ADMiRe: An Algebraic Approach to System Performance
Analysis Using Data Mining Techniques

Kien A. Hua Ning Jiang
University of Central University of Central
Florida Florida

kienhua@cs.ucf.edu njiang@cs.ucf.edu

ABSTRACT

System performance analysis is a very difficult problem.
Traditional tools rely on manual operations to analyze data.
Consequently, determining which system resources to examine is
often a lengthy process, where many problems are elusive, even
when using data mining tools. We address this problem by
introducing the Analyzer for Data Mining Results (ADMiRe)
technique as a natural and flexible means to further interpret data
mining outcome. In our scheme, regression analysis is first
applied to performance data to discover correlations between
parameters. Regression rules are defined to represent this output
in a format suitable for ADMiRe. ADMiRe expressions are then
used to manipulate these sets of rules, revealing information about
combined, common and different features of varying
configurations. This knowledge would be unavailable if
regression output were considered in isolation. ADMiRe was
tested with performance data collected from a TPC-C
(Transaction Processing Performance Council) test on an Oracle
database system, under various configurations, to demonstrate the
effectiveness of our technique.

General Terms
Algorithms, Measurement, Performance.

Keywords
Scalability, Data Mining, Regression.

1. INTRODUCTION

Solving system performance problems [3] [9] [13] [14] [15] is
becoming increasingly crucial due to the explosive growth in the
scale and complexity of information systems. Many
organizations provide online transaction processing and other
services, so good performance of their computing systems is vital
to their existence. When performance problems arise, many users
try to solve them by purchasing more advanced hardware, when a
better solution would involve revamping some of the system’s
logic.

To precisely discover the cause of system degradation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2003, Melbourne, Florida, USA

© 2003 ACM 1-58113-624-2/03/03...$5.00.

490

Roy Villafane Duc Tran
University of Central University of Central
Florida Florida

villafan@cs.ucf.edu dtran@cs.ucf.edu

performance data on different sub-components of a system is
exploitable. There are many utilities that capture this data. Their
output is usuvally a time series. Determining which system
resources to examine is often a lengthy process of educated
guesswork, where many problems can run undetected. However,
few attempts have been made to capture the similarities and
differences under various system configurations. In [9], the
authors show that self-similar ([4] [11]) behaviors exist in high-
level file system events. However, in the paper, they only focus
on the file system and only very few attributes are examined. [3]
[15] [13] [14] [10] [17] and numerous other papers also deal with
performance issues, but are either focused on a specific subsystem
such as I/O or network or aimed at a specific software system
such as Oracle DBMS or the Sun Solaris Operating system. More
focus is required for techniques that can be applied to generic
system performance analysis.

To address these problems, we propose the Analyzer for Data
Mining Results (ADMiRe) technique, which uses results from
data mining ([2] [5] {7] [6] [8] [12] [16] [19]) operations on
system performance data. We argue that data mining techniques
are very useful for system performance analysis due to the
completeness of the results. This systematic approach allows us
to thoroughly examine the relationships among large number of
parameters of different subsystems. We have implemented a
system based on the ADMiRe technique. Our methodology
consists of three steps:

Rule Extraction: Performance data for different system
configurations is collected by various tools. We apply regression
analysis to summarize each configuration’s data into a set of
regression rules. This rule set captures the behavior of the system
in a highly compact form.

Rule Analysis: We manipulate these rule sets by applying
operators to reveal similarities, differences, and other information
among different system states represented by the various rule sets.

Result Ranking: The information is subsequently ranked
according to certain quantitative means to help the user focus on
the more likely causes of the performance problems.

The contributions of this paper are as follows:

1) Propose using data mining as a systematic approach to address
the high complexity of system performance analysis problems.

2) Define regression rules as a means for summarizing
performance data in a very compact form. To the best of our
knowledge, this concept has not been explored in the literature. It
offers an effective way to analyze very complex performance
problems.

3) Introduce an algebraic approach to analyzing system
performance. The user can uncover causal effect by manipulating
regression rules using rule algebra.

Although the use of data mining allows us to cover a broader span
of subsystems, we do not claim that other techniques are less
important; depth of analysis is as important as breadth. The
benefits of ADMiRe reach beyond system performance
evaluation. This method can also be used to study many other
topics such as market analysis, human behavior, etc.

The rest of the paper is organized as follows. In Section 2, we
first give a motivating example and then formally define our
research problem. We define regression rules, describe the rule
operators and introduce the ranking of regression rules in Section
3. The implementation and complexity analysis of the algorithms
are presented in Section 4. Section 5 provides experimental
results on an Oracle database. Concluding remarks are given in
Section 6.

2. PROBLEM DEFINITION AND
MOTIVATION

The aim of this study is to provide useful information for tuning a
computer system. Consider a database system. It consists of
various hardware and software components (e.g. communication
network, disks, CPU, memory, lock manager, log manager, buffer
manager, etc.). Understanding dependencies between these
components is imperative for tuning. We might observe a
correlation between disk access rates and network usage. This
knowledge could encourage the system administrator to relocate
data to another server. However, further gains might be achieved
by comparing the sets of correlations observed at various system
states. If performance degrades after adding processors,
comparing the subsystem performance correlations before and
after the upgrade may reveal the cause of the problem. The
existence or absence of particular correlations may explain certain
system behavior. However, such information is hard to uncover if
we consider the system states in isolation. As far as we know, no
research has been done in this direction.

System performance data collected by many tools generate output
in the form of time series. Parameter values corresponding to a
measurement of some system property (i.e., CPU busy time) are
generally measured once at each of equally spaced time intervals.
Formally, a time series can be defined as follows:

A = {ay, ay ..., a,}, 15<n, is a set of system parameters.
TS = {obs,, obs,, ..., obs,} is a time series, where each
obs; = <t, vy vy .. vyu> is a tuple corresponding to
measurements with timestamp ¢ and value vy; of each a,.

We focus our analysis on a set of several time series, T = {s,, s,
..., Sm}. Each s; corresponds to performance data captured under
some particular system state. The commonalities are extracted
and differences from the output of data mining analysis. The final
results are ranked based on certain importance metrics.

3. KNOWLEDGE DISCOVERY FROM
MULTIPLE REGRESSION ANALYSIS
RESULTS

We apply linear regression analysis ([16]) to investigate the set T
of time series, in order to discover relationships among different

491

parameters within each individual s;. It is applied to each pair of
parameters P; and P, from a time series. The existence or
absence of a correlation in one data series and not another is
useful for explaining certain behaviors. In order to obtain such
information, we employ three operations: Union (), Intersection
(m) and Subtraction (). Union is used to combine sets of
correlations. Intersection reveals common correlations among
different regression analyses. Subtraction can reveal behavior
exclusive to one configuration. Knowledge discovery of
similarity and difference characteristics among such results is
accomplished by constructing algebraic expressions with these
operators.

3.1. Regression Rules

Regression rules represent the angmented output of regression
analysis. These are necessary to facilitate further manipulation of
sets of correlations generated by regression analysis. A
regression rule is a tuple:

<P;, P, RSS>, P, P, e A

Where RSS is a set of regression structures.
structure s € RSS has these members:

Each regression

rrlx,y]: An interval that specifies a range of coefficients of
correlation 7 of attributes P; and P,, having x<y, referred to
as the “r-range”.

mbs: A set of <m, b> pairs associated with an r-range,
where m is the slope of the line and b is the y-intercept.

A coefficient of regression is a numeric point value. However,
we represent regression rules using an interval [x,y], having x < y,
for the coefficient of regression. This implies existence of a
range of coefficient of regressions for a pair of attributes.
Assuming that attributes P; and P, have a linear relationship with
=0.85, suppose a regression rule R with interval {0.0,0.85] is
constructed. The implication is valid at 0.85, because the
coefficient originally states this fact. The implication is still valid
at a value of * of 0.6, for example. Afforded some flexibility, if
we were to pose the query “list all attributes pairs which satisfy a
correlation strength of 0.6”, the answer would be “yes” for P, and
P, because a pair of attributes whose values are correlated by a
regression relationship having an 7 statistic of 0.85 exceed, and
thus satisfy, the requirement of the query. If the query had
specified a value of # of 0.9, then this attribute pair would be
excluded because it lacks the required relationship strength. Thus
initially, from a correlation relationship of strength /, a
regression rule is constructed with a range of [0,/”]. A generic
correlation interval [x,y] can then be viewed as the result of
posing a conjunctive query on many regression rules. Given a
regression rule R=<P|,P5,RSS>, regression rule
R2=<P,;,P,,RSS> is a corresponding rule of R, if
P = P AND P, =P, .

We also define an order for intervals. For any two intervals
rrilab] and rrifcd], rr; < rry < a<c. r-ranges are stored in
ascending order in each RSS. In addition, all the r-ranges in an
RSS have disjoint intervals (i.e., for any two ranges #r;[a,b] and
rrilc,d), either b<c or d<a). The monotonicity and disjointness
requirements are crucial for good performance of the operators.
Additional useful properties and functions are defined as follows:

|RSS] = number of regression structures in the regression
structure set RSS.

|rs| = number of <m, b> pairs in the regression structure rs.
rs.rr is the rrrange of a regression structure rs.

mbp(rs,i) is the i <m,b> pair of regression structure rs
given the < relation.

sim(<my,b;>,<myby>) = <mfactor,bfactor>,

1 if m, and m, are of different signs.

mfactor =10 ifm, =m, =0.

(max(|m, |, |m,) — min(jm, |,|n,) / max(|m || m,) otherwise.

1 if b, and b, are of different signs.
bfactor =40 ifb, =b,=0.
(max(|b,}|5,!) — min(|5, |.|5,])) / max(|5,|.}b,) otherwise.

The sim is a similarity measurement of a pair of <m,b> pairs.
Similarity is defined in terms of the absolute changing rate of the
m and b values. mfactor(bfactor)=0 implies no changes;
mfactor(bfactor)=1 implies maximum change. In practice, two
user defined thresholds MFACTOR_THRESHOLD and
BFACTOR_THRESHOLD are applied to decide the similarity of
two <m, b> pairs.

Operators between two sets of <m, b> pairs are defined as
follows:

{mbs, Umbs, = {<m,b>| <m,b>embs, OR <m,b>e mbs,}}

mbs, ~mbs, ={< m,b >(<m,b > mbs, AND I< m,,b, > mbs,

(sim{<m,b >,<m,b, >) <{< MFACTOR_THRESHOLDBFACTOR_THRESHOLD>})
OR(<m,b>ecmbs, AND 3 <m,,b, > mbs,

(sim(<m,b>,<m,b >) <{< MFACTOR_THRESHOLDBFACTOR_THRESHOLD>})}

mbs, —mbs, = {<m,b>|(< m,b>embs, AND=I < m,,b >embs,
(sim(<m,b><m,b >) <{< MFACTOR_THRESHOLDQBFACTOR_THRESHOLD>})}

3.2. Operations On Regression Rules

Before we can define operators for regression rules, operations on
regression structures are needed. In a regression rule, the r-range
represents the strength of a given relationship between system
attributes. There are 13 relationships for r-range intervals [1],
many being symmetric. In ADMiRe, two functions are defined to
obtain the overlapped and non-overlapped parts of a pair of
intervals.

rsy.rrOrsyar = {vlse rsy.or AND s e rsy.m }
rs|.ar = rspamr = {sl(sersl.rr AND sersz.rr)}.

In this context, we define binary operators for a pair of regression
structures rs;and rs; as follows

Union (U):
FSuniont-T¥ = FS| T (NFS,.rV5 PSunion-MbS = rs mbs\Urs,.mbs -
FSunion2¥* = FS,.Fr~rS, s FSunion2-Mbs = rs;.mbs.

FSunion3 V' = Fs,.hr—rs,rr; PSugion3-Mbs = rsz.mbs.

Intersection (M):

492

PSinter-T¥ = ¥S$,.F7 (N 1S, 5 PSinter- MBS = rs, mbsrrs, mbs
Subtraction (-):

TSsubl-IT = rS, 1Y (\FS,07 5 PSsub1.MBS = rs| mbs —rs,.mbs -

FSsup2 1V = rs,rr— rsz_rr; rssubz.mbs = rs1.mbs.

In the definition of the operators, the r-ranges are operated in
combination with the m and b coefficients. The similarity and
difference are defined in terms of all the regression coefficients.
Consider the intersection operator. If two source regression
structures have common correlation strength (overlapping r-
ranges), the overlapping r-range is common only if the respective
m and b coefficients are similar as formerly defined. The
operations of the union and subtraction operator are likewise
derived.

Now let us consider regression rules. Although we present
operators between two sets of regression rules RS; and RS,,
ADMiRe can process arbitrary algebraic expressions consisting of
multiple operators.

Sometimes regression rule sets of similar system configurations
should be combined for comparison to other rule sets using the
Union (U) operator. It encapsulates the combined information
content for both rule sets. For any two corresponding regression
rules R, € RS,and R, RS, a single destination rule is created.

We apply this operator on each such pair of regression structures
and insert the subsequently generated structures into the
destination rule in r-range order. Rules in one set having no
counterpart are incorporated verbatim.

Intersection (M) as an operator selects the regression rules
common to both rule sets. It captures similar characteristics. Any
rule present only in a single set is excluded. For any two
corresponding rules a single destination rule is generated.
Intersection is performed on each pair of regression structures of
the two rules. Resulting regression structures are also inserted
into the target rule in ascending order of their r-ranges. Rules in
RS; and RS; that have no corresponding rules in the other set are
simply discarded.

The Subtraction (<) operator in RS;—RS; outputs all the regression
rules that are found only in set RS; but do not exist in RS,.
Application of the subtraction operator on sets of regression rules
is more complex than the other operations described so far. The
main idea is to eliminate the similarity among correlations.
Again, there are two situations. For one regression rule R; ¢ RS},
consider its corresponding rule R; € RS, a single destination rule
is generated. [Each regression structure rse R is iteratively
subtracted by regression structures in R, that have r-ranges
overlapping with rs.rr. The subtracted results are inserted into the
destination rule. By storing the r- ranges in a RSS in ascending
order the retrieval of overlapping r-ranges, the iterative
operations on those ranges and the insertion of resulting
regression structures can be performed in linear time with respect
to the number of regression structures. Rules in RS that have no
corresponding rules in RS, are directly inserted into the resulting
rule set.

Knowledge about the commonalities and differences between
various data sets is extracted by creating expressions in algebraic
like format. Experimental results (Section 5) demonstrate that the

ADMiRe scheme is very flexible and can uncover important
statistics to improve system performance.

3.3. Ranking of ADMiRe Qutput

Manipulation of different sets of regression rules can yield
important information for the user to understand system behavior.
However, the output of ADMiRe is usually very large. It is a
daunting task for the user to make the right judgment of which
parameters to tune from such a vast number of resultant
regression rules. Hence, it is imperative to rank regression rules
based on certain importance measurement to help the user focus
on rules that are most critical to system performance.

In ADMiRe, a regression rule is usually associated with a set of
regression structures. Each regression structure has a r-range and
several <m,b> pairs. Theoretically, all the regression coefficients
should be considered to determine the importance of a regression
rule. However, in practice, it is too time consuming to compare
each pair of regression structures of two regression rules. A more
efficient approach needs to be designed.

We decide to calculate the rank of a regression rule R by
comparing the maximum interval of r-ranges among all its
regression structures against the counterparts of other regression
rules. We define the maximum interval of a set of r-ranges as
follows:

Max(rri[al, b\], rrofay, B3], ..., rrifag, by]) =

rry such that rr, € {rr,- [ai,b,-]Vrrj[aj,bj](bi ~a;2b; —aj)}
This should not be confused with the partial order < defined on
r-ranges. In ADMiRe, the larger the interval that the maximum r-
range of a regression rule spans, the more important the particular
rule. This is valid for all the operators. First, consider the resultant
regression rules of the Union operator. A larger resultant r-range
implies that the union of correlations between two parameters
covers a broader range in terms of regression strength and is more
important than other regression rules. Second, consider the
resultant regression rules of the Intersection operator. The purpose
of the Intersection operator is to discover common behaviors
within two system states. User can derive from a regression rule
with a larger maximum r-range interval that the two source rules
have more overlapping in their respective r-ranges and are thus
more similar to each other. Therefore, the resultant regression
rules deserve more investigation. Third, for the Subtraction
operator, a larger maximum r-range interval means that one of the
two source corresponding rules has a larger r-range span (thus
stronger regression strength) than the other. Hence, system
behavior in terms of the two parameters is more diversified and
the resultant regression rules are of more interest to the user.

In ADMiRe, after a user issued expression is calculated, the
output set of regression rules is sorted in descending order of the

importance of the rules. User can focus on the most important
correlations discovered by the system.

4. SYSTEM IMPLEMENTATION

Operators are defined on two corresponding regression rules.
The pseudo code of the operators is presented in this section.

Subtraction (R,- R,):

493

Create a new regression rule R,;
Ros- P = R).Py;
Rop P2 = R1.Py;
for {each rs; in the R,.RSS} do
temp_rs=rs;;
RSSy={rsy | rsp € R,RSS AND rsyrr overlaps,
contains or is contained by rs.rr };

6. if RSS, = @ then
7. while temp _rangerr# ¢ do
8 for {each rs; (rs; € RSSy} do

b wN -

9. temp_range=temp_range-rs;;
10. Insert temp_range to R, RSS;
11. end for;

12. end while;

13. else

14. Insert rs; to R,,;- RSS;

15. endif;

16. end for;

Due to the sorted and disjoint property, for each rs; in R,, the time
complexity for generating the RSS, only requires starting from the
last regression structure in the RSS, of rs;;. This makes the
processing time linear. Finding the similar <m,b> pairs,
however, requires repeated scanning. The worst-case time
complexity for the subtraction operator is

(QR,.RSS |+ |R,.RSS [)+ [UZ,!;‘"M"ELZPID

For two regression rule sets RS, and RS>, to calculate RS- RS;, let
[RS;|=n, |RS,|=m. We first sort RS, according to its P, and P,, in
time O(m log m). For each regression rule R, € RS;, we search
for a regression rule in RS, having the same P; and P, as R;.
Using binary search results in O(log m) complexity. Overall, the
worst case time complexity to subtract two regression rule sets is

(m log m + n(]ogm +(R,.RSS|+ IRZ.RSS[)+(g“!g‘l](;K,l)n

In practical situations, |RSS| and |rs| are below 10, and parameters
m and n are dominant. The time complexity for RS; - RS, is
O((m+n) log m). The sorted and disjoint properties greatly reduce
the hidden factor

(2) Intersection (R; N R;):

1. Create a new regression rule R;,;

2. Ri,,,.Pl = R],Pl;

3. R,‘,,,.PZ = RI.Pz',

4. for {each rs;in R;.RSS } do

5. Generate the set of regression structure

RSS={rsy | rsy € R,RSS AND rs,rr overlaps,

contains or is contained by rs;.rr}.

6. if RSS) = @ then

7. for {each (rs; € RSSy) } do

8. insert rs; ~rsy into R;,.RSS.

9. end for;

10. end if;

11. end for;

The worst-case time complexity of the Intersection operator is
same as the Subtraction operator. It is also

ZL'][ZZLIB]

rs,€RS,.
Similarly, the sorted and disjoint properties greatly reduce the
hidden factor.

[m logm +n- (logm +(R,.RSS| +|R,.RSS|)+ [

(3) Union (R; UR,):
1. Create a new regression rule R,,on;
2. Rum'arrPl = R1~Pl;
3. RunionP2=Ry.Py
4. for {each rs;in R;.RSS } do
5. Generate the set of regression structure

RSS={rsp | rsg € Ry.RSS AND rsg.rroverlaps,
contains or is contained by rs,.rr}.

6. for {each (rs, € RSS),) } do

7. insert rs; Urs; into Ry, RSS".

8. end for;

9. end for;

10. Insert all the remaining regression structures in R;
into RynionRSS.

*When inserting union results into R,,;,,. RSS, the final
list should meet the ascending and disjoint requirement.

The union of two regression rules, R; and R;, however, involves
duplication reduction and order and disjoint preservation. We
have to examine each pair of <m, b> pairs in step 7. Emphasis
must be put on combining the regression structures. Since the
final RSS should have the sorted and disjoint property, step 10
involves a binary search of the intermediate results, which takes
O(log p) time (p is the length of the intermediate RSS). Like
before, the scanning of <m, b> pairs is dominant. The worst case
time complexity for combining two rules is

lrsjl]'[mjsk}.ﬁ;z.ks_g |r:,-|}+ |R1.RSS |-10g|R 2 .RSS |],

To perform a union of two regression rule sets, RS; and RS,,
according to the definition, all the rules in both RS; and RS,
should be included in the result set. In other words, we need to
scan both of the rule sets to generate the final result. The worst-
case time complexity is

e

In practical situations, |[RSS| and |rs| are less than 10, with
parameters m and n being dominant. The time complexity for
RS | U RS, is also O((m+n) log m).

z
re; €RS | .RSS

[QR,.m|+ [R2.Rss |)+[

z
€RS)

z

[mlogm +n-[logm +QR1 .RSS|¢|R2.R.SS])+[
RS;.RSS

lr:j|]+|R|.RSS|~loglR2,ml]+m}

rs;

5. EXPERIMENTAL STUDY

To validate our approach, we investigated an Oracle database
management system running the TPC-C Benchmark and a web
server. Different workloads are generated for both cases under
various CPU and I/O configurations. ADMiRe was used to
analyze the systems.

The Transaction Processing Performance Council’s TPC-C [18]
benchmark suite was run on an Oracle 8i DBMS. This
benchmark is an industry standard for evaluating the OLTP (On-

494

Line Transaction Processing) performance of a DBMS. It ran on
a Sun Enterprise 450 Server with 4 250Mhz UltraSparc
processors, 2 GB of RAM, and 48 GB of storage striped across 12
disks. System load and capacity were systematically varied as
shown in Table 5.1. Hereafter, we use “system s” to refer to the
system configuration that data set s pertained to.

Table S.1. System Configurations and Data sets

Datasct User Factor Processors
1 5 4
2 10 4
3 20 4
4 30 4
5 30 2

In each configuration, the system was allowed to reach a steady
state. Operating system and database performance data was
collected at 10-second intervals for a total of 600 seconds. The
system scaled well on scenarios 1, 2, and 3. In the 4 and 5
scenarios, the system reached an overloaded condition, where
users are not served in the expected time

We consider two sample expressions here. In showing resulting
regression rules, we will use the following notation :

P;: (name of first attribute),
P;: (name of second attribute)

RSS: {<[r2Low,r2High]:<m;b;><my by>, ...>, ... }, where
{r2Low,r2High] indicates the /2 interval for this rule, and
following each such interval is a set of associated <m,b>
value pairs

Table 5.2. Output of expression (5-4)

latch_free: Sml_mem { <[0.311859,0.824123]:

total_timeouts <51.6891,33582400>> }
process_alloc: Sml_mem { <[0.330459,0.82736]:
immediate_gets <3050.08,32718200>> }
file_open: Sml_mem {<[0.302001,0.780548]:
total waits <205.18,33014300>> }
TPC_DATAI: Smi_mem { <[0.192184,0.773805]:
pbw <107.218,32428500>> }
pmon_timer: Smi_mem { <[0.283592,0.763297]:
total_waits <744.243,30635500>> }
TPC_DATAI: Smi_mem { <[0.231663,0.75585]
pbr <109.285,32234300>> }

Consider expression (5-4). Some relevant top-ranking rules are
shown in Table 5.2. The word description of the (5-4) test is the
“regression relationships that are present in a 30-user & 2-CPU
run which are not present in a 30-user 4-CPU run”. For example,
the first regression rule indicates that there was a linear
correlation among the latch_free:total timeouts database
parameter and the sml_mem allocations operating system
parameter. Looking at the 2-CPU case (system 5), the coefficient
of correlation (+°) was 0.824123. Since this regression rule was
constructed directly from regression analysis data, the associated
range is [0.0,0.824123]. In the 4-CPU case (system 4), the
correlation of these parameters was 0311859, with a

corresponding regression rule range of {[0.0,0.311859].
Application of the discussed operators yields the rule with range
[0.311859,0.824123); this fares well with the definition of the
classical subtraction operation in which the remaining portion
does not contain any portion from the subtracted argument.

The important rules are relevant to the sm/_mem parameter, which
is an operating system parameter that reflects the number of small
memory allocation requests (small requests are less than 256
bytes). The correlation between the smi_mem parameter with
various database internal parameters indicates a bottleneck in
operating system virtual memory pool when system 5 was
experiencing a high workload. It was busy servicing small
memory requests incurred by various database requests such as
process and tablespace memory allocation. For example, consider
the rule <TPC_DATAI:pbw,smi_mem> and
<TPC _DATAI:pbr,smi_mem>. TPC DATAIl:pbw captures the
behavior of write operations on the TPC_DATA1 tablespace of the
database, and the pbr variant is the same for read operations; the
data for the TPC-C tables was stored in these tablespaces. From a
system point of view, one might deduce that the stronger
correlation between tablespace 1/0O operations and small memory
allocations might be a sign of the database relying more on the
operating system due to an overload situation. In contrast, such
overload did not exist in system 4. The system was still able to
deal with an increasing number of small memory requests.
Operations that would have otherwise involved the operating
system were done internally within the DBMS; such operations
were thereby shielded from the operating system and its
performance statistic counters. Consequently, the respective rule
appeared in the result of expression (5-4). More importantly, these
rules also indicate how the performance of system 5 can be
improved. Obviously, a naive approach is to add some memory to
the system

Table 5.3. Output of expression (4-1)—(2-1)

P, P RSS
Active checkpt SQL*Net {<[0.014638,0.706388]:
queue Latch: message <0.018000,45.000000>>}
immediate from client:
misses total_waits
CPUl:intr CPU2:intr {<[0.212138,0.651438]:
<0.925367,15.386000>>}
CPUO:idl File-sz { <[0.075037,0.758398]
:<-4.38818,1614.34>>)
Freemem Ig_memalloc { <[0.206937,0.77661}:
<-51.0073, 8266>>}

Now let us consider the expression (4-1)-(2-1) as the second
example. The operations (2-1) and (4-1) both attempt to capture
“relationships which remain when the system load is increased”.
Consequently, the more complex expression (4-1)—(2-1) identifies
“relationships which remain when a system load increase results
in an overload condition”. Table 5.3 lists a few of top-ranking
rules out of around 3500 resultant rules.

Consider the rule involving parameters “freemem” and
“lg_memalloc”. The “freemem” parameter records the amount of
available user memory of the operating system. The
“Ig_memalloc” parameter records the number of large memory
allocations. The negative slope (-51.0073) of the correlation
indicates that the amount of free user memory decreased along

495

with increasing volume of large memory allocations. The r-range
of this rule is [0.206937, 0.77661]. The correlation was not very
strong (around 0.21) in system 2 while it was significantly strong
in scenario 4 (around 0.78). Therefore, system performance
degradation was accompanied by a significant increase in large
memory allocation requests. However, we were not aware of
strong cotrelations between Ig_memalloc and other parameters. A
likely explanation is that large memory allocations were caused
by various subsystems, while each individual subsystem did not
have a strong correlation with the parameter. We are going to
employ regression tree analysis techniques [8] in the future to
disclose such information. Nevertheless, at this point, we are
aware of the existence of memory allocation bottlenecks in
scenario 4.

Second, we consider the first rule in Table 5.3. The rule involves
the active checkpoint queue latch and Oracle SQL*Net.
According to [10] and [17], the Oracle DBMS links “dirty”
memory blocks in the check point queues to improve the
performance of checkpoint operation. A checkpoint can be highly
resource intensive. More number of checkpoints reduces
recovery time at the time of crash since less redo need to be
reapplied, but causes negative impact on performance because of
system overhead. In Oracle, various checkpoint queues are
protected by the “active checkpoint quewe latch” against
concurrent accesses. The SQL*Net is a sub-component that
ensures distributed client-client and client-server processing. The
r-range of the rule indicates a significant leap of the correlation in
system 4. We conclude that the checkpoint frequency of system 4
was too high and large amount of client requests from network
had to block-wait for the completion of checkpoint operations.
Obviously, we need to lower the system checkpoint frequency.
This can be achieved by tuning the
LOG_CHECKPOINT _INTERVAL parameter. Details about the
parameter can be found in [13].

We note from the aforementioned experiment that the ADMiRe
process is automatic, and the output is complete due to the
application of data mining techniques. Nevertheless, domain
knowledge is still very important to analyze the information
provided by ADMiRe and make the right tuning decisions. As
with most the data mining tools, the goal of ADMiRe is to
discover useful knowledge, rather than to totally replace human
experts.

6. CONCLUDING REMARKS

Automatic performance analysis tools are the only hope to cope
with the ever-increasing complexity of computing systems. In
this paper, we introduced a systematic technique called ADMiRe.
Our approach consists of three steps. First, regression analysis is
employed to summarize the sets of performance data, collected
from various system states, into a more manageable size in the
form of regression rules. These sets of rules are manipulated
using rule algebra to reveal similarities, differences, and other
information among different system states. Finally, the algebraic
results are sorted and ranked to help the user focus on the more
likely causes of the performance problems. The merit of this
approach is threefold. First, data mining (i.e., regression analysis)
is excellent for system performance analysis in that it is
systematic, and the analysis results are complete. Second,
ADMiRe can be used to examine performance of many software
systems. Third, rule algebra is very flexible and powerful and can

potentially be extended to analyze output of various data mining
techniques.

To assess the performance of ADMiRe, we used it to investigate
the performance of an Oracle. Our experimental results indicate
that useful information can be discovered by ADMiRe for
effectively tuning the system.

Future work on ADMiRe involves the following directions. First,
we are extending the system by employing more advanced data
mining techniques to better analyze system performance. Second,
more research needs to be done to adapt ADMiRe to generic data
mining techniques. We are particularly interested in applying
ADMiRe to supermarket transaction data sets to discover
knowledge that points to better marketing strategy.

REFERENCES

[1] AllenJ. F., “Maitaining Knowledge about Temporal
Intervals”, CACM26 (11) 1983, 832-843.

Rakesh Agrawal, S. Gosh, T. Imielinski, B. Iyer, Arun
Swami, “An Interval Classifier for Databases Mining
Applications”, Proceedings of the 1992 Very Large
Databases Conference.

Peter M. Chen and David A. Patterson, “A New Approach to
/0 Performance Evaluation: Self-scaling I/0O Benchmarks,
Predicted I/0O Performance”, Pages 1-12 Proceedings of the
1993 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, May 10 - 14, 1993, Santa
Clara, CA USA.

Will Leland, Murad Taqqu, Walter Willinger, and Daniel
Wilson, “On the Self-Similar Nature of Ethernet Traffic
(Extended Version)”, IEEE/ACM Transactions on
Networking, Vol. 2, No. 1, pp. 1-15, February 1994. (From
an earlier version of the paper in SIGCOMM 93, Sept.
1993.)

Rakesh Agrawal, Ramakrishnan Srikant, “Fast Algorithms
for Mining Association Rules”, Proceedings of the 20th
VLDB Conference.

Maurice Houtsma, Arun Swami, “Set-Oriented Mining for
Association Rules in Relational Databases”, 11th
International Conference on Data Engineering.

(2]

(3]

(4]

(5]

(6]

496

[7] Rakesh Agrawal and Ramakrishnan Srikant, “Mining
Quantitative Association Rules in Large Relational Tables”,
Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen,
Charles J. Stone, “Classification And Regression Trees”,
Chapman & Hall, 1998.

Steven D. Gribble, Gurmeet Singh Manku, Drew Roselli,
and Eric A. Brewer, Timothy J. Gibson and Ethan L. Miller,
“Self-Similarity in File Systems”, SIGMETRICS ’98
Madison, WI, USA.

[10] Ashok Joshi, William Bridge, Juan Loaiza, Tirthankar
Lahiri, “Checkpointing in Oracle”, Proceedings of the 1998
VLDB. New York, 1998.

[11] Walter Willinger, Vern Paxson, and Murad Tagqu, “Self-
similarity and Heavy Tails: Structural Modeling of Network
Traffic. In A Practical Guide to Heavy Tails: Statistical
Techniques and Applications”, Adler, R., Feldman, R., and
Taqqu, M.S., editors, Birkhauser, 1998.

[12] C. H. Cheng, A. W. Fu, and Y. Zhang. “Entropy-based
Subspace Clustering for Mining Numerical Data”, In
SIGKDD, pages 84-93, 1999.

[13] Oracle, “Oracle 8i Tuning, Release 8.1.5”, Part No. A67775-
01, Oracle Corporation.

(8]

(9]

[14] Oracle, “Oracle Enterprise Manager Database Tuning with
the Oracle Tuning Pack”, Release 9.0.1, Part Number
A86647-01, Oracle Corporation.

[15] Ken Gottry, “Successful Solaris Tuning”, SysAdmin, the
Journal for UNIX Systems and Administrators, 2001.

[16] Trevor Hastie, Robert Tibshirani, and Jerome Friedman,
“The Elements of Statistical Learning, Data Mining,
Inference, and Prediction”. Springer 2001.

[17] Tirthankar Lahiri, Amit Ganesh, Ron Weiss, and Ashok
Joshi, “Fast-Start: Quick Fault Recovery in Oracle”,
Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, 2001.

[18] Transaction Processing Performance Council, “TPC
Benchmark C Standard Specification Revision 5.0”,
http://www.tpc.org/tpce/spec/tpee_current.pdf.

[19] Haixun Wang, Wei Wang, Jiong Yang, Philip S. Yu,
“Clustering by Pattern Similarity in Large Data Sets”,
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data.

