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Abstract: The rapid growth of digital image data increases the need for efficient and effective image 
retrieval systems.  Such systems should provide functionality that tailors to the user's need at the time 
of query.  In this paper, we present a new image retrieval technique that allows users to control the 
relevancy of the results.  For each image, the color contents of its regions are captured and used to 
compute similarity.  Various factors, assigned automatically or by the user, allow high recall and 
precision to be obtained.  We also present different ‘initial search’ strategies for whole and sub-image 
matching. We implemented the proposed technique for a large database of 16,000 images.  Our 
experimental results show that this technique is not only space-time efficient but also more effective 
than recently proposed color histogram techniques.  
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1. Introduction  

The explosion in the amount of digital image data has brought about the need for robust 
content-based image retrieval (CBIR) systems.  This demand has made CBIR a very active 
area of research in recent years [Swain (1993), Niblack (1993), Faloutsos (1994), Gong 
(1995), Hsu (1995), Lu (1994), etc.].  In a typical CBIR system, some essential properties of 
database images are extracted and stored as feature vectors.  During the retrieval process, the 
feature vector of the query image is computed and matched against those in the database.  The 
returned images should be wholly or partially similar to the entire or relevant part of the query 
image, respectively.   

To support image indexing/retrieval, color histogram is commonly used today.  A 
color histogram describes the distribution of colors in the image.  An advantage of this 
approach is that the feature vectors are insensitive to small changes in the viewing position.  
Representing images by their color histogram alone, however, is prone to false matches due to 
the lack of spatial information.  This approach would treat a blue car at the bottom of the 
query image as similar to a database image with a blue sky at the top.  Recent approaches 
have attempted to address this problem by integrating the color and spatial information.  We 
discuss some of these techniques below.  

A multiple color histogram approach was introduced in [Gong (1995)].  In addition to 
a global histogram for the entire image, this technique creates a local histogram for each of 
the nine equal partitions of the image.  During a retrieval process, the user has a choice of 
matching any combination of the histograms.  To reduce the expensive cost of matching the 
histograms, a numerical key is precomputed for each histogram to facilitate simple 
numerical-key searches. 

Correlogram was recently proposed in [Huang (1997)] as a new image feature.  This 
clever technique distills spatial information into the color distribution by counting only pixels 
of color j at a specified distance k from a pixel of color i.  In its restricted version, 
autocorrelogram, color j and color i are the same.  This approach is very robust, able to 
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tolerate large changes in appearance of the same scene caused by changes in viewing 
positions, changes in the background scene, etc.   

Another approach attempting to integrate color-spatial information was presented in 
[Chua (1997)].  For each image, its color-spatial information is captured in an image signature 
obtained by superimposing a set of color signatures.  They are computed as follows.  We 
compute one color signature for each primary color in the image.  The image is partitioned 
into k non-overlapping cells of equal size.  Each color signature has k bits, one for each of the 
cells.  For each cell, if the percentage of the total number of pixels having a given primary 
color is greater than a threshold, then the bit corresponding to this cell in the respective color 
signature is set.  During the image retrieval process, the signature of the query image is 
computed and matched against those in the database to retrieve the desired images.  This 
technique is efficient for large databases.  However, it is not shift-invariant and not effective 
for images without dominant colors.   

We note that all of the above techniques construct the feature vector using all the 
pixels of an image.  This approach is not only expensive, but also has the following 
drawbacks:  

1. For most applications, not all pixels are equally important in terms of query 
processing.  Typically, the surrounding background is less important than the 
objects of interest.  Equal contribution of all pixels in the similarity computation 
would dilute the intended semantic of the query. 

2. Due to tight integration of the color-spatial information, there is little flexibility in 
the way we can use the same feature vectors to support subimage matching, i.e., 
matching the query image against subpart of a database image.  We will give 
experimental results to show that lacking this capability leads to false exclusion 
of qualified images. 

To support subimage matching, another proposed technique [Wood (1998)] relies on 
sophisticated segmentation techniques to capture images' contents.  Seventeen parameters 
represent each of one hundred largest regions of the image.  Thus, for each image, one 
hundred feature vectors are stored and compared against for similarity.  This technique is 
highly effective but mainly for relatively small databases due to very high resource 
requirements.   

To handle very large image databases, we propose a technique called Sampling- 
Based Matching or SamMatch for short [Hua (1999)].  SamMatch is inspired by the 
digitization of sound in which the magnitudes of a sound wave are sampled at some fixed 
time interval and stored as numbers.  Such numbers capture the characteristics of the sound 
wave to the details allowed by the sampling rate.  Similarly, SamMatch samples an image 
with respect to space intervals.  For each sampling region, we compute the average color of 
the pixels in the region.  These averages form the feature vector of the image.  This approach 
has the following advantages: (i) We will show later that SamMatch requires less space than 
any of the aforementioned techniques.  The smaller feature vectors are less expensive to 
compare, making this scheme suitable for very large databases.  (ii) Unlike local histograms 
which are tied to predetermined areas of the image, SamMatch enables the users to associate 
areas with objects in the image.  This capability allows areas of interest to be more flexible in 
shape and size.  Furthermore, multiple weights can be assigned to different matching regions 
to precisely express the intent of the query.  (iii) The system can apply different sampling 
rates (i.e., scaling sampling regions with respect to image size) on the query image to support 
subimage matching.  This can identify images with subparts matching the query image at 
different scalings.   

To further enhance the effectiveness of SamMatch, we also consider the following 
observations:  

• Matches on rare colors are more discriminating.   
• Matches at related (e.g., adjacent) sampling groups are more significant.   
Our system considers these measures and automatically adjusts the weights of the 

sampling regions accordingly.  We will discuss these features in more detail later.   
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The remainder of this paper is organized as follows.  We describe the details of 
SamMatch in Section 2.  In Section 3, we present search strategies for whole and sub-image 
matching.  The experimental study based on a large database of 16,000 images is presented in 
Section 4.  Finally, we give our concluding remarks and discuss future work in Section 5.   

2. Sampling-Based Image Matching  

In our approach, a set of fixed sampling locations is predetermined for all database images.  
To compute the feature vector for each image, we extract the color information for each pixel 
group (henceforth referred to as matching region.) In order to ensure accurate ranking of 
similar images, many such matching regions may be necessary.  In this section, we first 
present our basic similarity function.  We then discuss how to enhance the similarity measure 
with weight factors.   

2.1 Sampling Regions and Their Features  

To estimate the number of regions and features needed to yield a good performance, we have 
analyzed the probability of matching with respect to the number of matching regions.  Let n 
be the number of matching regions in a subimage and k a particular set of feature tuple (e.g.  
[colorm, textureq ,...]).  We use pk

i to denote the probability that region i is represented by tuple 
k, 1 ≤ i ≤ n.  To simplify the analysis, let us assume that pk

i and pk
j are independent for any i 

and j.  With this assumption, the probability that a subimage is represented by a set of 
particular tuples at its respective regions is:  

∏
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k
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This probability should be very small in practice, even with single-feature tuples.  For 

color feature, for instance, its distribution for such regions is depicted in Figure 1 (dotted 
line), using the data collected from our database.  We observe that pk

i is not uniform for all 
colors.  Fortunately, pk

i is generally very small, less than 0.01 according to our database.  
Even a moderate n, say n = 25, can make Pn small enough, Pn = (1/100)25, to handle a very 
large database.  
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Figure 1: The distribution of the region colors 
  
Although region contents are arguably independently distributed, the above analysis 

is beneficial for the following reasons:  
1. The contents of neighboring regions may be highly related in certain image 

database domains where most of its images come from the same category.  For 
general image databases, such relationships are greatly reduced.  In fact, much 
research has exhibited statistically that, on the average, the relationship between 
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pixels tend to decrease after 15 or 20 pixels [Andleigh (1996)].  In our 
implementation, matching regions are at least 16 pixels apart.  

2. In reality, it is difficult to compute the precise probability of a particular feature 
occurrence, considering databases are constantly growing in size.  To counter this 
fact, our analysis is intended to provide a rough estimate of the minimum number 
of matching regions, many more of them are actually used to ensure high 
effectiveness. 

3. This analysis also serves as a guide to query the database.  For instance, the 
object of interest should enclose at least a certain number of matching regions. 

To support general applications, regions can be sampled uniformly across the image.  
Matching regions are evenly spread out in the image frame as shown in Figure 2.  This 
sampling produces 113 regions.  We note that the number of regions is substantially more 
than what we need to obtain good performance for whole-image queries.  The high sampling 
rate is used to better support subimage matching. 

In order to keep the storage overhead low, the representation of the color information 
for each matching region should be compact.  In our system, it is computed as the most 
dominant Haar wavelet coefficient of the matching region (i.e., the average of the color 
values) as follows. It is known that Hue, Value and Chroma (HVC) each represents one 
attribute of human color perception. When representing color as (RGB) data, all three 
components (RGB) have to be considered in order to change one attribute of H,V,C. The 
color similarity comparison is, thus, cumbersome at query processing time. We can address 
this issue by transforming (RGB) color data to Munsell (HVC) color data using the 
mathematical transformation presented in [Hiyahara (1988)]. In this uniform color system, the 
dissimilarity of two colors is simply the distance between them. We quantized (HVC) data 
into 256 possible values.  The region color is then represented by the most dominant Haar 
wavelet coefficient of the matching region.   

 

Figure 2: Sampling regions 

 
With n and c determined, the color information of such n regions, referred to as 

region colors, of two images can be compared one-to-one to produce scores.  These scores are 
added up to determine the similarity of the two images.   

2.2 Automatic Weight Assignment Using Color Distribution  

We note that the distribution of the average color is not uniform.  When comparing the region 
colors of two images, we can give more weight to matches on rare colors since they are more 
discriminating.  To take advantage of this feature, we collected statistics from our image 
database.  The distribution of the average color according to our database is plotted in 
Figure 1, i.e., the dotted line.  It shows that the distribution curve has a bell shape with 
higher frequencies clustered near the middle of the color spectrum.  With this distribution, the 
weight for a match on color ci is its inverse frequency.  

To confirm the above observation, we have analyzed the theoretical distribution of 
the average color. We first assume that the color values of the pixels are independently 
distributed.  Using the properties of probability generating functions, we can derive the color 
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distribution of a region of m pixels as follows.  The probability generating function of the 
color distribution of a matching region of one pixel is:  
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The sum of the color values of the m pixels has the following probability generating 

function:  
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where ai is the sum of like terms zi.  This sum of color values ranges from m to mc ⋅ .  Since 
the color values range only from 1 to c, the sum is quantized to reduce its possible values to c, 
i.e., .: cmcQ →×  In our system,  x/m Q(x) = , i.e., the average of the color values in the 
region.  

The distribution of the region color after quantization is plotted in Figure 1, (the 
solid curve).  We see that it is not uniform and has a behavior similar to that of the 
experimental curve.  The discrepancy is due to our assumption that the colors of the 
neighboring pixels are independently distributed.  We note that a very steep curve indicates 
that the averages share a small set of dominant colors.  Under this circumstance, it would be 
ineffective to rely on average colors to search similar images.  Fortunately, the experimental 
curve does not fall in this category.  In fact, it shows a large number of frequent colors 
making color matching much more discriminating.   

We note that the size of the sampling region and the number of possible color c can 
influence the distribution of the regional average color.  To demonstrate these facts, we made 
the plots shown in Figure 3 and Figure 4 using the statistics collected from our database.  
They show the following properties:  

1. A larger region (i.e., larger perimeter) results in a taller and narrower bell shape 
(see Figure 3).  This, in turn, causes a vast majority of average color values to 
fall near the middle of the color spectrum (i.e., low standard deviation).  
Consequently, the distinguishing power is greatly reduced.  Larger matching 
regions, however, tolerate minor shifting.  Interestingly, for the same region size, 
the number of contributing pixels has very little effect on the distribution.  In 
Figure 3, scarcely scattered (m = 64) and more populated (m = 256) regions of 
the same perimeter (peri. = 128) have nearly identical distributions.  This 
property allows the capture of a region color using all its available pixels without 
altering the distribution. 

 

0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300

P
ro

ba
bi

lit
y

color value

peri=584
m=576

peri=128
m=256

peri=128
m=64

peri=1
m=1

c=256

Figure 3: The effect of the region size 
 



 6 

2. A smaller c results in a steeper bell shape, and therefore less distinguishing 
power, Figure 4.  In one extreme, using binary values (i.e., black or white) does 
not help much in determining similarity.  The number of possible colors should 
be chosen based on various factors, including the number of regions, the space 
overhead, the nature of the application, etc.  
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From the above discussion, the values of c and the region area are critical in the 
effectiveness of the technique.  It is important that the appropriate values be selected for the 
application at hand.  In our current application, c = 256 and sampling regions is 16x16.  

One result of the above observation is to let the system assign more weight to a region 
which is less likely to match, and is therefore more discriminating.  Using its inverse 
frequency as a weight factor will help improve the matching precision and provide more 
accurate ranking.  Thus, the basic similarity score of two corresponding matching regions in 
the query image and a database image can be computed as follows: 
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where D

ic  and Q
ic  are the color values of the ith region of a database image and the query 

image, respectively.  Note that ‘1’ is added in the denominator to prevent possible zero 
division.   

2.3 Adjusting Scores Using Spatial Correlation  

Matching based on the basic similarity scores discussed above may not accurately reflect the 
user's perception of similarity.  As an example, let us consider a query image with a large red 
rose surrounded by a green background.  Two potentially matched database images are found.  
One has a pink rose with a blue background; and the other one has scattered green areas along 
its edges and no rose.  Potentially, the second image can be ranked higher because some of its 
areas match the green background in the query image perfectly.  Obviously, the first database 
image should be ranked higher.  This problem is addressed in our system by taking into 
account the spatial correlation.   

We consider a cluster of well-matched regions as more significant than a collection of 
scattered matched regions.  The rationale is that a cluster of matched regions often identifies 
an object in the image (e.g., a rose), whereas scattered regions are less likely to form a 
meaningful object.  To exploit the spatial correlation, we let the user input a spatial distance d.  
During a search, the system raises/lowers the score of a matching region according to the 
basic similarity scores of the matching regions within the d-distance vicinity.  In other words, 
the matching score of a region is amplified if its neighboring regions also match the query 
image well.  One way to compute the new score of a matching region taking into account the 
spatial correlation is as follows.  Let us consider region i.  All of its immediate adjacent 



 7 

matching regions form its 1st circle centered at region i.  The next outer circle is its 2nd circle, 
and so on.  Let s(k) denote the geometric mean of the scores of the regions on the kth circle 
centered at region i.  The new score of region i is:  
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When this feature is disabled, c

is  = is .  In our implementation, the default is d = 2.   

2.4 User-defined Spatial Weight  

With the region colors captured separately, the contribution of each region to the query can be 
precisely controlled allowing the user to more accurately describe the rough idea of what the 
returned images should be.  For example, to sketch a query image, the user usually draws only 
the objects of interest, not the entire image composition.  In the case of using an example 
image as a query, the user is able to specify the areas most appropriate by partially including 
or excluding various areas of the query image.   

In our system, users are allowed to describe their intents by assigning different 
weights to matching regions of varying significance.  The retrieved images are ranked 
according to these specifications.  Let wi denote the spatial weight factor of region i and sc

i be 
the score earned by region i.  The scoring function considering spatial significance is:  
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The application of the spatial weight factors reflects the intent of the user in querying the 
database.   

2.5 Handling Scaling  

Another distinct advantage of the sampling-based approach is that the system can apply 
various sampling rates on the image query to find matches at different scalings.  An example 
is given in Figure 5, in which the query image is sampled at three different rates (b, c, d in 
this figure) in order to match larger, same size, and smaller objects, respectively. 
   

(a) (b) (c) (d)

Figure 5: A fixed sampling rate for all database images (a).  Three sampling rates for the query 
image: a higher rate to find larger matching objects (b), the same rate to find matching objects of 

the same sizes (c), and a lower rate to find smaller matching objects (d). 

 
We observe that the more sampling rates on the query image, the finer scales to be compared 
at the query time. Since only one sampling rate is necessary for each database image no 
matter how many scales to be searched, there is no storage overhead penalty for more 
sampling rates of the query image. 
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3. Image Retrieval  

In this section, we discuss our retrieval procedure in detail.  Since our approach is capable of 
handling both whole and sub-images (of any shape) matching, we present different strategies 
to perform initial search prior to applying the detailed similarity measure. 

3.1 'Quick-and-dirty' Filtering  

When we are interested in whole matching (at similar locations), SamMatch enables an 
effective initial search for qualified images.  Normally, to enable the most accurate retrieval 
possible, the detailed similarity computation, Equation (1), should be carried out on all 
database images.  However, such sequential matching can be avoided using a two-pass 
approach widely adopted [Chua (1997), Hafner (1995), Faloutsos (1997), etc.] in the trade-off 
of effectiveness and efficiency.  In the first pass, a set of potential image candidates are 
retrieved using an inexpensive search criterion, called the quick-and-dirty test.  Equation (1) 
is then applied on this set to further filter it and rank the remaining.   

To facilitate the filtering process in Pass 1, some values (e.g., average values of color 
components [Faloutsos (1997)]) can be computed for each image and saved in the database.  
The advantage of this approach is that the filtering parameters can be precomputed.  Existing 
quick-and-dirty tests are not very effective.  They usually filter out less than 50% of the 
database images [Chua (1997)].  This is not acceptable for large databases considering the 
high cost of similarity computation in Pass 2.  To address this issue, we use the weighted 
color cq of all the region colors of the query image as the filtering factor, i.e.,  

∑
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n

i
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where wi is the user-assigned spatial weight of region i whose color is cqi .  To see how cq can 
be affective in filtering irrelevant images, consider a case of cq, the expansion of which is:  
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where cql > cqk and region k is more relevant to the query than region l, i.e., wk > wl.   
Consider a database image the weighted color cI of which is:  
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for some proper tolerance ε value.  Therefore, this image is excluded from further similarity 
computation.  It is easy to see that the image would have passed through had we used the 
simple sum of all color values, i.e., wi = 1, 1 ≤ i ≤ n, since  
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Although this scheme incurs computation overhead in pass 1, it is outweighed by the 

benefit of having a very high concentration of good candidates in the filtered set.  Our 
experimental results indicate that about 90% of the database images can be eliminated.  
Exploiting the user's intent (i.e., spatial weight factors) in the filtering process also minimizes 
the false dismissal of potential candidates. 

We observe that in pass 1, the search criterion or the filter should be an interval [cq – 
ε, cq + ε] should be carefully determined to avoid false dismissal of potential candidates.  If 
the search color cq is near the two ends of the color spectrum (which shares the same 
characteristic as the one shown in Figure 1), we want to use a larger threshold, i.e., a wider 
filter, because there are substantially fewer database images having the weighted color in this 
range.  On the other hand, if the searched value is near the middle of the color spectrum, we 
want to consider a narrower filter in order to be more restrictive since there are many images 
in this color range.  In our implementation, we control ε in order to fix the size of the filtered 
set at 10% the size of the database.  The tolerance ε for a given search color cq can be 
determined as follows:  
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where p(cq) is the frequency of the weighted color cq. 

The above approach is able to filter images effectively to the user intent for whole 
image matching.  In the following subsection, we present a more elaborate indexing scheme 
to enable even faster initial search to support our retrieval of free-shaped queries at different 
locations and scales.   

3.2 Indexing and Retrieval of Free-Shaped Queries  

To search for a matching subimage in a database image, we can ''slide'' the query image over 
the database image.  At each sliding location, we compare the sampling regions of the query 
with the corresponding sampling regions of the subimage.  If their total score is greater than a 
threshold, the containing image is included into the result set.  This procedure can be repeated 
for every image in the database to retrieve all qualified images.  Avoiding this straightforward 
sequential scanning is a major challenge for matching free-shaped subimages in large 
databases.  To enable indexing, we slide windows of a predetermined base shape to extract 
subimages' indexing values from images (Note that the base shape is used for the indexing 
purpose; the final detailed comparison Equation (1) is performed on the original query).  For 
general applications, we select the square shape as the base shape.  Our approach can be 
easily modified to handle any shape.  To support our indexing technique, we build our access 
structure in three steps as follows:  

1. We compute the feature vector for each database image as described earlier. 
2. We slide base-shaped windows of various sizes over each database image.  At 

each location, the sliding window encloses and defines a subimage for the 
purpose of indexing.  We derive the feature vector for this subimage by extracting 
the corresponding components of the feature vector of the whole image.  In 
addition, we compute a signature which is a vector of some essential features of 
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the subimage (e.g using DCT, DFT, Haar wavelet transformation, or 
average-variance pairs). 

3. For each database image, we map the signatures of its subimages into points in 
the corresponding vector space, and cluster them into a fixed number of minimum 
bounding regions (MBRs).  These MBRs collectively represent the database 
image, and are inserted into an R* tree [Beckman (1990)]. 

     
Using the access structure discussed above, our free-shaped query matching procedure can be 
summarized as follows:  

1. Query Preprocessing: (i) We apply different sampling rates to the query image, 
each designed to match against subimages of a predetermined size.  For each 
sampling rate, we compute one feature vector for the query image. (ii) We 
identify a base-shaped area that covers most of the query within the noise limit.  
We compute the signature of this area using the components of the image feature 
vector with the highest sampling rate. 

2. Initial Search: We retrieve the qualified MBRs from the R* tree using the 
signature as the search key.   

3. Detailed Comparison: Each subimage in the returned set is compared against the 
original free-shaped query image using Equation (1).  This detailed comparison is 
based on their feature vectors.  If the comparison is positive, the database image 
containing the matching subimage is returned as a query result. 

4. Experimental Study  

We evaluate the effectiveness of our image retrieval system using a database of 15,808 
images.  They consist of a variety of categories.  Our workload consists of 30 queries.  Each is 
an image from the database, and used as an example to retrieve similar images.  The database 
was inspected to determine relevant answers.  These queries were selected to retrieve objects 
of various characteristics, such as a rose, a bird, a plane, balloons, buildings, skies, sand, 
statues, food, etc.  We organized them into three groups as follows:  

1. The first set consists of fifteen queries.  Each has a set of correct answers.  These 
answers have some parts very similar to its query.   

2. The second set consists of nine queries.  The relevant answers are images 
containing some parts similar to the selected regions of interest, which can be the 
entire image. 

3. The third set is intended to evaluate our technique in handling queries whose 
sizes are different from those of the database images.  Many existing image 
retrieval techniques (including those in our comparative study) do not support this 
realistic querying environment. 

   
Performance Metrics Let A1, A2,..., Aq denote the q relevant images in response to a query Q.  
The recall R is defined for a scope S as:  
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This measure, denoted by R/S, indicates the percentage of the returned images ranked within 
the specified scope.  For instance, if a query returns 30 out of 40 total relevant images in some 
scope s, then its R/S is computed as 30/40 or 0.75.  The rationale for factoring in the scope is 
that result images that fall far behind in the ranking often do not make it to the user.  In this 
study, we use average R/S as the performance metric.  This metric was also used in [Huang 
(1997)].  We adopt it for our study due to its effectiveness in evaluating image retrieval 
techniques.  We discuss our performance results in the following subsections.  
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4.1 Comparative Study  

We investigate three versions of SamMatch:  
• SamMatchw or SMw: This version considers only the spatial weight. 
• SamMatchc or SMc: This version considers only the spatial correlation. 
• SamMatch or SM: This is the full-fledged SamMatch.  It takes into account both the 

spatial weight and spatial correlation.   
Studying the first two versions helps us understand the benefits of each individual feature.  
Evaluating the third version allows us to assess the overall performance of the proposed 
technique.  We compared SamMatch against Correlogram [Huang (1997)], and Color 
Histogram (CH).  The rationale for our choices is as follows:  

• We believe Correlogram is one of the most effective image retrieval techniques 
today.  It is very robust and not very sensitive to overall color composition.   

• CH is one of the most space-time efficient matching algorithms, although it does not 
perform as well as Correlogram.   

By comparing SamMatch against these two techniques, both its time-space efficiency and 
retrieval effectiveness can be examined.  For CH, we used the histogram intersection formula 
given in [Smith (1996)].  For the convenience of the reader, we repeat this formula below:  
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This function computes the distance between two color histograms h and g.   

4.2 Performance under Set-1 Queries  

The R/S averages for set-1 queries are presented in Table 1.  In this type of query, 
SamMatch returns the correct answers in the top five of the list, while both CH and 
Correlogram retrieve only about 50% of them in the scope of 500.  Although Correlogram 
performs better than CH, it could not exclude the background colors in the similarity 
computation due to the tight integration of the pixel information.  An example is given in 
Figure 6.   

The intent of this query was to retrieve images of the bird regardless of the 
background.  Since Correlogram considers the unmatched background, it ranks the correct 
answers unacceptably low.  On the contrary, SMw maintains regional information allowing 
the user to specify the weight for each matching region.  This approach allows it to 
outperform CH and Correlogram by a significant margin.  SMc does not rely on user-assigned 
spatial weights.  Instead, it enhances the scores automatically by evaluating the spatial 
correlation of the regional matches.  The performance results indicate that this automatic 
feature is also very effective.  It is noticeably better than CH and Correlogram.  When 
combining these two weighting features, the full-fledged SamMatch offers from 43% to 70% 
improvements over Correlogram according to our experiments.  It is shown in Figure 6 that 
only SM successfully ranks the correct answers in the top.   

Table 1: Average R/S in close matches 

Scope CH Corr. SMc SMw SM 
5 0.12 0.29 0.70 0.80 0.95 

50 0.23 0.44 0.79 0.85 1.0 
500 0.44 0.57 0.85 0.95 1.0 
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4.3 Performance under Set-2 Queries  

In this experiment, the objects in the result images are similar to those in the query image 
(Figure 7) or are different from the query image due to changes in the viewing positions 
(Figure 8).  The results of this study are summarized in Table 2.  Again, we see that each 
of the two weighting techniques offers significant improvement over CH and Correlogram.  
Combining these two schemes provides a technique which is 30% to 50% better than 
Correlogram.   

Table 2: Average R/S in similar matches 

Scope CH Corr. SMc SMw SM 
5 0.12 0.14 0.17 0.18 0.20 

50 0.24 0.35 0.62 0.65 0.71 
500 0.44 0.61 0.72 0.85 0.90 

  
To illustrate the experimental results, we present some queries and interesting answers in 
Figure 7, Figure 8 and Figure 9.  We note that CH and Correlogram only recognize 
whole matches with Correlogram performing significantly better.  Only SamMatch performs 
well in all three queries.  

4.4 Time and Space  

Unlike recent histogram-based schemes incorporating spatial information into color 
composition to achieve higher effectiveness, our approach does not require high resources.  In 
this subsection, we analyze some basic resource requirements of the studied schemes.   

In the above implementation, the image size is 256256× , the number of possible 
colors is 256, the distance set D is {1, 3, 5, 7} (i.e., four color histograms) for Correlogram, 
and there are 113 sampling regions for SamMatch.  The space requirement for each image's 
feature vector is:  

• 113 bytes in SamMatch,  
• 5122256 =⋅  bytes for one single color histogram in CH, 2 bytes to record up to 

65536 pixel counts for each color.   
• 204822564 =⋅⋅  bytes in Correlogram, since there are 4 color histograms in its 

implementation.   
This space requirement does not include the storage for filtering values.  A histogram filter is 
used in Correlogram  [Huang (1997)], the average color of the image x = (Ravg, Gavg, 
Bavg)[Faloutsos (1997)] can be used for CH, and none needed in SamMatch (see ‘quick-and-
dirty test’ Filtering section).   

With respect to average response time, the ratio obtained from our experiment with no 
filtering is Corr.:CH:SamMatch = 2:1:1.  That is, Correlogram requires twice as much time 
compared to CH and SamMatch to answer the same query on the same hardware.   

In summary, CH is very efficient.  It requires only 1/4 the storage space by 
Correlogram, and is twice as fast in terms of execution time.  SamMatch, however, is even 
more efficient.  It runs as fast as CH, and uses only 1/4 the storage space required by CH.   

4.5 Filtering Effectiveness  

Our filtering mechanism proves to be very effective in pruning away irrelevant images.  By 
applying Equation (2) to compute an appropriate tolerance value for specific queries, only a 
small set of image candidates for each query is returned.  The sizes of these sets range from 
6.25% to 25% of the database depending on the weighted color cq of the query image.  These 
sizes are controlled by our intention to keep a minimal loss of qualified images, less than 2% 
in our study.  Small filtered sets help reduce the response time, which is less than 4 seconds 
on average.  Our filtering mechanism can also serve to remove false matches from the final 
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similarity computation.  The relevant answers in the final set have slightly higher ranks if 
filtering is employed. 

4.6 Performance under Set-3 Queries 

We note that both CH and Correlogram were not designed to handle queries whose images 
are of different sizes from those of the database images.  In contrast, our technique is highly 
effective in supporting this type of queries.  Figure 10 shows an example of SamMatch’s 
effectiveness in handling different-size queries. It demonstrates that SamMatch is robust to 
scaling and translation of objects. We observe that the objects in the retrieved images are of 
different sizes and at different locations. Furthermore, large irrelevant content (occupying as 
high as 75%) of a database image does not affect its ranking. Notice that the 19th ranking of 
the rightmost image in Figure 10 appears to be low. This is due to the misalignment of the 
‘apple’ and the sliding windows in the region. Such misalignments can be minimized by using 
more window sizes and smaller sliding steps.  We feel that the current configuration is 
sufficient for many applications. 

5. Concluding Remarks 

We have presented SamMatch, a new content-based image retrieval technique for large image 
databases. The color-spatial information of the image is captured in a set of region colors. 
This approach enables users to partially include or exclude areas of images in similarity 
matching. Our scoring function is also enhanced by two additional features: 

1. Automatic weight assignment using color values 
2. Adjusting scores by using spatial correlation 

 
We also address efficiency by employing different efficient search mechanisms for whole 
matching and subimage matching.  Experiments on a large image database show that this 
approach performs very well.  While SamMatch requires less space and time than existing 
schemes, it achieves greater effectiveness for whole image matching.  Our technique is also 
able to effectively handle different-size queries.
 In the above implementation, we have employed an exhaustive scanning algorithm to 
detect the base area of the free-shaped queries in subimage matching.  While the algorithm is 
fast (less than one half of a second), it is not fast enough for much higher sampling rates. To 
speed up the detection time, we have been working on a new detection algorithm that is able 
to reduce the time complexity by several orders of magnitude.  We will utilize this efficient 
algorithm in our future implementation. 
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Figure 6: Correct answers in set-1 queries 

 

Figure 7: Some answers in set-2 queries 

 
 The query SamMatch: 2 SamMatch: 3 The query SamMatch: 2 SamMatch: 21
  Corr.:1965 Corr.:2336  Corr.: 2 Corr.: 89
  CH.:3260 CH: 1738  CH: 2 CH: 201
 

 

Figure 8: Some relevant answers in set-2 queries. Lower is better. 

 
The query SamMatch: 2 SamMatch: 16 SamMatch: 41
 Corr.: 2 Corr.: 9 Corr.: 223
 CH: 2 CH: 93 CH: 1258

 
 
 

Figure 9: Some of the highest ranked (left-to-right) images returned by SamMatch (first row), by 
Corr. (second row) and CH (third row) in response to query (left): Retrieve images containing a 
yellow flower 

 
 

  
Figure 10: Some images (ranked, left-to-right, 1, 2, 3, 4, 5, and 19) returned in response to query 
(left): Retrieve images containing an apple of any size at any location 


