
PUB-2-SUB: A Content-based

Publish/Subscribe Framework for Cooperative
P2P Networks

Duc A. Tran and Cuong Pham

Department of Computer Science
University of Massachusetts, Boston

100 Morrissey Blvd, Boston, MA 02125, USA
{duc, cpham}@cs.umb.edu

Abstract. This paper is focused on the content-based publish/subscribe
service and our problem is to devise an efficient mechanism that enables
this service in any given P2P network of cooperative nodes. Most tech-
niques require some overlay structuralization added on top of the net-
work. We propose a solution called PUB-2-SUB which works with any
unstructured network topology. In addition, multiple independent pub-
lish/subscribe applications can run simultaneously on a single instance
of PUB-2-SUB. We show that this mechanism is efficient in terms of
both costs and time. Our theoretical findings are complemented by a
simulation-based evaluation.

Key words: P2P, publish/subscribe, prefix tree, search

1 Introduction

Unlike traditional search, a query in the publish/subscribe model is submitted
and stored in advance, for which the results may not yet exist but the query
subscriber expects to be notified when they later become available. This model
is thus suitable for search applications where queries await future information,
as opposed to traditional applications where the information to be searched
must pre-exist. Focusing on the publish/subscribe model, our goal is to devise
a mechanism that can be integrated into a given P2P network to enable appli-
cations of this model. In particular, we are interested in distributed networks
where the participating nodes are cooperative, reliable, and rather static. In
these networks, such as grid computing networks and institutional communi-
cation networks, P2P can be adopted as an effective way to share resources,
minimize server costs, and promote boundary-crossing collaborations [1–4]. A
publish/subscribe functionality should be useful to these networks.

To enable publish/subscribe applications, a simple way is to broadcast a
query to all the nodes in the network or to employ a centralized index of all the
queries subscribed and information published [5–7]. This mechanism is neither
efficient nor scalable if applied to a large-scale network. Consequently, a number



2

of distributed publish/subscribe mechanisms have been proposed. They follow
two main approaches: structuralization-based or gossip-based. The first approach
[8–13] requires the nodes to be organized into some overlay structure (e.g., DHTs
[14–17] and Skip Lists [18]) and develops publish/subscribe methods on top of it.
The other approach [19–21] is for unstructured networks, in which the subscriber
nodes and publisher nodes find each other via exchanges of information using
the existing peer links, typically based on some form of randomization.

The structuralization-based approach is favored for its efficiency over the
the gossip-based approach, but when applied to a given network, the former
introduces an additional overhead to construct and maintain the required overlay
structure. There may also be practical cases where the new links, that are part of
the new structure, are not allowed due to the policy or technicality restrictions
of the given network. On the other hand, although the gossip-based approach
does not require an additional structuralization, due to the nature of gossiping,
a query or a publication of new information must populate a sufficiently large
portion of the network to be able to find each other at some rendezvous node
with a high probability. The costs can be expensive as a result, including the
communication cost to disseminate the query or publish the new information,
the storage cost to replicate the query in the network, and the computation cost
to evaluate the query matching condition.

We propose a publish/subscribe mechanism called PUB-2-SUB which, like
the gossip-based approach, does not change the connectivity of the given net-
work, but is aimed at a much better performance. PUB-2-SUB allows any num-
ber of independent publish/subscribe applications to run simultaneously. It is
based on two key design components: the virtualization component and the in-
dexing component. The virtualization component assigns to each node a unique
binary string called a virtual address so that the virtual addresses of all the
nodes form a prefix tree. Based on this tree, each node is assigned a unique zone
partitioned from the universe of binary strings. The indexing component hashes
queries and publications to binary strings and, based on their overlapping with
the node zones, chooses subscription and notification paths appropriately and
deterministically.

Because PUB-2-SUB is based on directed routing, it has the potential to
be more efficient than the gossip-based approach. Our evaluation study shows
that PUB-2-SUB results in lower storage and communication costs than Bub-
bleStorm [19] – a recent gossip-based search technique. In terms of computation
cost, PUB-2-SUB requires only a node to evaluate its local queries to find those
matching a given information publication. The proposed technique also incurs
small notification delay and is robust under network failures.

The remainder of the paper is organized as follows. We introduce the concept
of PUB-2-SUB in more detail in Section 2, followed by a discussion on the
evaluation results in Section 3. The paper is concluded in Section 4 with pointers
to our future work.



3

∅

!

"#$

"!$

%!

"&$

%%!

"'$

!!

"($

!%!

")$

!%%!

"*$

%!!

"+$

%!%!

",$

%%!!

"!%$

!%%!!

"!'$

%%!%!

"!!$

!!!

"!#$

!%!!

"!&$

!%%!%!

"!($

%!!!

"!)$

%!!%!

"!*$

%!!%%!

"!+$

%!%!!

"!,$

%%!%!!

"#%$

%%!%!%!

"#!$

%!!!!

"##$

%!!%%!!

"#&$

%%!%!!!

"#'$

Fig. 1. Virtual address instance inititated by node 1 (the VAs of all the nodes form
a prefix tree): solid-bold path represents the subscription path of query [‘0110001’,
‘0110101’]; dashed-bold path represents the notification path of event <‘0110010’>

2 PUB-2-SUB: The Proposed Solution

Consider a cooperative P2P network {S1, S2, ..., Sn} that is constructed and
maintained according to its built-in underlying protocols. The nodes should re-
main functional as much as possible although there may be failures that cannot
be avoided, and whenever a new node joins or a failure occurs we assume that
this network can re-organize itself. We are required not to modify the existing
connectivity of the network; all communication must be via the provided links.
PUB-2-SUB is based on two key design components, the virtualization compo-
nent and the indexing component, which are described below.

2.1 Virtualization

A virtualization procedure can be initiated by any node to result in a “virtual
address instance” (VA-instance), where each node is assigned a virtual address
(VA) being a binary string chosen from {0, 1}∗. Suppose that the initiating
node is S∗. In the corresponding VA-instance, denoted by INSTANCE(S∗), we
denote the VA of each node Si by V A(Si : S∗). To start the virtualization, node
S∗ assigns itself V A(S∗ : S∗) = ∅ and sends a message inviting its neighbor
nodes to join INSTANCE(S∗). A neighbor Si ignores this invitation if already
part of the instance. Else, by joining, Si is called a “child” of S∗ and receives
from S∗ a VA that is the shortest string of the form V A(S∗ : S∗) + ‘0∗1’
unused by any other child node of S∗. Once assigned a VA, node Si forwards
the invitation to its neighbor nodes and the same VA assignment procedure
repeats. In generalization, the rule to compute the VA for a node Sj that accepts
an invitation from node Si is: V A(Sj : S∗) is the shortest string of the form
V A(Si : S∗) + ‘0∗1’ unused by any current child node of Si.

Eventually, every node is assigned a VA and the VAs altogether form a prefix-
tree rooted at node S∗. We call this tree a VA-tree and denote it by TREE(S∗).
For example, Figure 1 shows the VA-tree with VAs assigned to the nodes as a
result of the virtualization procedure initiated by node 1. It is noted that the
links of this spanning tree already exist in the original network (we do not create
any new links). In this figure, the nodes’ labels (1, 2, ..., 24) represent the order



4

they join the VA-tree. Each time a node joins, its VA is assigned by its parent
according to the VA assignment rule above. Thus, node 2 is the first child of
node 1 and given V A(2 : 1) = V A(1 : 1) + ‘1’ = ‘1’, node 3 is the next child
and given V A(3 : 1) = V A(1 : 1) + ‘01’ = ‘01’, and node 4 last and given
V A(4 : 1) = V A(1 : 1) + ‘001’ = ‘001’. Other nodes’ VAs are assigned similarly.
For example, consider node 18 which is the third child of node 8 (VA ‘011’). The
VA of node 18 is the shortest binary string that is unused by any other child
node of node 8 and of the form V A(8 : 1) + ‘0∗1’. Because the other children 16
and 17 already occupy ‘0111’ and ‘01101’, node 18’s VA is ‘011001’.

A VA-tree resembles the shortest-delay spanning tree rooted at the initiating
node; i.e., the path from the root to a node should be the quickest path among
those paths connecting them. It can be built quickly because only a single broad-
cast of the VA invitation is needed to assign VAs to all the nodes. To help with
indexing, in INSTANCE(S∗), each node Si is associated with a unique “zone”,
denoted by ZONE(Si : S∗), consisting of all the binary strings str such that:
(i) V A(Si : S∗) is a prefix of str, and (ii) no child of Si has VA a prefix of str.
In other words, among all the nodes in the network, node Si is the one whose
VA is the maximal prefix of str. We call Si the “designated node” of str and use
NODE(str : S∗) to denote this node. For example, using the virtual instance
TREE(1) in Figure 1, the zone of node 11 (VA ‘00101’) is the set of binary
strings ‘00101’, ‘001010’, and all the strings of the form ‘0010100...’, for which
node 11 is the designated node. The following properties can be proved, which
are important to designing our indexing component:

1. ZONE(Si : S∗) ∩ ZONE(Sj : S∗) 6= ∅, for every i 6= j
2.

⋃n
i=1 ZONE(Si : S∗) = {0, 1}∗

3.
⋃ {ZONE(S′ : S∗) | S′ is Si or a descendant of Si} = {str ∈ {0, 1}∗
| V A(Si : S∗) is a prefix of str}, for every i

2.2 Indexing

For each publish/subscribe application under deployment, the information of
interest is assumed to have a fixed number of attributes called the dimension
of this application. PUB-2-SUB supports any dimension and allows multiple
applications to run on the network simultaneously, whose dimension can be
different from one another’s. We use the term “event” to refer to some new
information that a node wants to publish. The queries of interest are those that
specify a lower-bound and an upper-bound on each event attribute. For ease of
presentation, we assume that events are unidimensional. The idea can easily be
extended for the case of multidimensionality (see our extended work [22]).

Without loss of generality, we represent an event x as a k-bit binary string
(the parameter k should be chosen to be larger than the longest VA length in
the network). A query Q is represented as an interval Q = [ql, qh], where ql,
qh ∈ {0, 1}k, subscribing to all events x belonging to this interval (events are
“ordered” lexicographically). As an example, if k = 3, the events matching a
query [‘001’, ‘101’] are {‘001’, ‘010’, ‘011’,‘100’, ‘101’}.



5

Supposing that every node has been assigned a VA as a result of a virtual-
ization procedure initiated by a node S∗, we propose that

Query subscription: Each query Q is stored at every node Si such that the
zone of this node ZONE(Si : S∗) intersects with Q.

Event notification: Each event x is sent to NODE(x : S∗) – the designated
node of string x. It is guaranteed that if x satisfies Q then Q can always be
found at node NODE(x : S∗) (because this node’s zone must intersect Q).

Figure 1 shows an example with k = 7. Suppose that node 12 wants to
subscribe a query Q = [‘0110001’, ‘0110101’], thus looking to be notified upon any
of the following events {‘0110001’, ‘0110010’, ‘0110011’, ‘0110100’, ‘0110101’}.
Therefore, this query will be stored at nodes {8, 17, 18}, whose zone intersects
with Q. For example, node 8’s zone intersects Q because they both contain
‘0110001’. The path to disseminate this query is 12 → 5 → 2 → 1 → 3 → 8 →
{17, 18} (represented by the solid arrow lines in Figure 1). Now, suppose that
node 22 wants to publish an event x = <‘0110010’>. Firstly, this event will be
routed upstream to node 8 – the first node that is a prefix with ‘0110010’ (path
22 → 16 → 8). Afterwards, it is routed downstream to the designated node
NODE(‘0110010’:1), which is node 18 (path 8 → 18). Node 18 searches its local
queries to find the matching queries. Because query Q = [‘01011111’, ‘01100011’]
is stored at node 18, this query will also be found.

The storage and communication costs for a query’s subscription depend on
its range; the wider the range, the larger costs. For an event, the communication
cost measured as the number of hops traveled to publish an event is O(h) where
h is the tree height (h = O(

√
n) in most cases). The delay to notify a matching

subscriber is the time to travel this path; hence, also O(h). The computation cost
should be small because only one node – the designated node NODE(x : S∗) –
needs to search its stored queries to find those matching x. Our evaluation study
in Section 3 indeed finds these costs reasonably small.

2.3 Update Methods

There may be changes in the network such as when a new node is added or an
existing node fails. Supposing that the network is virtualized according to the
VA-instance INSTANCE(S∗), PUB-2-SUB addresses these changes as follows.

Node Addition: Consider a new node Snew that has just joined the network
according to the network’s underlying join protocol. As a result, it is con-
nected to a number of neighbors. We need to add this node to the VA-
instance. First, this node communicates with its neighbors and asks the
neighbor Sneighbor with the minimum tree depth to be its parent; tie is bro-
ken by choosing the one with fewest children. This strategy helps keep the
tree as balanced as possible so its height can be short and workload fairly dis-
tributed among the nodes. The neighbor will then assign Snew a VA that is
the shortest unused binary string of the form V A(Sneighbor : S∗) + ‘0∗1’. Be-
cause ZONE(Sneighbor : S∗) is changed, the next task is for the parent node



6

Sneighbor to delete those queries that do not intersect ZONE(Sneighbor : S∗)
anymore. Also, this parent node needs to forward to Snew the queries that
intersect ZONE(Snew : S∗).

Node Removal: When a node fails to function, it is removed from the network
according to the underlying maintenance protocol. This removal however
affects the connectedness of the VA-instance in place. Because the VAs of
the child nodes are computed based on that of the parent node, the child
nodes of the departing node need to find a new parent so the VA-instance
remains valid. Consider such a child node Schild. This node selects a new
parent among its neighbors. The new parent, say node Sparent, computes
a new VA for Schild (similar to node addition). Then, Schild re-computes
the VAs for its children and informs them of the changes. Each child node
follows the same procedure recursively to inform all its descendant nodes
downstream. The query transfer/forwarding from Sparent to Schild and, if
necessary, from Schild to the descendant nodes of Schild is similar to the case
of adding a new node.
In addition, because each descendant node Si of the removed node is now
assigned a new VA and thus a new zone, the queries that are stored at Si be-
fore the VA adjustment may no longer intersect its new zone. These queries
can be either deleted or re-subscribed to the network depending on the pri-
ority we can set at the first time they are subscribed to the network. If a
query is marked as “high-priority”, it is stored in the network permanently
until the subscriber determines to unsubscribe it (the unsubscription proce-
dure is similar to the subscription procedure). On the other hand, if a query
is marked as “low-priority”, it is associated with a lease time after which
the query will expire and be deleted. How to implement these two types of
priority is determined by the application developer.

The worst case with node removal is when the root node fails in which we
have no way to recover other than rebuilding the entire VA instance. To avoid
this unfortunate case, we propose that the root of a VA-instance be a dedicated
node deployed by the network administrator and thus we can assume that this
node never fails. This requirement can easily be realized in practice.

3 Evaluation Study

We conducted a preliminary study to evaluate the performance of PUB-2-SUB.
This study was based on a simulation on a 1000-node network with 2766 links,
whose topology was a Waxman uniform random graph generated with the BRITE
generator [23]. A random node was chosen to be the root for the VA instance.
Ten random choices for this root node were used with the simulation and the
results averaged over these ten choices are discussed in this section.

An event was represented as a k-bit string and a query an arbitrary interval of
k-bit strings. A query or event was initiated by a random node chosen uniformly.
To cover a large domain of possible events, we set k to 50 bits, thus able to specify



7

0

100

200

300

400

500

0 2000 4000 6000 8000 10000

N
um

 o
f R

ep
lic

as

Query ID

Single VA Instance

uniform (avg = 14.888700)
heavy-tail (avg = 4.255900)

(a) Storage

0

100

200

300

400

500

0 2000 4000 6000 8000 10000

N
um

 o
f H

op
s

Query ID

Single VA Instance

uniform (avg = 25.601500)
heavy-tail (avg = 15.060300)

(b) Communication

0

10

20

30

40

50

60

P2S:uniform P2S:heavy-tail BubbleStorm:64% BubbleStorm:98%

N
um

be
r 

of
 R

ep
lic

as
 p

er
 Q

ue
ry

P2S vs. BubbleStorm

(c) Storage: comparison

0

10

20

30

40

50

60

P2S:uniform P2S:heavy-tail BubbleStorm:64% BubbleStorm:98%

N
um

be
r 

of
 H

op
s 

pe
r 

Q
ue

ry

P2S vs. BubbleStorm

(d) Communication: comparison

Fig. 2. Query subscription costs

up to 250 different events. From this domain, 10,000 events were chosen uniformly
in random. The subscription load consisted of 10,000 queries, each having a
range chosen according to the following Zipf’s law: in the set of possible ranges

{20, 21, ..., 249}, range 2i is picked with probability 1/iα

P

50

j=1
(1/jα)

. We considered

two models: α = 0 (uniform distribution) and α = 0.8 (heavy-tail distribution
where a vast majority of the queries are specific).

We evaluated PUB-2-SUB in the following aspects: subscription efficiency,
notification efficiency, notification delay, and failure effect. We also compared
PUB-2-SUB to two versions of BubbleStorm [19] – a recent search technique
designed for unstructured P2P networks: (1) BubbleStorm-64%: each query or
event is sent to

√
n nodes, resulting in a 64% query/event matching success rate

(when there is no failure), and (2) BubbleStorm-98%: each query or event is sent
to 2

√
n nodes, resulting in a 98% success rate (when there is no failure).

3.1 Subscription Efficiency

This efficiency is measured in terms of the storage cost and the communication
cost. The storage cost is computed as the number of nodes that store a given
query, and the communication cost as the number of hops (nodes) that have



8

to forward this query during its subscription procedure. Figure 2(a) and Figure
2(b) show these costs respectively for every query, which are sorted in the non-
decreasing order. It is observed for either cost that all queries result in a small
cost except for a very few with a high cost. These high-cost queries are those
with long ranges. As such they intersect with the zones of many nodes and
thus have to travel more to be stored at these nodes. Despite so, on average,
a query is replicated at only 15 nodes (uniform case) and 4.3 nodes (heavy-tail
case), resulting in a communication cost of 25.6 hops (uniform case) and 15 hops
(heavy-tail case).

These costs are much lower than that incurred by BubbleStorm. Figure 2(c)
shows that BubbleStorm-64% stores an average query at 33 nodes, more than
twice the storage cost of PUB-2-SUB (uniform) and eight times the cost of
PUB-2-SUB (heavy-tail). The storage cost of BubbleStorm-98% is even higher.
In comparison on the communication cost, as seen in Figure 2(d), a query in
BubbleStorm-64% and BubbleStorm-98% has to travel 33 hops and 66 hops,
respectively, which are also higher than the communication cost of PUB-2-SUB.

3.2 Notification Efficiency

This efficiency is measured in terms of the communication cost and the compu-
tation cost. The communication cost is computed as the number of hops (nodes)
that have to forward a given event during its publication procedure, and the
computation cost as the number of queries evaluated to match this event.

Because an event is routed based on the nodes’ VAs, its communication
cost is independent of the query model used, uniform or heavy-tail. Figure 3(a)
shows that this cost is distributed normally from zero hop (best-case) to 25 hops
(worst-case), having an average of 12 hops. The communication cost is also much
lower (by approximately three times at least) when compared to BubbleStorm
(Figure 3(c)). Together with the study on the subscription efficiency it is evident
that PUB-2-SUB clearly outperforms BubbleStorm in both storage cost and
communication cost. In terms of computation cost, Figure 3(b) shows that in
the worst case about 1400 queries are evaluated to find all those matching a given
event; i.e., only 14% of the entire query population. On average, the computation
cost is only 563 query evaluations (uniform case) and 458 query evaluations
(heavy-tail case), corresponding to 5.63% and 4.58% of the query population,
respectively.

3.3 Notification Delay

When an event is published, there may be more than one queries subscribing to
this event. To represent the notification delay for each (event, query) matching
pair, we compute the ratio a/b where a is the hopcount-based distance the
event has to travel from the publisher node to the subscriber node and b is
the hopcount-based distance directly between these two nodes. This ratio is at
least 1.0 because even if the publisher knows the subscriber, it must already take
b hops to send the event to the subscriber. In practice, because the publisher



9

5

10

15

20

25

0 2000 4000 6000 8000 10000

N
um

 o
f H

op
s 

T
ra

ve
le

d

Event ID

Single VA Instance

avg = 11.936700

(a) Communication

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000

N
um

 o
f Q

ue
rie

s 
E

va
lu

at
ed

Event ID

Single VA Instance

uniform (avg = 562.887300)
heavy-tail (avg = 457.698300)

(b) Computation

0

10

20

30

40

50

60

P2S:uniform P2S:heavy-tail BubbleStorm:68% BubbleStorm:98%

A
vg

. N
um

 o
f H

op
s 

pe
r 

E
ve

nt

P2S vs. BubbleStorm

(c) Communication: Comparison

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20

N
um

 o
f N

ot
ifi

ca
tio

ns

Notification Delay

(d) Histogram of notification delay

Fig. 3. Event notification costs

and the subscriber initially do not know each other, it is impossible to obtain a
perfect 1.0 ratio.

Figure 3(d) plots the histogram of notification delay incurred by PUB-2-SUB.
Approximately, 70% of the notifications have a delay not exceeding 2.0 (i.e., twice
the perfect delay) and 90% have a delay not exceeding 3.0 (i.e., three times the
perfect delay). Thus, despite a few (event, query) pairs with high notification
delay, a vast majority of events can notify their matching queries reasonably
quickly.

3.4 Failure Effect

When a node stops functioning, an event may fail to notify its subscribers. To
evaluate the failure effect, we compute “recall” – the percentage of the returned
events that match a given query out of all the matching events. We consider the
case where 10% of the nodes fail simultaneously and the case where 30% fail.

Figure 4(a) shows the results for the uniform-query-model case, where it is
observed that 75% of the queries are successfully notified by all the matching
events (i.e., recall = 100%) even when 30% of the nodes fail. The difference
between the 10%-fail case and the 30%-fail case is that in the latter case most



10

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

R
ec

al
l

Query ID

Uniform Query Model

10% fail (avg = 0.81)
30% fail (avg = 0.74)

(a) Uniform query model

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

R
ec

al
l

Query ID

Heavy-Tail Query Model

10% fail (avg = 0.94)
30% fail (avg = 0.91)

(b) Heavy-tail query model

Fig. 4. Effect of Failures: 10% of nodes fail and 30% of nodes fail

of the remaining queries (the remaining 25%) fail to receive any matching event
while in the former case about half of the queries do not receive any matching
event and the other half receiving at least some portion of the matching events.
On average, the recall for the 10%-fail case is 81%, and for the 30%-fail case,
74%. Higher recall is obtained when the query model is heavy-tail (see Figure
4(b)). The average recall is 91% when 30% of the nodes fail and 94% when
10% fail. The results are encouraging because in practice the query range should
follow the heavy-tail model more often than the uniform model. This study is
demonstrative of PUB-2-SUB’s sustainable effectiveness when a large portion of
the network fails to operate.

4 Conclusions

We have proposed a publish/subscribe mechanism, called PUB-2-SUB, which
can be integrated into any unstructured P2P network. Using PUB-2-SUB, any
number of content-based publish/subscribe applications can be deployed simul-
taneously. Unlike the gossip-based approach previously recommended for un-
structured networks, the proposed technique is based on directed routing and
incurs less storage and communication costs. This is evident in an evaluation
study in which PUB-2-SUB is compared to a representative technique of the
other approach. It is also found that our technique results in low computation
cost and low notification delay and remains highly effective in cases when many
nodes in the network stop to function.

We do not recommend PUB-2-SUB for use in highly dynamic networks with
the nodes being on and off frequently. Instead, PUB-2-SUB works best for P2P-
based cooperative networks in which the nodes are supposed to be functional
most of the time and failures should not happen too often. Thus, data grid
networks and institutional collaborative networks can take full advantage of
the proposed technique. The work described in this paper remains preliminary.



11

More evaluation is needed for our future work in which we will also include
investigation into better methods addressing failures and load balancing.

Acknowledgment

This work was funded in part by the US National Science Foundation under
Grants CNS-0615055 and CNS-0753066 and by the University of Massachusetts
under the Proposal Development Grant. The authors are thankful for these
supports.

References

1. Sun, X., Liu, J., Yao, E., Chen, X.: A scalable p2p platform for the knowledge
grid. IEEE Trans. on Knowl. and Data Eng. 17(12) (2005) 1721–1736

2. Teranishi, Y., Tanaka, H., Ishi, Y., Yoshida, M.: A geographical observation system
based on p2p agents. In: PERCOM ’08: Proceedings of the 2008 Sixth Annual IEEE
International Conference on Pervasive Computing and Communications, Washing-
ton, DC, USA, IEEE Computer Society (2008) 615–620

3. Shalaby, N., Zinky, J.: Towards an architecture for extreme p2p applications. In:
Parallel and Distributed Computing and Systems Conference (PDCS), Cambridge,
MA (November 2007)

4. Cai, M., Frank, M., Chen, J., Szekely, P.: Maan: A multi-attribute addressable
network for grid information services. In: GRID ’03: Proceedings of the 4th Inter-
national Workshop on Grid Computing, Washington, DC, USA, IEEE Computer
Society (2003) 184

5. Hanson, E.N., Carnes, C., Huang, L., Konyala, M., Noronha, L., Parthasarathy,
S., Park, J.B., Vernon, A.: Scalable trigger processing. In: Proceedings of the
15th International Conference on Data Engineering, 23-26 March 1999, Sydney,
Austrialia, IEEE Computer Society (1999) 266–275

6. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: Niagaracq: a scalable continuous query
system for internet databases. SIGMOD Rec. 29(2) (2000) 379–390

7. Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A., Shasha, D.: Fil-
tering algorithms and implementation for very fast publish/subscribe systems. In:
SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, New York, NY, USA, ACM Press (2001) 115–126

8. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in communications (JSAC) 20(8) (2002) 1489–1499

9. Gupta, A., Sahin, O.D., Agrawal, D., Abbadi, A.E.: Meghdoot: content-based
publish/subscribe over p2p networks. In: Middleware ’04: Proceedings of the
5th ACM/IFIP/USENIX international conference on Middleware, New York, NY,
USA, Springer-Verlag New York, Inc. (2004) 254–273

10. Terpstra, W.W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.P.: A peer-to-peer
approach to content-based publish/subscribe. In: DEBS ’03: Proceedings of the
2nd international workshop on Distributed event-based systems, New York, NY,
USA, ACM Press (2003) 1–8

11. Aekaterinidis, I., Triantafillou, P.: Internet scale string attribute publish/subscribe
data networks. In: CIKM ’05: Proceedings of the 14th ACM international confer-
ence on Information and knowledge management, ACM Press (2005) 44–51



12

12. Tran, D.A., Nguyen, T.: Publish/subscribe service in can-based p2p networks:
Dimension mismatch and the random projection approach. In: IEEE Conference
on Computer Communications and Networks (ICCCN ’08), Virgin Island, USA,
IEEE Press (August 2008)

13. Bianchi, S., Felber, P., Gradinariu, M.: Content-based publish/subscribe using
distributed r-trees. In: Euro-Par. (2007) 537–548

14. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: ACM SIGCOMM, San Diego, CA (August 2001) 161–172

15. Stoica, I., Morris, R., Karger, D., Kaashock, M., Balakrishman, H.: Chord: A scal-
able peer-to-peer lookup protocol for internet applications. In: ACM SIGCOMM,
San Diego, CA (August 2001) 149–160

16. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), Heidelberg, Germany (November
2001) 329–350

17. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., , Kubiatowicz, J.:
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications 22(1) (January 2004)

18. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM 33 (1990) 668–676

19. Terpstra, W.W., Kangasharju, J., Leng, C., Buchmann, A.P.: Bubblestorm: re-
silient, probabilistic, and exhaustive peer-to-peer search. In: SIGCOMM ’07: Pro-
ceedings of the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications, New York, NY, USA, ACM (2007) 49–60

20. Wong, B., Guha, S.: Quasar: A Probabilistic Publish-Subscribe System for Social
Networks. In: Proceedings of The 7th International Workshop on Peer-to-Peer
Systems (IPTPS ’08), Tampa Bay, FL (February 2008)

21. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks:
algorithms and evaluation. Perform. Eval. 63(3) (2006) 241–263

22. Tran, D.A., Pham, C.: Enabling publish/subscribe services in cooperative p2p
networks. Technical Report, University of Massachusetts Boston (February 2009)

23. Medina, A., Lakhina, A., Matta, I., Byers, J.: Brite: An approach to universal
topology generation. In: MASCOTS ’01: Proceedings of the 9th International
Symposium in Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems, Washington, DC, USA, IEEE Computer Society (2001) 346


