
Knowledge Discovery from Series of Interval Events �

Roy Villafane (villafan@cs.ucf.edu), Kien A. Hua

(kienhua@cs.ucf.edu) and Duc Tran (dtran@cs.ucf.edu)
University of Central Florida

Basab Maulik (bmaulik@us.oracle.com)
Oracle Corporation

Abstract. Knowledge discovery from data sets can be extensively automated by

using data mining software tools. Techniques for mining series of interval events,

however, have not been considered. Such time series are common in many applica-

tions. In this paper, we propose mining techniques to discover temporal containment

relationships in such series. Speci�cally, an item A is said to contain an item B if

an event of type B occurs during the time span of an event of type A, and this is

a frequent relationship in the data set. Mining such relationships provides insight

about temporal relationships among various items. We implement the technique and

analyze trace data collected from a real database application. Experimental results

indicate that the proposed mining technique can discover interesting results. We also

introduce a quantization technique as a preprocessing step to generalize the method

to all time series.

Keywords: data mining, knowledge discovery, time series, event sequence, temporal

1. Introduction

Several data mining techniques have been developed for conventional

time series; (Agrawal et al., 1993), (Shatkay, Zdonik, 1996), (Agrawal

et al., 1995), (Ra�ei, Mendelzon, 1997), (Yazdani, Ozsoyoglu, 1996).

In general, a time series is a collection of values for a given set of

parameters ordered by time. Existing mining techniques treat these

values as discrete events. That is, events are considered to happen

instantaneously at one point in time, e.g., the speed is 15 miles/hour

at time t. In this paper, we consider an event as being "active" for

a period of time. For many applications, events are better treated as

intervals rather than time points (Bohlen et al., 1998). As an example,

let us consider a database application, in which a data item is locked

and then unlocked sometime later. Instead of treating the lock and

unlock operations as two discrete events, it can be advantageous to in-

terpret them together as a single interval event that better captures the

signi�cance of placing, holding and releasing the lock. When there are

� This research is partially funded by grants from Oracle Corporation and the

State of Florida.

c
 2000 Kluwer Academic Publishers. Printed in the Netherlands.

dmsie-paper.tex; 28/02/2000; 19:31; p.1

2 Roy Villafane

several such events, a series of interval events is formed. Note that the

name series of interval events does not imply that the interval events

happen uniquely one after another, since there might be some overlap

over their occurrences. An example is given in Figure 1; interval event

B begins and ends during the time that interval event A occurs. Fur-

thermore, interval event E happens during the time that interval event

B happens (is active). The relationship is described as A contains B

and B contains E. Formally, let BeginT ime(X) and EndT ime(X)

denote the start time and end time of an event X, respectively. Event

X is said to contain event Y if BeginT ime(X) < BeginT ime(Y) and

EndT ime(X) > EndT ime(Y). We note that the containment relation-

ship is transitive. Thus, A also contains E in this example (but this and

several edges are not shown to avoid clutter).

Data mining can be performed on a series of interval events by

gathering information about how frequently such containments happen.

Associated with each containment relationship is a count of its instances

in the series. For example, the relationship A contains B is observed

2 times in Figure 1. Given a threshold, a mining algorithm will search

for all containments, including the transitive ones, with a count that

meets or exceeds that threshold. These mined containments can shed

light on the behavior of the entity represented by the series of interval

events. The proposed technique can have many applications. We will

discuss some in section 2. (Villafane et al., 1999) is an initial work on

the techniques in this paper.

The problems of data mining association rules, sequential patterns

and time series have received much attention lately as Data Ware-

housing and OLAP (On-line Analytical Processing) techniques mature.

Data mining techniques facilitate a more automated search of knowl-

edge from large data stores which exist and are being built by many

organizations. Association rule mining (Agrawal, Imielinski et al., 1993)

is perhaps the most researched problem of the three. Extensions to

the problem include the inclusion of the e�ect of time on association

rules (Chakrabarti et al., 1998) (Ramaswamy et al., 1998) and the

use of continuous numeric and categorical attributes (Rastogi, Shim,

1998). Mining sequential patterns is explored in (Agrawal, Srikant et

al., 1995). Therein, a pattern is a sequence of events attributed to

an entity, such as items purchased by a customer. Like association

rule mining, (Agrawal, Srikant et al., 1995) reduces the search space

by using knowledge from size k patterns when looking for size k + 1

patterns. However, as will be explained later, this optimization cannot

be used for mining series of interval events. In (Mannila et al., 1997),

there is no subgrouping of items in a sequence; a sequence is simply a

long list of events. To limit the size of mined events and the algorithm

dmsie-paper.tex; 28/02/2000; 19:31; p.2

Knowledge Discovery from Series of Interval Events 3

runtime, a time window width is speci�ed so that only events that occur

within time w of each other are detected. Unlike (Agrawal, Srikant et

al., 1995), the fact that sub-events of a given-event are frequent cannot

be used for optimization purposes.

A related work was presented in (Das et al., 1998). Therein, a rule

discovery technique for time series was introduced. This scheme �nds

rules relating patterns in a time series to other patterns in that same or

another series. As an example, the algorithm can uncover a rule such

as "a period of low telephone call activity is usually followed by a sharp

rise in call volume." In general, the rule format is as follows:

If A1 and A2 and ... and Ah occur within V units of time, then B

occurs within time T .

This rule format is di�erent from the containment relationship de�ned

in this current paper. The mining strategies are also di�erent. The

technique in (Das et al., 1998) uses a sliding window to limit the

comparisons to only the patterns within the window at any one time.

This approach signi�cantly reduces the complexity. However, choosing

an appropriate size for the window can be a di�cult task. As we will

discuss later, our technique does not have this problem.

The remainder of this paper is organized as follows. Section 2 covers

some applications where this technique is useful. Functions, measures

and other items related to the mining process are discussed in sections

3, 4, and 5. Mining algorithms are treated in section 6. Experimental

studies are covered in section 7. Finally, we provide our concluding

remarks in section 8.

2. Applications

Several applications exist where mining containment relationships can

provide insight about the operation of the system in question. A database

log �le can be used as input to the mining algorithm to discover what

events happen within the duration of other events; resource, record,

and other locking behavior can be mined from the log �le. Some of

this behavior is probably obvious since it can be deduced by looking

at query and program source code. Other behavior may be unexpected

and di�cult to detect or �nd because it cannot be deduced easily, as

is the case for large distributed and/or concurrent database systems.

Another application area is mining system performance data. For

example, a �le-open/�le-close event can contain several operations per-

formed during the time that the �le is open. Some of these operations

may a�ect the �le, while other operations are not directly associated

with the �le but can be shown to occur only during those times which

dmsie-paper.tex; 28/02/2000; 19:31; p.3

4 Roy Villafane

the �le is open. Other interesting facts relating performance of the CPU

to disk performance, for example, can be studied. Although perfor-

mance data is not usually in interval event format, it can be converted

to that format by using quantization methods.

In the medical �eld, containment relationship data can be mined

from medical records to study what symptoms surround the duration

of a disease, what diseases surround the duration of other diseases, and

what symptoms arise during the time of a disease. For example, one

may �nd that during a FLU infection, a certain strain of bacteria is

found on the patient, and that this relationship arises often. Another

discovery might be that during the presence of those bacteria, the

patient's fever brie
y surpasses 107 degrees Fahrenheit.

Factory behavior can also be mined by looking at sensor and similar

data. The time during which a sensor is active (or above a certain

threshold) can be considered an interval event. Any other sensors active

during/within that time window are then considered to have a contain-

ment relationship with the �rst sensor. For example, it is possible to

detect that the time interval during which a pressure relief valve is

activated always happens within the time interval in which a new part

is being moved by a speci�c conveyor belt.

3. Interval Events, Interval Event Series

and Containment Graphs

An interval event IEk is formally de�ned as a contiguous period in

time during which an entity is in some given state. This period is

de�ned by the time interval [BeginT ime(IEk); EndT ime(IEk)], where

BeginT ime(IEk) < EndT ime(IEk). An entity can bear the given state

multiple times during its lifetime, and for di�erent amounts of time, so

there can be several instances of interval event IEk (IE1; IE2; IE3; :::).

IE is considered an interval event type. Given two interval events Ap

and Bq, a containment relationship exists where Ap contains Bq if

BeginT ime(Ap) <BeginT ime(Bq) andEndT ime(Ap) >EndT ime(Bq).

A containment can be both instance-speci�c as was just demonstrated,

or generic for an interval event type. We can then refer to all of the

instances of Ap contains Bq for all appropriate p and q as A contains B

(without the subscripts). Containments are not limited to two levels.

Consequently, we generically de�ne a containment as a tuple of the

form CC =< n1; n2; :::; nj >, where each n(i) is an interval event type

and every n(i) contains every n(i+ 1) for all 1 � i � j � 1. There can

be several instances of containment CC, each composed of a di�erent

combination of interval events.

dmsie-paper.tex; 28/02/2000; 19:31; p.4

Knowledge Discovery from Series of Interval Events 5

Figure 1. Interval Events

Figure 2. Containment Graph

A partial order can be imposed on the interval events to transform

the series into a containment graph. Let this relation be called the

containment relation. Applying this relation to the series in Figure 1

yields the graph in Figure 2. This graph represents the containment

relationship between the events. A directed edge from event A to event

B indicates that A contains B. We note that a longer series of interval

events would normally consist of several directed graphs as illustrated

in Figure 2. Furthermore, events can repeat in a series. For instance,

events of type A occur twice in Figure 2. Each event is a unique in-

stance, but the nodes are labeled according to the type of event. Given

two event types S and D, all edges S� > D in the containment graph

represent instances of the same containment relationship.

dmsie-paper.tex; 28/02/2000; 19:31; p.5

6 Roy Villafane

Algorithm 1.

Input: List of event endpoints, sorted by time stamp, of the form

< time stamp; event id; end point = beginorend; event type >

Output: Containment graph G = (V;E) of interval event nodes

< event id; event type; begin time stamp; end time stamp >

Variables: List open events

Algorithm:

e = get event()

while e <> NULL EVENT

if e.end point = begin

/* there is a new event to be considered */

open events.add(e)

else if e.end point == end

/* this is the endpoint of event e.event id */

open events.remove(e.event id);

for each event oe in open events

if oe.time stamp < e.time stamp

/* create an edge if current start time is later */

add graph edge E(oe,e) and appropriate nodes

endif

endfor

for each directed edge ee edge in E(e, *)

ee node = node pointed to by edge ee edge

if node ee node.end time stamp >= e.time stamp

remove graph edge ee edge

endif

endfor

endif

endwhile

The containment graphs shown are not fully connected for simplic-

ity of illustration. However the algorithms and measures described in

this paper use a transitively closed containment graph. This graph

embodies all possible combinations of containment instances for all

interval events. Using �gure 2 as an example, the transitively closed

containment graph would also include edges < A;E >, < A;G > and

dmsie-paper.tex; 28/02/2000; 19:31; p.6

Knowledge Discovery from Series of Interval Events 7

< B;G > for the left subgraph and edge < A;G > for the rightmost

subgraph. A straightforward algorithm converts an interval event series

into this kind of graph. It takes as input a list of tuples corresponding

to interval event endpoints, sorted by time stamp, of the form

< time stamp; interval event id;

end point in fbegin; endg; interval event type >

where each interval event has two such tuples: one for the beginning

time and one for the ending time. By providing the input in this format,

the entire graph can be loaded and built with one pass through the

input data. Searching the graph for the location to insert new contain-

ments as they are added becomes unnecessary. Furthermore, it is not

necessary to keep the entire graph on-line, so larger problem sizes can

be solved (as will be described in the algorithms section).

The output is a directed containment graph G = (V;E), where

each node in V corresponds to an individual interval event and has

a property tuple with attributes

< interval event id; interval event type;

begin time stamp; end time stamp >

Each directed edge in E from node Vi to Vk exists because interval event

Vi contains interval event Vk. The constructed graph is transitively

closed. Algorithm 1 outlines this process.

4. Quantization

It might be desirable to apply interval event mining to a dataset that

is not in interval event form. Much conventional time series data is not

�t for the data mining method presented in this paper. There is a large

or potentially in�nite number of di�erent values that a parameter can

assume, irrespective of whether the parameter is numerically discrete

(integers) or continuous (real numbers). In such cases, there might be

few or no repetition of containments, rendering the mining algorithm

useless. Consequently, by setting thresholds and/or discretizing, quan-

titative performance data can be classi�ed into "bins", and these bins

can be considered intervals event types (that is, an interval event occurs

during the contiguous time that the given parameter's value is within

the speci�ed bin's value range).

Suppose we have a day's worth of log data for CPU, disk and network

interface usage. By carefully selecting predicates, such as

C1 : 0 � CPU:busy < 30%

C2 : 30% � CPU:busy < 70%

C3 : CPU:busy � 70%

dmsie-paper.tex; 28/02/2000; 19:31; p.7

8 Roy Villafane

D1 : disk:busy < 40%

D2 : disk:busy � 40%

N1 : network:busy < 75%

N2 : network:busy � 75%

parameter values in a conventional time series can be transformed into

these discrete bin values according to which predicate is satis�ed by a

measurement point. Whenever two or more of these predicates occur

contiguously, the time during which this happens can be interpreted as

an interval event of typeX, whereX is in fC1; C2; C3;D1;D2; N1; N2g.

Using these "bin-events", containments such as "when network usage

is at or above 55%, disk usage is at or above 40%, and when such disk

usage is observed, CPU usage during that time dips below 30%" can

be discovered.

Quantization can be done in several ways, and many methods have

been researched in various areas both within and outside of computer

science. Important considerations include determining how many dis-

crete values the data should be pigeonholed into (number of bins),

the number of observations that should fall into each discrete value

(number of instances of each bin value), and the range of continuous

values that each discrete value should represent. To achieve some kind

of grouping, clustering methods can be used along a parameter's range

of observations, thereby coalescing similar values. The output of the

regression tree methods in (Morimoto et al., 1997) can be used to

partition continuous values into meaningful subgroups. This, of course,

assumes that such groups exist in the data. The numeric ranges chosen

for attributes in output from using (Rastogi, Shim, 1998) can also

be utilized for segmentation. In the absence of such patterns, another

method is to statistically separate the continuous data by using stan-

dard deviation and average metrics. This is the approach used in this

paper for transforming the computer system performance data used

in our experiments. Another method is to select equally sized ranges,

without guaranteeing that each range will have an equal/signi�cant

number of observations. In contrast, the observations could be sorted

by a parameter's values and then divided up into bins of equal size,

without regard to the signi�cance of the numeric attribute or the ranges

formed thereof. The choice of which quantization method to use is

heavily dependent on the domain that the data is coming from.

5. Counting Predicates and Support Measures

In the �eld of data mining, a key concept is that of constraint measures

that the user speci�es, which any piece of knowledge extracted must

dmsie-paper.tex; 28/02/2000; 19:31; p.8

Knowledge Discovery from Series of Interval Events 9

satisfy. Support and con�dence are among the most common. When

mining series of interval events, several constraint measures or functions

can be used for selecting useful knowledge. Each of these measures is

a counting predicate. The usefulness and interestingness of the mined

containments depend on which counting predicates are chosen. For tra-

ditional association rule mining, the two primary counting predicates

are support and con�dence. A factor driving the selection is the domain

of data being mined, and consequently the form that the interval event

data takes.

5.1. Counting Predicates

A counting predicate is a member function de�ned for a containment

graph, which takes as a parameter a containment of the form CC =<

n1; n2; :::; nj > (as previously de�ned). For each instance of contain-

ment CC in the graph, there exists a directed edge labeled < n(i); n(i+

1) > in the containment graph for each interval event instance of type

n(i) where 1 � i � j � 1. Applying a counting predicate to the set

of all instances of a containment CC yields a value according to the

properties of this set. Figure 3 and table 1 provide an example for

containment < A;B;X; Y; Z >. Assume we are given a containment

graph CG, a containment CC and the set/subgraph of all instances of

containment CC in CG as InstCC. The notation jCCj represents the

size (number of interval event types) of the containment. Then counting

predicates measure the following properties over InstCC:

� Containment Frequency: number of instances of CC in CG

(same as number of instances of CC in InstCC)

� Node Frequency: number of unique nodes (interval events) in

InstCC

� Edge Frequency: number of unique edges (containment relation-

ships having 2 interval events) between nodes in InstCC

� Edge/Node Coe�cient: given enr = number of unique edges

in InstCC divided by number of unique nodes in InstCC, and

enr min = (jCCj � 1)=jCCj, the edge/node coe�cient enc =

(enr � enr min)=(1� enr min), where enc >= 0

� Temporal Length Sum: the sum of EndT ime(nt)�

BeginT ime(nt) for all unique interval events nt in InstCC, di-

vided by jCCj

dmsie-paper.tex; 28/02/2000; 19:31; p.9

10 Roy Villafane

� Maximum/Minimum Fan-in/Fan-out: for each node nt in

InstCC, the maximum/minimum number of incoming/outgoing

edges

The simplest counting predicates involve measures of graph charac-

teristics in the set of instances InstCG: node frequency and edge fre-

quency. Temporal length sum is a measure accounting for the amounts

of time that the containment relationship was observed. A relation-

ship observed 1000 times over a few seconds might not be interesting,

whereby another one observed 50 times spanning several hours would

be; the opposite could also be true depending on the observer. Count-

ing predicates edge/node coe�cient and the four variations of max-

imum/minimum fan-in/fan-out (max/in, max/out, min/in, min/out)

expose information about the structure of the mined containments. A

maximum fan-out of 2, for example, limits the mined facts to cases

whereby in a containment < A;B >, an instance of interval event A

can have a containment relationship with at most 2 instances of interval

event B. This serves in cases where it is desirable to avoid �nding

containments where a single, long interval event (such as 'computer

system is powered on') contains numerous instances of short interval

events (such as 'disable interrupts').

The former is not an exhaustive list of counting predicates. Addi-

tional predicates might be speci�ed inspired by data mining techniques

or graph theory. Furthermore, the de�nitions of the counting predicates

de�ned in this paper could be altered slightly to alter the form of the

mined containments. A variant of Temporal Length Sum could be de-

�ned as simply the sum of the lengths of all interval events, for example.

Incidentally, counting predicates need not be applied in isolation for the

mining operation. Multiple counting predicates can be combined to

form a boolean expression called a counting predicate function, which

each mined containment must satisfy. Allowing this freedom broadens

the applications of the mining method because the user has greater

control over what constitutes useful mined knowledge.

5.2. Multipath Counting Predicates

Because the containment graph is a lattice, an internal node can have

several parent nodes. This property translates into entire subpaths that

can be shared by several nodes. So when counting the frequency of a

path, should nodes be allowed to appear in more than one path? For

example, in the containment graph in Figure 3, how often does con-

tainment < A;B;X; Y; Z > occur? If nodes can appear on more than

one path, then the counting predicate becomes multipath containment

frequency and the value for containment < A;B;X; Y; Z > is 2. If the

dmsie-paper.tex; 28/02/2000; 19:31; p.10

Knowledge Discovery from Series of Interval Events 11

nodes on a path are prohibited from appearing on more than one path,

then the counting predicate is simply containment frequency and the

result is 1. Examples of these counting predicates follow. The de�nitions

for the multipath counting predicates are:

� Multipath Containment Frequency: number of distinct paths

which are instances of CC in CG (same as number of paths which

are instances of CC in InstCC)

� Multipath Node Frequency: number of nodes in all distinct

instances of CC in CG, which is the product of jCCj and the

multipath containment frequency of CC

� Multipath Edge Frequency: number of edges in all distinct

instances of CC in CG, which is the product of (jCCj�1) and the

multipath containment frequency of CC

Note that multipath equivalents of edge/node coe�cient and maxi-

mum/minimum fan-in/fan-out are not necessary. The relaxation of the

uniqueness of nodes and edges results in InstCC consisting of a set of

disconnected paths, each path being an instance of containment CC.

Hence, the multipath edge/node coe�cient is always 0. Similarly, the

multipath fan-in of interval events contained by other interval events is

always 1, and the multipath fan-out of interval events containing other

interval events is also 1.Multipath temporal length sum is not considered

since counting a time period multiple times can result in a sum which

exceeds the time period of the entire dataset.

The relationships between containment frequency, edge frequency,

node frequency, and the multipath variations of these counting predi-

cates will vary according to the shape of the containment graph, which

in turn is determined by how interval events contain each other. Ta-

ble 1 shows the counting predicates and their values for containment

< A;B;X; Y; Z > from �gure 3. The interval event lengths are A =

10; B = 7;X = 6; Y = 2; Z = 1:5, and jCCj = 5.

When is a multipath counting predicate favored over its non-shared

counterpart? A non-shared counting predicate typically indicates what

percentage of the containment graph supports a given containment. It

does not readily di�erentiate where there is overlap among instances

of a given containment and where there is not. For example, in Figure

4, the containment frequency for < B;A; F > is 2 because there are at

most 2 unique occurrences of this containment given the restrictions

of that counting predicate. In contrast, the multipath containment

frequency is 24 (3x4x2). Likewise, the node frequency is 9, and in

contrast the multipath node frequency is 72 (3x24). In certain problem

dmsie-paper.tex; 28/02/2000; 19:31; p.11

12 Roy Villafane

Figure 3. Shared subcontainments

Table I. Counting predicates for

< A;B;X; Y; Z >

Counting Predicate Value

containment frequency 1

multipath containment frequency 2

edge frequency 6

multipath edge frequency 8

node frequency 7

multipath node frequency 10

edge/node coe�cient 0.2857

temporal length sum 6

multipath temporal length sum 10.6

domains, the fact that there is overlap between several instances of the

same containment is useful information. Suppose that interval event

type B is a disk failure, interval event type A is a network adapter

failure, and interval event type F is a network failure. The fact that

these events happen at approximately the same time, thus causing the

amount of overlap seen in the example, has a di�erent meaning than if

these containments happened at di�erent times. The events probably

occur together because of a malicious program virus attack that is set

o� at a speci�c time of day, for example.

dmsie-paper.tex; 28/02/2000; 19:31; p.12

Knowledge Discovery from Series of Interval Events 13

Figure 4. Multiple shared subcontainments

5.3. Containment Support and Confidence

In association rule mining and several other data mining methods, sup-

port and con�dence are measures which specify some statistical strength

or signi�cance of a mined fact. Thresholds are speci�ed a priori so

mining algorithms only return facts which are frequently represented

in a dataset. In consistency with other data mining methods, we also

de�ne support and con�dence measures for mining series of interval

events. These are based upon the counting predicates formerly de�ned.

The support of a mined containment can be loosely de�ned as the

percentage of the counting graph which contributes to the value of a

given counting predicate. Another de�nition is the value of a counting

predicate for a containment divided by the value of the counting pred-

icate for the entire containment graph, if the containment instances

exclusively comprised the graph. The semantics of support vary among

the counting predicates over which it is de�ned. For a given containment

graph CG and containment CC, the support measures are as follows:

� Containment Support: containment frequency divided by the

maximum containment frequency possible for that containment

� Edge Support: edge frequency divided by the number of edges in

CG

� Node Support: node frequency divided by the number of nodes

in CG

� Temporal Length Sum Support: temporal length sum divided

by the time span T imeCGwhichCG represents, where T imeCG =

dmsie-paper.tex; 28/02/2000; 19:31; p.13

14 Roy Villafane

maxfEndT ime(Ak)g �minfBeginT ime(Bm)g for all interval

events Ak and Bm in CG

Node support and edge support each identify the percentage of the

containment graph which contributes to the existence of the mined con-

tainment. To attain the optimal containment support of 1.0, the nodes

in the containment graph would need to be restructured such that each

and every node was part of an instance of containment CC. Obviously,

many nodes will likely correspond to interval events whose type is not

in CC, so this might often be impossible. Restructuring the graph also

means that the input data would require alteration, another impossi-

bility. In the absence of such manipulations, the containment support is

the number of instances of CC mined from the real containment graph

divided by the number of such containments that would be mined from

the hypothetically restructured graph. We do not de�ne support mea-

sures for edge/node coe�cient nor maximum/minimum fan-in/fan-out

because these measures are not a�ected by subgraphs outside the one

representing InstCC. Consequently, specifying a counting predicate

threshold is similar to specifying a support measure.

If we de�ne a maximal traversal path as a path whose �rst node does

not have a parent node and whose last node does not have a child node,

then multipath support measures also exist as follows:

� Multipath Containment Support: multipath containment fre-

quency divided by the maximum multipath containment frequency

possible for jCCj

� Multipath Edge Support: multipath edge frequency divided by

the sum of the number of edges in all unique maximal traversal

paths of CG

� Multipath Node Support: multipath node frequency divided by

the sum of the number of nodes in all unique maximal traversal

paths of CG

Closely related to support, con�dence can be loosely de�ned as the

percentage of the number of subcomponents of a mined fact in the

dataset that contribute to the existence of that fact. As before, given

CG, CC and InstCC, con�dence measures are as follows:

� Node Local Con�dence: number of nodes in InstCC divided

by the number of nodes nt (interval events) in CG where the type

of any such nt is any of the types found in CC

� Edge Local Con�dence: number of edges in InstCC divided by

the number of edges ecg (2-way containment relationships) in CG

dmsie-paper.tex; 28/02/2000; 19:31; p.14

Knowledge Discovery from Series of Interval Events 15

where ecg is an instance of containment < SourceNodeType(ecg);

DestinationNodeType(ecg) > and this is a containment of the

form < n(i); n(i + 1) > from CC

And as in support, corresponding multipath con�dence measures are as

follows:

� Multipath Node Local Con�dence: product of jCCj and mul-

tipath containment frequency of CC divided by the number of

nodes nt (interval events) in all unique maximal traversal paths

of CG, where the type of any such nt is any of the types found in

CC

� Multipath Edge Local Con�dence: product of jCCj and mul-

tipath containment frequency divided by the number of edges ecg

(2-way containment relationships) in all unique maximal traversal

paths of CG, where ecg is an instance of containment

< SourceNodeType(ecg); DestinationNodeType(ecg) > and this

is a containment of the form < n(i); n(i+ 1) > from CC

Note that edge local con�dence is only interesting for containments of

size 3 (having 3 interval events) or greater; for any containments of size

2 in CG, the edge local con�dence will always be 1.0. By carefully select-

ing support and con�dence thresholds, a user can mine for containments

that happen frequently ("large support"), containments where the rela-

tionships between interval event types are limited to each other ("large

edge local con�dence"), both of the former and a large number of com-

binations. These combinations are formed by building a counting predi-

cate function such as node local confidence � 0:7 and node support �

0:22 and edge=node ratio � 0:4. As a �nal note, computing the value of

some counting predicates and support/con�dence measures might not

be trivial, such as containment frequency; the best algorithm to com-

pute this might be of NP time complexity. Computing some multipath

counting predicates might also at �rst seem to have NP time complexity

with respect to the containment graph depth. However, using dynamic

programming methods for the graph traversal helps reduce/eliminates

this penalty.

6. Mining algorithms

There are several ways to mine the data to �nd the frequent contain-

ments. The naive approach is to traverse the lattice on a depth-�rst

basis and at each point of the traversal enumerate and count all paths.

dmsie-paper.tex; 28/02/2000; 19:31; p.15

16 Roy Villafane

Another way is to search for containments incrementally by path size,

which is the approach used in this paper. A path is described by the

ordered sequence of node types in the path. Because there is a one-

to-many mapping from node types to node instances, a path can exist

multiple times in the entire containment graph. It can be traversed

using lattice traversal algorithms, or it can be stored in relational

database tables and mined using SQL statements.

6.1. Naive Algorithm for Mining Containments

Perform a depth-�rst traversal of the lattice whereby all the possible

paths throught the lattice are explored. At each node visit of the traver-

sal, there exists a traversal path TP by which this node was reached.

This corresponds to the recursive calls that a program is following.

Path TP is < tp1; tp2; tp3; :::; tpn >, where tp1 is the topmost node in

the path and tpn is the current node (which can be an internal or leaf

node) being visited by the traversal algorithm. By de�nition, tp1 has

no parent and hence, there is no other interval event which contains

the one represented by tp1.

Each subpath (containment) of TP can be further broken down into

a set f< tp(n�1); tpn >;< tp(n�2); tp(n�1); tpn >; :::; < tp1; tp2; :::;

tp(n�1); tpn >g. Consider each element of this set, labelled by TPS

(the containment of which it is an instance). Note that we will not

miss any containment instances. It is not necessary to "skip" graph

nodes (for example, < tp1; tp3; tp8 >) when considering TPS elements

because the containment graph is transitively closed. Consequently, an

enumeration of all possible paths is equivalent to an enumeration of all

possible containment instances. De�ne a path dictionary having entries

of the form < TPS; cp1; cp2; ::: >, where each cpi corresponds to the

value of a counting predicate for containment TPS. As the containment

graph is traversed, the path dictionary is updated, adding or modifying

information for each containment instance encountered.

When the entire lattice has been traversed, the containments in

the path dictionary that satisfy the counting predicate(s) (such as

containment frequency � minimum mining containment frequency)

are presented to the user. This exhaustive counting method will enu-

merate all possible containments. Herein lies the disadvantage: the

number of mined containments will typically be a very small subset of

all the possible containments. This algorithm might not have a chance

to run to completion because of the large amount of storage required

to store all the paths. We discuss this algorithm because it helps to

illustrate the mining technique.

dmsie-paper.tex; 28/02/2000; 19:31; p.16

Knowledge Discovery from Series of Interval Events 17

6.2. Growing Snake Traversal

Algorithm 2.

Input: Containment graph CG, containment predicate function CPF

Output: Set FINAL CONT of mined containments

Variables: containment bucket array CA[]

(each element containing CASIZE containments)

containment bucket FINAL CONT

Algorithm: int k = 0

for containment size CS = 2 to CG.max containment size

for each containment CCL in CG of size CS

put CCL in current bucket CA[k]

if CA[k] is full

sort CA[k]

allocate a new bucket CA[k+1]

k=k+1

endif

endfor

Merge all CCLs in all CA buckets into the FINAL CONT

bucket, inserting only those that meet the speci�ed

counting predicate function, using a k-way merge to

merge the buckets (alternatively use 2-way merges).

Delete all containments in CA.

endfor

Unlike several other data mining methods (such as association rule

mining), when �nding frequent containments it is not always possible to

prune the search space by using mining results of previous iterations.

Use the containment frequency counting predicate as an example. A

corresponding statement, if it held, for a containment CSUPER with

subcontainment CSUB would be containment frequency(CSUB) �

containment frequency(CSUPER). Unfortunately, this property can

not be consistently exploited by mining in stages for incrementally

larger containments, because several of these larger containments can

potentially share a smaller containment. Sharing leads to violation

of this property. Containment < A;B;X; Y; Z > shown in Figure 3

illustrates this: the containment frequency for < A;B;X > is 1, but

dmsie-paper.tex; 28/02/2000; 19:31; p.17

18 Roy Villafane

the containment frequency for < A;B;X; Y; Z > is 2, a higher value.

Results are similar for a few counting predicates.

To reduce the amount of storage required for intermediate results,

the Growing Snake Traversal, as the name implies, starts by mining

all size 2 containments. A traversal is done over the transitively closed

containment graph, as in the naive algorithm, except that only paths

of the form < tp(n�1); tpn > are enumerated. When all such contain-

ments have been found, only those that satisfy the selected counting

predicate function are retained. Next, containments of size 3 having

form < tp(n�2); tp(n�1); tpn > are enumerated and the same counting

predicate function is applied to select useful containments. This is re-

peated until the maximum containment size or maximum user speci�ed

containment size is reached. Algorithm 2 contains the details.

For each containment size CS, the step of containment enumeration

is followed by a merge-count because the enumeration has to happen in

stages in order to e�ectively use the limited amount of available RAM

(Random Access Memory). For example, given about 7 hours worth of

interval data from discretized performance data from a system running

an Oracle database application, the memory usage for the algorithm

can at times exceed 300MB. The algorithm accesses large structures

non-sequentially. With su�cient disk space to store it but not enough

RAM for it all to be on-line at once, excessive swapping will be encoun-

tered, rendering the algorithm ine�ective. A merge-count allows the use

of very large datasets. The CASIZE parameter is chosen such that the

size of each CA[k] is small enough to �t in physical RAM. Although

it is not explicitly shown, our implementation of the algorithm ensures

that a containment is not counted twice. This is done by pruning paths

which exist entirely within subsections of the graph which have already

been visited. Remaining duplicate edges and nodes that arise during

the merge step (as a result of paths which are partially in a formerly

explored region of the graph) are eliminated during the merge phase of

the algorithm.

In our experiments, the entire containment graph was kept on-line.

The graph does not need to be stored completely on-line, however.

A modi�cation to the algorithm permits mining datasets where the

containment graph is larger than available RAM space by only keeping

events in memory that are "active" during the current timestamp.

There is no required traversal order required for enumerating contain-

ments, as long as all possible containment instances are explored, as

shown in Algorithm 2. Hence, we can explore the graph in a temporal

order which corresponds to the order in which interval event endpoints

are read from the input. As we build up the containment graph, the

mining algorithm is run. On any given step, we can dispose of sections

dmsie-paper.tex; 28/02/2000; 19:31; p.18

Knowledge Discovery from Series of Interval Events 19

of the graph which have been visited and will no longer be necessary.

These sections can be readily identi�ed. Recall that during the graph

traversal, there is a path TP by which the current node was reached.

The containment graph nodes GN to be discarded are those where

BeginT ime(GN) is less than the minimum BeginT ime(TPi) for all

TPi in TP . Thus, the section of the containment graph being mined is

built dynamically as access to it is required.

A combination of merge-count enumeration and partial containment

graph yields an algorithm that is limited only by available secondary

storage. The data access patterns for graph traversal and enumeration

(if using multiple 2-way merges) are sequential. In extremely large

problem cases, a group of devices that support sequential access, such

as tape drives, could also be used by the algorithm.

7. Experimental Results

Experiments were run on a Dell PowerEdge 6300 server with 1GB RAM

and dual 400Mhz Pentium processors for the synthetic data, and on a

Dell Pentium Pro 200Mhz workstation with 64MB RAM. The �rst ex-

periment consisted of mining containment relations from an arti�cially

generated event list. A Zipf distribution was used in selecting the event

types and a Poisson arrival rate was used for the inter-event times. This

smaller list is bene�cial in testing the correctness of the programmed

algorithm because the output can be readily checked for correctness.

In the second experiment, disk performance data from an Ora-

cle client/server database application was converted from quantitative

measurements to interval events by quantizing the continuous values

into discrete values. The disk performance data consists of various pa-

rameters for several disks, measured at 5-minute time intervals. Discrete

values were chosen based on an assumed normal distribution for each

parameter and using that parameter's statistical z-score. Low, average

and high were assigned to a value by assigning a z-score range to each

discrete value. Values used were low, corresponding to z�score < �0:5,

average corresponding to a z � score in [�0:5; 0:5], and high corre-

sponding to a z � score > 0:5. The resulting quantized versions of the

parameters were close to uniformly distributed in terms of the number

of occurrences of each range.

Some containment results gathered from looking at the output of the

sar utility of the Sun machine the database was running on are shown

in Table 2. Additionally, several containments were the average service

time parameter of disk id's 40, 18, 20 and 25 were near their mean

value, contained several other quantized values of parameters of other

dmsie-paper.tex; 28/02/2000; 19:31; p.19

20 Roy Villafane

disks, revealing interesting interactions among several disk performance

metrics which were obtained by running the mining algorithm. Figure

5 shows the relationship between varying Zipf, Poisson arrival times

and number of mined interval events for the synthetic data set, which

consists of 500 events and 8 event types.

Table 3 shows the CPU run times for mining the Oracle dataset

on the Pentium Pro workstation. Because the algorithm processes an

acyclic directed graph using a depth-�rst traversal, the complexity de-

pends greatly on the shape of the graph. Consequently, it is di�cult to

provide good space and time complexity measures. Some guidelines can

be provided if we traverse the graph in some form of temporal order

as discussed in the algorithms section. For several sequential pattern

methods discussed in the introduction, the user must specify a win-

dow size within which relationships will be discovered. Otherwise, the

problem becomes intractable because all event combinations must be

considered. Due to the nature of containment relationships, the window

over which an exponential number of combinations must be considered

is determined by the temporal length of the interval events themselves.

So with respect to the breadth of the containment graph, greater concen-

trations of interval events and interval events having longer temporal

length might lead to subgraph sections with greater depth and greater

possibilities of intractability. Data mining methods in general are at the

mercy of combinatorial explosion in the worst cases, and containment

relationship mining is not exempt from this. Fortunately, this can be

addressed to some extent by limiting the explored combinations (a

method that can also be used for other data mining techniques). With

respect to the breadth of the containment graph, the mining algorithm

is linear. Given a containment graph with somewhat 'homogeneous'

subsections given a temporal order traversal, the time to process each

of these subsections is similar from one to another.

Finally, we collected system performance data during a disk defrag-

mentation operation on the PowerEdge server for over 120 parame-

ters. The counting predicate speci�ed was node support � 0:7% and

node local confidence � 30% and edge=node coefficient � 0:40. The

given node support was chosen due to the high number of parameters.

The mined containments in Table 4 show an interaction between the

interrupt processing time, both processors, and the DPC (deferred pro-

cedure call) rate. The containments show that during times of average

load processing interrupts, CPU 1 is assigned a lower number of de-

ferred procedure calls than CPU 0, so the deferred procedure calls are

not equally distributed among both processors. The reason could either

be that such balancing is not implemented / not possible, or that CPU

dmsie-paper.tex; 28/02/2000; 19:31; p.20

Knowledge Discovery from Series of Interval Events 21

Table II. Some Oracle dataset results

Param 1 Param 2 Description

Page faults 'high' namei 'high' During the time that the number

of page faults is above average, the

number of namei function requests

is also high. This is probably an in-

dication that �les are being opened

and accessed, thus increasing the

RAM �le cache size and reducing

the amount of RAM available to

execute code

'average' CPU us-

age by system

v
t 'low' During average usage of the CPU

by the system code, the number of

address translation page faults was

below average. This might be an

indication that much system code

is non-pageable, so very little page

faults are generated

'average' CPU us-

age by system

slock 'average' During average usage of the CPU

by the system, there is an average

number of lock requests requiring

physical I/O

Table III. CPU time for execution

of mining algorithm vs. number of

containments mined for Oracle data

of events cpu time (sec)

178 40

286 104

335 367

387 543

1 is assigned DPCs only after the DPC queue of CPU 0 reaches a

speci�c load (which is not necessarily a negative situation).

8. Concluding Remarks

Various data mining techniques have been developed for conventional

time series. In this paper, we investigated techniques for series of in-

terval events. We consider an event to be "active" for a period of time,

dmsie-paper.tex; 28/02/2000; 19:31; p.21

22 Roy Villafane

Table IV. Windows NT defragmentation operation

Param 1 Param 2 Description

Proc0 Interrupt

Time Avg

Proc0 DPC Rate

Avg

When time spent by CPU 0 han-

dling interrupts is average, number

of DPCs for CPU 0 is average

Proc0 Interrupt

Time Avg

System Total

DPC Rate Avg

When time spent by CPU 0 han-

dling interrupts is average, number

of DPCs for entire system is average

Proc1 Interrupt

Time Avg

Proc1 DPC Rate

Low

When time spent by CPU 1 han-

dling interrupts is average, number

of DPCs for CPU 1 is low

Proc1 Interrupt

Time Avg

System Total

DPC Rate Low

When time spent by CPU 1 han-

dling interrupts is average, number

of DPCs for entire system is low

Figure 5. Synthetic data results

and a series of interval events as a collection of such interval events. We

pointed out that existing techniques for conventional time series and

sequential patterns cannot be used. Basically, series of interval events

are mined di�erently than event series because an event has both a

starting and ending point, and therefore the containment relationship

has di�erent semantics than simply happens-before or happens-after.

dmsie-paper.tex; 28/02/2000; 19:31; p.22

Knowledge Discovery from Series of Interval Events 23

To address this di�erence, we proposed a new mining algorithm for

series of interval events.

To assess the e�ectiveness of our technique, we ran the mining algo-

rithm on system performance trace data acquired from an application

running on an Oracle database. Traditionally, spreadsheet and OLAP

(On-line analytical processing) tools have been used to visualize per-

formance data. This approach requires the user to be an expert and

have some knowledge of what to explore. Unsuspected interactions,

behavior, and anomalies would run undetected. The data mining tools

we implemented for this study address this problem. Our experimental

study indicates that it can automatically uncover many interesting

results.

To make the techniques more universal, we proposed a quantization

technique which transforms conventional time series data into an in-

terval event time series, which can then be mined using the proposed

method. To illustrate this strategy, we discussed its use in a number of

applications.

References

Agrawal, R., Faloutsos, C. and Swami, A. (1993). E�ciency Similarity Search in

Sequence Databases. Proceedings of the Conference of Foundations of Data

Organization, 22.

Agrawal, R., Imielinski, T. and Swami, A. (1993). Mining Association Rules Between

Sets of Items in Large Databases. ACM SIGMOD.

Agrawal, R., Psaila, G., Wimmers, E.L. and Zait, M. (1995). Querying Shapes of

Histories. Proceedings of VLDB.

Agrawal, R. and Srikant, R. (1995). Mining Sequential Patterns. IEEE Data

Engineering.

Bohlen, M.H., Busatto, R. and Jensen, C.S. (1998). Point- Versus Interval-based

Temporal Data Models. IEEE Data Engineering.

Chakrabarti, S., Sarawagi, S. and Dom, B. (1998). Mining Surprising Patterns Using

Temporal Description Length. Proceedings of the 24th VLDB Conference.

Das, G., Lin, K., Mannila, H., Renganathan, G. and Smyth, P. (1998). Rule Dis-

covery From Time Series. The Fourth International Conference on Knowledge

Discovery & Data Mining.

Morimoto, Y., Ishii, H. and Morishita, S. (1997). E�cient Construction of Regres-

sion Trees with Range and Region Splitting. Proceedings of the 23rd VLDB

Conference.

Mannila, H., Toivonen, H. and Verkamo, A.I. (1997). Discovery of Frequent Episodes

in Event Sequences. Data Mining and Knowledge Discovery 1, 259-289.

Ra�ei, D. and Mendelzon, A. (1997). Similarity-Based Queries for Time Series Data.

SIGMOD Record.

Ramaswamy, S., Mahajan, S. and Silberschatz, A. (1998). On the Discovery of

Interesting Patterns in Association Rules. Proceedings of the 24th VLDB

Conference.

dmsie-paper.tex; 28/02/2000; 19:31; p.23

24 Roy Villafane

Rastogi, R. and Shim, K. (1998). Mining Optimized Association Rules with

Categorical and Numeric Attributes. IEEE Data Engineering.

Shatkay, H. and Zdonik, S.B. (1996). Approximate Queries and Representations for

Large Data Sequences. Proceedings of the 12th International Conference on Data

Engineering.

Villafane, R., Hua, K.A., Tran, D. and Maulik, B. (1999). Mining Interval Time

Series. Proceedings of the First International Conference on Data Warehousing

and Knowledge Discovery.

Yazdani, N. and Ozsoyoglu, Z.M. (1996). Sequence Matching of Images. Proceed-

ings of the 8th International Conference on Scienti�c and Statistical Database

Management.

dmsie-paper.tex; 28/02/2000; 19:31; p.24

