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ABSTRACT
Recent content-based image retrieval techniques enable users

to arbitrarily exclude noise (i.e. irrelevan t regions) from im-

age similarity consideration. This capabilit yhas resulted

in high retrieval e�ectiv eness for a wide range of queries.

T o support large image collections, subimages of a prede-

termined base shape (e.g., circle, polygon) are collected and

indexed into a m ultidimensionalaccess structure. A tthe

query time, an area of such a shape enclosing part of the

queried objects, called the core area, will be identi�ed and

used in the initial search of potential candidates before an

appropriate detailed similarity measure is performed on the

original query. Iden tifying the core area of a query can be

challenging as it is allow ed to con tain certain noise and may

not be unique. In this paper, w e propose an e�cient al-

gorithm, called the Seed-Gr owingDete ctionA lgorithm, to
automatically detect the optimal core area. We have imple-

mented the proposed technique in our image retrieval system

for a large database. Our experimental results sho w that our

approach is e�ective and able to minimize time overhead of

query preprocessing.

1. INTRODUCTION
The popularity of digital image data has spurred a de-

mand for robust content-based image retrieval (CBIR) sys-
tems. These systems are needed in various application do-

mains including medical imaging, digital libraries, geographic

mapping, to name a few. The growing demand for this tech-

nology has attracted a signi�cant research interest address-

ing CBIR problems ([12, 19, 6, 5, 17, 14, 9, 4], etc.).

In a typical Query-By-Example (QBE) environment, users

formulate their query by means of example images selected
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from a pool of general image categories. Since this example

set is typically small, the expectation of �nding a perfect ex-

ample (i.e. the entire con tent is relevant) is low. Therefore,

an example should be treated as a collection of regions some

of that form the user's objects of interest and the remain-

ing is noise. A robust CBIR system should enable users to

exclude noise in formulating queries. Queries so de�ned are

called noise-fr ee queries(NFQs).
The focus of most CBIR systems is to achiev e robust-

ness to translation, scaling, and changes at the image level.

In a typical CBIR system, some essential properties of the

database images are extracted and stored as featur e vec-
tors. During the retrieval process, the feature vector of the
query image is computed and compared against those in the

database. These feature vectors typically capture the color

distribution. Recent techniques also include other features

such as spatial information [9], texture [13], structure [4],

etc. to increase the overall e�ectiv eness.In these schemes,

referred to as whole-matching approaches, the entire image

con tent is uniformly treated and its attributes are tigh tly

integrated. Noise exclusion is not possible in these systems.

T o minimize the e�ect of global features on local matches,

similarity computation can be performed at subimage levels.

One major direction in supporting subimage-level matching

is object-based image retrieval. A number of strategies (seg-

mentation [19, 10], back-projection [16],...) ha ve been pro-

posed relying on region boundaries, edges, color, texture,

connectivity, object model, etc. Ho w ever, automatic recog-

nition of real-w orldobjects, which are complex in content

and can be of any shape, is a very hard problem. Besides

being computationally expensive, these systems are often in-

accurate in identifying objects. The reason is that the de�ni-

tion of objects is largely subjective, thereb y, pre-determined

objects cannot serve as a universal template for matching in

all applications. When users contend that noise and their

perceived objects of interest are mingled in predetermined

complex objects, it is di�cult to support NFQs.

Recent CBIR techniques proposed in [8, 15, 6, 11] ad-

dress this drawback. A common trait of these approaches

is to decompose images into a �xed number of blocks, and

their features are captured and saved separately. These tech-

niques do not attempt to identify objects or related regions

at the database build time. A t the query time, similarity is

determined based only on regions speci�ed by the de�ning

user. Experiments have shown that e�ectiveness is greatly

improved for a wide range of NFQs.

T o support large image collections, windows of a base
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shape (e.g. polygon, circle) are slid over the processed image

to extract its subimages' features for indexing. At the query

time, an area of such a shape enclosing part of the queried

objects will be identi�ed and used in the initial search of

potential candidates before the �nal similarity measure is

performed on the original query.

In general, the base-shaped area of an NFQ, called the

core area, is allowed to contain certain noise so that its size

can be maximized to capture the NFQ characteristics as

precisely as possible. A core area is optimal with respect

to some preset limit if it is the largest but contains noise

no greater than this limit. For average users, identifying

such an optimal core area of an NFQ can be a challenging

task since it can compromise the e�ectiveness of the initial

search and thereby the retrieval quality. In this paper, using

SamMatch [8] as the underlying similarity model, we propose

an e�cient algorithm to search for the optimal core area of

the query to automate the entire retrieval process,

The remainder of this paper is organized as follows. In

Sect. 2, we present an overview of SamMatch. We preview

our search technique in Sect. 3. In Sect. 4, we present an

e�cient algorithm to detect the core area of the query. In

Sect. 5, our analysis and performance of the algorithm are

discussed. Finally, we give our concluding remarks in Sect.

6.

2. SAMMATCH ENVIRONMENT
SamMatch is based on a sampling-based matching idea.

In this environment, samples of 16 � 16-pixel blocks are

taken at various locations of each image. The rationale for

this block size is that the correlation between pixels tend

to decrease after 15 to 20 pixels [2]. This characteristic al-

lows reduction of the storage overhead by representing each

sampled block using its average color. To support general

applications, these blocks are collected at uniform locations

throughout the image (see Fig. 1). It shows 113 samples

evenly spread out in a 256 � 256 image frame.

In SamMatch, images are stored using the Munsell color
system. In this uniform color system, the dissimilarity of two

colors is simply the distance between them. (If the images

are in RGB, one can convert them into Munsell using the

mathematical transformation presented in [7].) The (H,V,C)

data is quantized into 256 possible values. The most dom-

inant Haar wavelet coe�cient [18] of each sampled block is

used as its average color.

Figure 1: Sampling regions

2.1 Similarity Measure
Consider two arbitrary-shaped subimages I and Q, each

represented by n regions. The color descriptor of such n
regions of the subimages can be compared one-to-one to de-

termine their dissimilarity. The distance between I and Q

is computed by the following equation:

D(Q; I) =

vuut
nX
i=1

(cD
i
� c

Q

i
)2 (1)

where cDi and c
Q

i
, the color values of the ith region of I and

the corresponding region in the query image Q, respectively.

2.2 Handling Scaling of Subimages
One distinct advantage of the sampling-based approach

is that the system can apply various sampling rates on the

query image to �nd matches at various scalings. An example

given in Fig. 2 illustrates how SamMatch handles scaling:

a �xed sampling rate for all database images (Fig. 2 (a)),

and three sampling rates for the query image: a higher rate

to �nd larger matching objects (Fig. 2 (b)), the same rate

to �nd matching objects of the same size (Fig. 2 (c)), and

a lower rate to �nd smaller matching objects (Fig. 2 (d)).

Clearly, we can apply many more sampling rates for �ner

scales to be compared at the query time. Since only one

sampling rate is necessary for database images, there is no

storage penalty for more sampling rates.

(a) (b) (c) (d)

Figure 2: One �xed sampling rate for database im-

ages (a) and three sampling rates for the query (b,
c, d) in order to match larger objects, same-size ob-
jects and smaller objects, respectively

3. INDEXING AND RETRIEVAL
To search for a matching subimage in a database image,

we can \slide" the NFQ over the database image. At each

sliding location, we compare the sampling regions of the

query with the corresponding sampling regions of the subim-

age. This procedure can be repeated for every image in the

database to retrieve all quali�ed images. To enable index-

ing database images, we slide windows of a predetermined

base shape to extract subimages' indexing values from these

images. One of the criteria for selecting such a base shape

is the maximum coverage of the NFQ within a preset limit

(discussed in Sect. 4). We select the square shape for our

current implementation. Our approach can be easily modi-

�ed to handle any base shape.

We build our access structure in three steps as follows:

1. We compute the feature vector for each database image

as described earlier.

2. We slide base-shaped windows of various sizes over

each database image. At each location, the sliding

window encloses and de�nes a square-shaped subimage

for the purpose of indexing. We derive the feature vec-

tor for this subimage by extracting the corresponding

components of the feature vector of the whole image.

A �xed-size signature is computed from these compo-

nents.
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3. For each database image, we map the signatures of

its subimages into points in the corresponding vector

space, and cluster them into a �xed number of min-
imum bounding region (MBRs). These MBRs collec-

tively represent the database image, and are inserted

into the R� tree [3].

Using the access structure constructed above, our NFQ

matching procedure can be summarized as follows:

1. Query Preprocessing:

� We apply di�erent sampling rates to the query

image, each designed to match against subimages

of a predetermined size. For each sampling rate,

one feature vector is computed (Fig. 3 (a)).

� We search the optimal core area using our e�-

cient detection algorithm (presented in Sect. 4).

We compute the signature of this area using the

components of the image feature vector with the

highest sampling rate (Fig. 3 (b)).

2. Initial Search: We retrieve relevant MBRs from the

R� tree using the core area's signature as the search

key (Fig. 3 (c)).

3. Detailed Comparison: The signatures in the returned

MBRs identify locations within the database images

of potential matches. At each location, the shape

of the NFQ identi�es the NFQ-shaped subimage in

a database image to be compared against the original

NFQ. The components of this subimage's feature vec-

tor are extracted from the containing image's feature

vector, and the detailed similarity measure is based on

these components and those of the NFQ (see Fig. 3

(d)). If the comparison is positive, the database im-

age containing the matching subimage is returned as

a query result (Fig. 3 (e)).

In the next section, we will address the core area detection

of the query in detail.

4. CORE AREA DETECTION
As mentioned in the last section, we need to determine

the core area in order to use the R�-tree in the initial search

procedure. We treat this issue in this section by presenting

an e�cient algorithm for the detection of the optimal core

area given the maximum tolerable noise level. Such a core

area is optimal in the sense that it is maximized to capture

the characteristics of the NFQ to the greatest extent.

4.1 Problem Definition
We �rst de�ne the problem of �nding the core area more

formally. Given an image frame, it de�nes a discrete Z �Z

space (digitized equivalent of Euclidean R�R space). Let us

consider an NFQ S, and a square subset L of the image, such

that S � Z � Z and L � Z � Z. The number of relevant

pixels in L can be represented as <(L) = jL \ Sj and the

number of irrelevant pixels as <(L) = jL n Sj. Using these

concepts, we can describe the problem of �nding the core

area as follows.

Core-Area Detection Problem : Given an NFQ S �
Z�Z and a maximum tolerable noise level �, a square
L � Z�Z is the core area of the NFQ if it satis�es the

following conditions:

1. <(L) � �, and

2. for any square L' � Z � Z

(a) <(L') > �, or

(b) <(L') � � and <(L') < <(L), or
(c) <(L') = <(L) and <(L) � <(L') � �.

Intuitively, the above de�nition requires the core area be

the largest square subimage with noise no greater than the

maximum tolerable level. Furthermore, it contains the least

noise among those square subimages with the same dimen-

sions and less noise than the maximum tolerable level.

Although there has been research on related problems

(e.g., binary shape decomposition [20, 21]), we are not aware

of any solution to the above problem. In [20], for example,

2-D binary shapes are morphologically decomposed into con-

ditionally maximal convex polygons. Each convex polygon

component is a subset of the given image, and the union of

all such polygons is the original image. Obviously, this is

a di�erent problem, in which noise and the sizes of those

polygons are not of concern.

4.2 A Straightforward Algorithm
For the sake of clarity, we �rst consider a straightforward

algorithm in this subsection. Clearly, the core area can be

found by exhaustively scanning over S. An algorithm based

on this strategy is given in Algo. 1. This algorithm is quite

expensive. It takes O(n5) in the worst case to �nd the core

area. Steps 2(c) is added to reduce the scanning time.

Algorithm 1. (Exhaustive Scanning) Detecting

the core area L of an NFQ

1. Let MBS be any n� n minimum bounding square en-
closing the NFQ.

2. Start with L of size d � d, where d = min(n; b
p
�c)

3. While d � n

(a) Let L' be a square subimage of size d � d centered
at some (x; y) 2MBS.

(b) For each (x; y) 2MBS, let L be L' if <(L') < �.

(c) Enlarge L as long as <(L) < �. Call the new size
of L to be d1 � d1.

(d) Let d be d1 + 1.

4.3 Seed-Growing Detection Algorithm (SGDA)
To substantially improve the query processing cost, we

present in this subsection a better algorithm to reduce the

above complexity by several orders of magnitude. In this

algorithm, we �rst determine a set of good seed pixels. For
each such pixel, we gradually expand (or grow) an enclos-

ing square subimage, up to the noise limit, to search for the

optimal core area. A pixel is a good seed if it has good

potential to expand into the optimal core area. In our tech-

nique, this potential is computed based on the number of

reachable pixels in each of the eight prede�ned directions

as illustrated in Fig. 4(a). For each direction, we count the

number of connected relevant pixels until a noise pixel is

encountered. These eight counts form an array called the
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(a) (b) (c) (d) (e)

Figure 3: Query Processing

extend of the pixel. We note that we can take advantage of

the counts already computed for the adjacent pixels when

counting a given pixel as illustrated in Fig. 4(b). Thus, the

extends of all pixels in the NFQ can be calculated in one

pass over the image area using dynamic programming.

(i,j)

(n-i-1,n-j-1)

(a) (b)

Figure 4: Optimal core area detection - (a) compute
the extend by counting the connected pixels in eight
prede�ned directions, (b) using dynamic program-
ming to compute all extends in one pass

Within each extend array, the eight counts are recorded

in ascending order (i.e., extend[0] < extend[1] < � � � <
extend[7]) to facilitate the following computation:

potential(x;y) =

dX
i=1

extend[i]� extend[i� 1]

2i
+
x+ 2 � y
104

;

(2)

where extend[-1] = 0.

Using the above equation, we can determine the potential

of a given pixel, at location (x; y), as a seed for expanding

into the optimal core area. We explain this equation as

follows. The �rst term increases the potential measure by

an increment for each round i. The denominator, however,

reduces this increment amount by a factor of 2i due to the

following reasons. The eight components of the extend array

can be seen as the "radii" of eight concentric squares as

illustrated in Fig. 5. These squares form eight square bands

of pixels. The innermost band is the smallest square with

only relevant pixels; and it has full potential to be included

in the core area. However, as we move to a band further

from the center, the percentage of relevant pixels in this

band typically drops. The potential of this band being a

part of the core area, therefore, decreases accordingly. This

characteristic is captured in our equation by using 1=2i as a
weighing factor for round i.
In essence, Eq. (2) roughly estimates the size of the core

area seeded at (x; y). We use this estimate as the potential

measure of this location as a seed for expanding into the op-

timal core area. The second term in Eq. (2) is very small. It

is included for the convenience of resolving ties when com-

paring the potential measures of neighboring pixels. Since

this term is x+2�y

104
, we favor the pixel with a greater x value

and y over x. This choice is arbitrary and has no e�ect on

the outcome.

Figure 5: Concentric squares the radii of which are
extend's are used to estimate the potential at loca-
tion (x,y)

Once all the potential measures have been computed, we

scan the image area to �nd candidate pixels with a better

potential than all their adjacent pixels. Among these candi-

dates, we select only those pixels with a potential measure

greater than a certain threshold to participate in the sub-

sequent enlargement operation. This is done by applying a

SmartExpand procedure to each of the �nal candidates. At

each step, this procedure expands the square, initially cen-

tered at the candidate pixel, toward the area where the least

noise is absorbed. This is illustrated in Fig. 6. Although

there are four directions for expanding the white square, it

is done in the lower-right direction because the least noise

is absorbed. This expansion process repeats until the max-

imum allowable noise is reached or no more relevant pixels

could be added. We note that considering only pixels with

a better potential than all their immediate neighbors in the

�nal search procedure allows us to substantially reduce the

cost of our technique.

Figure 6: Applying SmartExpand to each good seed
pixel to search for the core area.
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A high-level description of the core-area detection algo-

rithm is given in Algo. 2. A C-code implementation of this

algorithm can be found at [1].

Algorithm 2. (SGDA) Detecting the core area L

of an NFQ

1. Find the minimum bounding square, MBS, that en-
closes the NFQ.

2. For all (x; y) 2 MBS, compute their extend in one
pass using dynamic programming.

3. For all (x; y) 2MBS, compute their potential using
Equation (2).

4. Scan the pixels in MBS to determine the set of good
candidates, candidates, whose potential is greater
than all their adjacent pixels and a prede�ned thresh-
old.

5. Let L be a minimum square of size 0� 0 .

6. Process each (x; y), in candidates, in turn as follows:

(a) Let L' be a extend[0] � extend[0] square centered
at (x; y).

(b) Apply the SmartExpand procedure to expand L'. If
the size of L' is now greater than L, then let L be
L'.

5. ANALYSIS AND PERFORMANCE

5.1 Space and Time Complexity
Assuming the size of MBS is n � n, the time complexity

of SGDA (Algo. 2) can be broken down as follows:

� The time complexity of Step (2) is O(n2) using dy-

namic programming.

� In Step (3), all the potential measures can be com-

puted in O(n2).

� Step (4) takes O(n2) since only immediate neighbors

are considered.

� Step (5) requires a constant time to execute.

� Step (6) can be completed in O(n2 � m), where m is

the number of candidates, each requires no more than

O(n2) time to count the noise pixels.

Thus, the time complexity of SGDA is O(n2 �m). Since m
is generally less than 6 as observed in our experiments, the

time complexity of SGDA is O(n2).
In terms of memory space, it is easy to see that the SGDA

algorithm requires O(n2) space, which is very reasonable.

We will provide experimental results in the next section to

better illustrate the e�ciency of our technique.

5.2 Performance of the Detection Algorithm
Recall that our SGDA algorithm �nds the core area of the

NFQ by expanding potential seeds. When the number of

seeds is large, the time complexity of the detection is high.

To determine the number of seeds generated by our algo-

rithm for real data sets, we ran experiments on more than

200 NFQs randomly selected from our database of 16 008 im-

ages. The results are plotted in Fig. 7. We can see that for

a vast majority of NFQs only a few seeds are generated (one

to four seeds). In fact, no NFQ in our experiments yields

more than �ve seeds. This fact demonstrates our proposed

seed-searching function is highly e�ective.
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Figure 7: Percentage of Seeds generated

When the number of seeds is small, the reduction in the al-

gorithm's complexity (as opposed to its time constants) has

resulted in a tremendous speedup over the exhaustive scan-

ning at the query time. As shown in Fig. 8, our detection

algorithm can execute from hundreds (at the region-level)

to many thousand (at the pixel-level) times faster than the

exhaustive scanning algorithm. There is virtually no e�ect

on the overall query processing time, even at the �nest level

of granularity. At this level, for instance, our detection al-

gorithm takes about 3/10 of a second to detect the core area

of an NFQ enclosed in a 256 � 256 MBS, while the naive

algorithm would take more than six hours to process the

same NFQ.
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Figure 8: Detection time in log scale

Figure 9 shows an example of detecting the base area of

a NFQ by the SGDA algorithm.

6. CONCLUDING REMARKS
Recent content-based image retrieval techniques enable

users to eliminate irrelevant regions or noise in formulat-

ing queries. By minimizing the e�ect of noise in similarity

measure, the retrieval e�ectiveness of these approaches is

greatly improved for wide range of user-de�ned queries. To
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Figure 9: The core area with � = 10% (right) de-
tected by Algo. 2 on an NFQ (left).

support fast initial searches, subimages of a predetermined

base shape (e.g., circle, polygon) are collected and indexed.

At the query time, an area of such a shape enclosing part of

the queried objects, called the core area, will be identi�ed
and used in the initial search of potential candidates before

the detailed similarity measure is performed on the origi-

nal query. To relieve the user from the burden of correctly

identifying the core area of a query, we propose an e�cient

detection algorithm. We formally de�ne this problem and

present our seed growing detection algorithm.

We provide a complexity analysis of our algorithm. It

shows that we can improve the time complexity by several

order of magnitudes while the space requirement is reason-

able. To assess the performance of our algorithm, we have

implemented the proposed technique on top of SamMatch.

Experiments on a large image collection indicate that our

algorithm is indeed e�ective and very e�cient.
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