the form ∃ O(f(O)), and there is some assignment of values to the free variables 
in f(O) and variable O, that makes it true.  

− F is of the form ∀ O(f(O)), and there is some assignment of values to the free 
variables in f(O) that make it true no matter what value is assigned to variable O.  

Now we need to be clear how the answer of a query is returned, that is, we need to formally 
define what the semantics of PE(O1, O2, .., On) is, given an assignment of values to variables 
O1, O2, .., On. The query returns nothing if PE is not a valid path expression. Otherwise, PE 
represents a set of nodes that are obtained by traversing the video graph based on PE. We call 
those nodes instances of the path expression PE.  

Definition 3.9. [Instances] An object O is an instance of a path expression PE if one of the 
following holds:  
� PE is O. 
� PE is PE’ → l, and ∃ O’ an instance of path expression PE’ and a c-link L labeled l 

such that O’ = from(L) and O = to(L).  
� PE is PE’ →→ l, and ∃ O’ an instance of path expression PE’ and a c-link L labeled l 

such that O = to(L) and from(L) ∈  ∇ (O’).  
� PE is PE’ → l(O), and ∃ O’ an instance of path expression PE’ and a c-link L labeled 

l such that O’ = from(L) and O = to(L).  
� PE is PE’ →→ l(O), and ∃ O’ an instance of path expression PE’ and a c-link L 

labeled l such that O = to(L) and O = from(L) ∈  ∇ (O’ ).  
Since the query outputs can be of two types, an i-expression or a set of node identifiers from 
which semantic contents are withdrawn, we consider the following cases: (1) SEM filter: The 
answer to a query is a set of objects (node identifiers), each being an instance of the path 
expression PE(O1, O2, ..,  On ) where Oi's ∈  ∇ (SN) and Oi 's make the condition SC(O1, O2, ..,  
On) true. (2) TIME filter: The answer to a query is an i-expression which is computed by 
applying “&” operation on the TIME values of all the instances of the path expression PE(O1, 
O2, ..,  On) where Oi's ∈  ∇ (SN) and Oi's make the condition SC(O1, O2, ..,  On) true.  

4.  Implicit Information Inference 
Having presented the video model and its related formal query language, one issue left is how 
to compute the implicit information from a VideoGraph database. This can be considered a 
preprocessing refinement phase. In our VideoGraph model, an internal node may or may not 
have a TIME link from it. If not, its temporal information can still be obtained by traversing 
the graph taking into account r-links to other nodes that have a temporal value. In other 
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words, we are able to obtain implicit complete semantics from event descriptions, inter-event 
descriptions and incomplete information. In what follows, we introduce a simple way of how 
to do it. The algorithm converts an instance of the video data model to another called refined 
graph. The refined graph has direct temporal features associated with the internal nodes (that 
is, each node has a TIME link and a TIME value). Now we define what a refined graph is and 
shortly introduce a simple algorithm to compute the refined graph of a given video graph.  

Given a single video, its video graph can be represented as a tuple G = (V, e, f, g, h) 
where V is the set of nodes; e: V → {INTERNAL, LEAF}, a unary function returning the 
type of each node; f: V → ATYPE  ∪  Ω a unary function returning the value stored in each 
node; g: V × V → TYPE ∪  VOID, returning the label of the link from one node to another, 
VOID if there is no c-link between them; h: V × V →  REL ∪  VOID, returning the temporal 
relationship between one node to another, VOID if there is no r-link between them.  

Definition 4.1. [Refined Graph] Given a video graph G = (V, e, f, g, h) of a video. Its 
refined graph is also a VideoGraph G1 = (V1, e1, f1, g1, h1) with the following properties.  

� V ⊆  V1  
� card(V1 ) = card(V ) + card(V2 ) where V2 = {v ∈  V | e(v) = INTERNAL ∧  

∀ v1 ∈  V: g(v, v1 ) ≠ TIME}  
� For each v ∈  V2, there exists only a node v1 ∈  V1 – V such that g1(v, v1 ) = 

TIME. Conversely, for each v1 ∈  V1 – V, there is only a node v of V2 such that the 
above condition holds. 
� e1(v) = e(v) if v ∈  V, LEAF otherwise 
� If v, v1 ∈  V, then f1(v) = f(v), g1(v, v1) = g(v, v1) 
� For  v, v1 ∈  V1 such that g1 is not yet defined for, g1(v, v1 ) = VOID  
� h1 (v, v1 ) = VOID ∀ v, v1 ∈  V1  
� If v1 , v2 ∈  V such that e(v1 ) = e(v2) = INTERNAL, and v1’, v2’ ∈  V1 such 

that g1(v1, v1’) = g1(v2, v2’) = TIME, then the relationship between f1(v1) and f1(v2) 
must not conflict with h(v1, v2). 

The corresponding refined graph of the video graph in Figure 1 is in Figure 2. We note 
that node o10 now has a more meaningful TIME value, which tells that it associates with 
i-expression [36, 40], not like in the source video graph where o10’s certain temporal 
information was unknown. Now comes an algorithm to determine the refined graph of a video 
graph.  
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Figure 2. An example of refined graphs 

Algorithm 4.1. [Refinement Algorithm] Given a video graph G = (V, e, f, g, h) for a 
video. The corresponding refined graph is built as the following steps. 

1. V2 is initialized to the set of all non-key objects in the source video graph.  
2. For each node v ∈  V2, add a new node storing [0, ∞] and add a link labeled 

TIME from v to the new node.  
3. Initialize UpdateCounter and UpdateCounter1 to 0.  
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4. For any two internal nodes v and v’ that are connected by an r-link, adjust 
the value of their TIME node so as to satisfy h(v, v’). If a node is a key object with a 
complete TIME value, do not change the value. If one of the values is changed, increase 
UpdateCounter1 and UpdateCounter both by 1.  

5. If UpdateCounter1 ≠ 0, go back to step 3.  
6. For any two internal nodes v and v’ such that the former is a sub-object of 

the latter, adjust the value of their TIME node so that the TIME values of v and v’ are 
related by the relation ACDB (containment relationship). If a node is a key object with a 
complete TIME value, do not change the value. If one of the values is changed, increase 
UpdateCounter1 and UpdateCounter by 1.  

7. If UpdateCounter1 ≠ 0, assign it to 0 and go back to step 6.  
8. If UpdateCounter ≠ 0, go back to step 3.  
9. Remove all the r-links resulting in a new graph, which is the refined graph of 

G.  
In a refined graph, all the r-links have been removed. It has another property that every 

object (internal node) has a temporal descriptor which is captured by applying the refinement 
algorithm above on the source video graph. Thus whenever a node is visited for its temporal 
information, no further graph traversal is needed. The merit of the algorithm is that it helps 
reduce the overhead of query processing. For example, if we only have the source video graph 
(i.e., without applying the refinement algorithm) as in Figure 2 and if the user very often 
wants to watch the scene associated with object o10, then the query system will have to 
compute the implicit temporal description of o10 many times back and forth.  

In environments where most objects in the video database are accessed with high 
frequency, it is a good idea to build the refined graph just once, ahead of time, and store it in 
the database. Whenever the video graph is updated, its corresponding refined graph is 
recalculated. Subsequent query processing steps will be taken on the refined graph, resulting 
in more processing overhead being reduced. However, it is not always necessary to save it 
permanently, especially if we take into account the cost of storing an additional graph. 
Depending upon the context where the video database is, we have to consider the tradeoff 
between the efficiency of using the refined graph and the storage cost charged. From that 
standpoint, we can decide to compute it, whether or not on the fly, as the user questions the 
video.  
5. Related Work  
This paper deals with video data modeling. As we have mentioned in Section 1, there are 
basically two major approaches, physical feature-based and semantic content-based. The 
choice depends on the purpose and use of the video data. In an application like astronomy 
VDBMS, the motion information of stars is the most important content of the video data. On 
the other hand, applications such as digital libraries, semantic contents are necessary for the 
user to retrieve information. In this section, we briefly discuss some related semantic-based 
models. 

In the past several years, many of them first segment the video stream into a set of 
temporally ordered shots, and then build a multi-level abstraction upon these shots. This 
approach is referred to as the segmentation-based model. One such scheme was proposed in 
[Swanberg (1993)]. This technique identifies the type of each shot using domain-specific shot 
models. The typed shots are then grouped into bigger units at the next higher level in the 
hierarchy by matching the higher-level models to the typed shots. This procedure can be 
applied recursively until we obtain a single unit that represents the entire video. Instead of 
relying on explicit models, Chua and Ruan proposed to describe each video segment using 
natural language [Chua (1995)]. They, however, use keywords to facilitate video retrieval. 
Some other segmentation-based models are presented in [Ardizzone (1997), Hampapur 
(1995), Zhang (1992), Gupta (1991)].  

A drawback of video segmentation-based models is lack of flexibility. Smith and 
Davenport et al. [Smith (1992)] proposed a layered annotation representation model called the 
stratification model. This scheme segments contextual information of the video instead of 
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simply partitioning the video stream. The video units, called stratum, can overlap or 
encompass each other. This approach approximates the movie editor's perspective on a movie. 
Some other stratification-based models are as follows. Jiang et al introduced a VideoText 
model in [Jiang (1997)]. This model is based on free text annotations rather than a fixed set of 
keywords to index the strata. Text retrieval techniques are used to provide content-based 
access to the video database. A stratification scheme based on a video algebra is presented in 
[Weiss (1994)]. The fundamental entity of this model is a presentation. A presentation is a 
multi-window spatial, temporal, and content combination of video strata. Presentations are 
described by video expressions, which are constructed from basic video strata using video 
algebraic operations. Another stratification-based model is presented in [Adali96]. They 
associate strata with events in the video.  

A video object model is used in a prototype named OVID developed by Oomoto and 
Tanaka [Oomoto (1993)]. In this model, a video object is defined as an arbitrary sequence of 
video frames. Each video object consists of a unique identifier, an interval represented by its 
starting and ending frame numbers, and a collection of attribute-value pairs describing the 
content of the frame sequence. Arbitrary attributes can be attached to each video object if 
necessary. Also, interval inclusion inheritance is applied to ease the effort of providing 
description data when an existing video is composed into new video objects using the 
generalization hierarchy concept. Inclusion inheritance enables these video objects to share 
their descriptive data.

6. Conclusions  
Video content is very complex. No single information extraction scheme is a panacea. 

Instead, we have to rely on multiple techniques to extract meta information from different 
knowledge sources (e.g., script, caption) in order to overcome the errors of any one method. 
To support such an environment, the video data model must be able to accommodate 
metadata obtained by different extraction tools. Furthermore, it should allow the deduction of 
implicit information from these otherwise independent metadata types. This concept of 
semantic implicity has not been considered previously. To provide this desirable capability, 
we introduced in this paper a new video data model called VideoGraph. This model can 
capture not only descriptions of individual events, but also their inter-event relationships. To 
fully benefit from these two types of semantics, we provide an algorithm to compute the 
implicit information from the initial metadata.  

Another contribution of this paper is the support for uncertainty. This arises because 
information extraction tools usually fail to produce the complete metadata set and reasoning 
on incomplete information often results in uncertain information. To address this, 
VideoGraph associates each event with an i-expression. For instance, a disjunctive (“|”) form 
can be used to indicate that the video event must occur in one of the listed video segments. 
Our scheme hence is more intelligent and expressible than existing techniques. To facilitate 
video retrieval, we also presented in this paper a declarative query language based on path 
expressions. To the best of our knowledge, it is the first query language of this kind. Path 
expressions are easy to use yet powerful enough to allow the expression of fairly complex 
video queries.  
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