=

Scalable Media Streaming in Large Peer-to-Peer Networks

Duc A. Tran

Kien A. Hua

*

Tai T. Do

School of Electrical Engineering and Computer
Science
University of Central Florida
Orlando, FL 32816

dtran,kienhua,tdo@cs.ucf.edu

ABSTRACT

We design a peer-to-peer technique for single-source media
streaming. This technique allows the media server to dis-
tribute content to many clients by organizing them into an
appropriate tree rooted at the server. This application-layer
multicast tree has a height O(logN) where N is the number
of clients, and a node degree bounded by a constant. This
helps reduce the number of processing hops on the delivery
path to a client while avoiding network bottleneck. Conse-
quently, the end-to-end delay is kept small. Although one
could build a tree satisfying such properties easily, an effi-
cient control protocol between the nodes must be in place to
maintain the tree under the effects of network dynamics and
unpredictable client behaviors. Our technique handles such
situations gracefully requiring a constant amortized control
overhead. Especially, failure recovery can be done regionally
with little impact on the existing clients.

Keywords

Application-Layer Multicast, Media Streaming, Peer to Peer

1. INTRODUCTION

We are interested in the problem of streaming live bandwidth-
intensive media from a single source to a large quantity of

receivers. This problem is challenging due to the lack of

IP Multicast on the current Internet. The simplest solution

dedicates an individual connection to stream the content to

each receiver, however this would not be scalable. Therefore,

we seek a solution that employs IP unicast only but offers

significantly better efficiency than the dedicated-connection

approach.

In the absence of extra resources, we opt to use the peer-
to-peer (P2P) approach to tackle the problem. In a media
streaming P2P architecture, the delivery tree is built rooted

*This research is partially supported by US National Science
Foundation under grant ANI-0088026

Permission to make digital or hard copies ot all or part ot this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

Multimedia’ 02, December 1-6, 2002, Juan-les-Pins, France.

Copyright 2002 ACM 1-58113-620-X/02/0012...$5.00.

247

at the source and including all and only the receivers. A
subset of receivers get the content directly from the source
and the others get it from the receivers in the upstream. P2P
consumes the source’s bandwidth efficiently by capitalizing a
receiver’s bandwidth to provide services to other receivers.
On the other hand, the following issues are important in
designing an efficient P2P technique:

First, the end-to-end delay from the source to a receiver may
be excessive because the content may have to go through
a number of intermediate receivers. To shorten this de-
lay (whereby, increasing the liveness of the media content),
the tree height should be kept small and the join procedure
should finish fast. The end-to-end delay may also be long
due to an occurrence of bottleneck at a tree node. The
worst bottleneck happens if the tree is a star rooted at the
source. The bottleneck is most reduced if the tree is a chain,
however in this case the leaf node experiences a long delay.
Therefore, apart from enforcing the tree to be short, it is
desirable to have the node degree bounded.

Second, the behavior of receivers is unpredictable; they are
free to join and leave the service at any time, thus abandon-
ing their descendant peers. To prevent service interruption,
a robust technique has to provide a quick and graceful re-
covery should a failure occur.

Third, for efficient use of network resources and due to the
resource limitation at each receiver, the control overhead
at each receiver should be small. This is important to the
scalability of a system with a large number of receivers.

‘We propose a technique that addresses all the issues above.
Our multicast tree has a height O(logrN) where N is the
number of receivers and k a constant, and a node degree
O(k?). Furthermore, the effects of network dynamics and
unpredictable receiver behaviors are handled gracefully re-
quiring worst-case control overhead of O(logy V) for the worst
receiver and O(k) for an average receiver. Especially, fail-
ure recovery can be done regionally with only impact on a
constant number of existing receivers and no burden on the
source. In comparison, no previous solution [1, 2, 3, 4] to
our problem can provide all the above features.

‘We present the protocol details of our scheme in the next
section, and conclude this paper in Section 3 with a brief
comparison to previous work.

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

4Q ’S

O1 02 Q3 41‘ ‘s 50 6O Q7

Lus 0008 0080 0800 8000 000 (008 G008 8000

L, 0000 0006 's

‘ O non-head @ head S:server ‘

Figure 1: Administrative organization of peers

2. PROPOSED SOLUTION

For the ease of exposition, we refer to the media source as
the server and receivers as clients. They all are referred to as
“peers”. Firstly, we describe an administrative organization
of the peers when the system is in the stable state. Secondly,
we propose how the multicast tree is built based on this
organization, and then the control protocol in which peers
exchange state information. Finally, we propose policies to
adjust the tree as well as the administrative organization
upon a client join and departure.

2.1 Administrative Organization

An administrative organization is used to manage the peers
currently in the system and illustrated in Fig. 1. Peers are
organized in a multi-layer hierarchy of clusters recursively
defined as follows (where H is the number of layers, k > 3
is a constant):

(1) Layer 0 contains all peers.

(2) Peers in layer j < H — 1 are partitioned into clusters of
sizes in [k, 3k]. Layer H — 1 has only one cluster which has
a size in [2, 3k].

(3) A peer in a cluster at layer j < H is selected to be the
head of that cluster. This head becomes a member of layer
j+1if j < H—1. The server S is the head of any cluster
it belongs to.

Initially, when the number of peers is small, the administra-
tive organization has only one layer containing one cluster.
As clients join or leave, this organization will be augmented
or shrunk. The cluster size is upper bounded by 3k because
we might have to split a cluster later when it becomes over-
size. If the cluster size was upper bounded by 2k and the
current size was 2k + 1, after the split, the two new clusters
would have sizes k and k + 1 and be prone to be undersize
as peers leave.

The above structure implies H = O(logyN) where N is the
number of peers. Additionally, any peer at a layer j > 0
must be the head of the cluster it belongs to at every lower
layer. We note that this hierarchy definition is not new. It
was indeed presented in a similar form in [1]. How to map
peers into the administrative organization, to build the mul-
ticast tree based on it, and to update these two structures
under network dynamics are our main contribution.

248

‘ O non-head @ head S:server ‘

Figure 2: The multicast tree of peers (H = 3, k =
4)

We use the following terms for the rest of the paper: (1)
Member: Non-head peers of a cluster headed by a peer X
are called “members” of X; (2) Sibling head: A non-head
clustermate of a peer X at layer j > 0 is called a “sibling
head” of layer-(j - 1) members of X; (3) Sibling member:
Layer-(j-1) members of X are called “sibling members” of
any layer-j clustermate of X; and (4) Sibling cluster: The
layer-(j-1) cluster of X is called a “sibling cluster” any layer-
j clustermate of X.

2.2 Multicast Tree

Unlike in [1], the administrative organization in our ap-
proach does not infer a data delivery topology. For instance,
we will see shortly that the head of a cluster at a layer j <
H —1 does not forward the content to any of its members as
we might think of. In this section, we propose the rules to
which the multicast tree must be confined and explain the
motivation behind that. The join, departure, and optimiza-
tion policies must follow these rules. The rules are listed
below (demonstrated by Fig. 2):

(1) A peer, when not at its highest layer, cannot have any
link to/from any other peer. E.g., peer 4 at layer 1 has
neither outgoing nor incoming links.

(2) A peer, when at its highest layer, can only link to its
sibling members. E.g., peer 4 at layer 2 only links to peers
5, 6, and 7 at layer 1, which are sibling members of 4. The
only exception is the server; at the highest layer, the server
links to each of its members.

(3) At layer j < H —1: since non-head members of a cluster
cannot get the content from their head, they must get it
somehow. In our multicast tree, they get the content directly
from one and only one sibling head. E.g., non-head peers in
layer-0 cluster of peer 1 have a link from their sibling head
2; peers 1, 2 and 3 have a link from their sibling head S.

It is trivial to prove the above rules guarantee a tree struc-
ture including all the peers. Hereafter, the terms “parent”,
“children”, “descendant” are used with the same meanings
as applied for conventional trees. The term “node” is used
interchangeably with “peer” and “client”.

Theorem 1: The worst-case node degree of the multicast
tree is O(k?).

Theorem 2: The height of the multicast tree is O(logrN)
where N is the number of peers.

It now comes understandable why we do not use the head of
a cluster to link to its members because doing so would in-
crease the worst-case node degree to O(klogrIN); especially,
the bottleneck would occur very early in the delivery path.
Our using a sibling head as the parent has another nice
property. Indeed, when the parent peer fails, the head of its
children is still working, thus helping reconnect the children
to a new parent quickly and easily. We will discuss this in
more detail shortly.

2.3 Control protocol

To maintain its position in the multicast tree and the ad-
ministrative organization, each node X in a layer-j cluster
periodically communicates with its layer-j clustermates, its
children and parent on the multicast tree. The theorem be-
low tells that the control overhead for an average member is
a constant. The worst node has to communicate with O(k
X logrIN) other nodes, this is however acceptable since the
information exchanged is just soft state refreshes.

Theorem 3: Although the worst-case control overhead of a
node is O(k x logyN), the amortized worst-case overhead is

O(k).

2.4 Client Join

The multicast tree is augmented whenever a new client joins.
The new tree must not violate the rules specified in Section
2.2. We propose the join algorithm below.

A new client P submits a request to the server. If the admin-
istrative organization currently has one layer, P simply con-
nects to the server. Otherwise, the join request is redirected
along the multicast tree downward until finding a proper
peer to join. The below steps are pursued by a peer X on
receipt of a join request (in this algorithm, D(Y) denotes
the currently end-to-end delay from the server observed by
a peer Y, and d(Y, P) is the delay from Y to P measured
during the contact between Y and P):

1. If X is a leaf
1.1. Add P to the only cluster of X
1.2. Make P a new child of the parent of X
2. Else
2.1. If Addable(X)
2.1.1. Select a child Y:
Addable(Y) and D(Y)+d(Y, P) is min
2.1.2. Forward the join request to Y
2.2. Else
2.2.1 Select a child Y:
Reachable(Y) and D(Y)+d(Y, P) is min
2.2.2. Forward the join request to Y

The goal of this procedure is to add P to a layer-0 cluster
C and force P to get the content from the parent of non-
head members of C. The size of C should be in [k, 3k) to
avoid being oversize. The end-to-end delay is attempted to
be better after each node contact.

Theorem 4: The join overhead is O(logx N) in terms of num-
ber of nodes to contact.

The join procedure terminates at step 1.2 at some leaf X,

249

J \V; .Yfz

Ex-children of Y

— Asetoflinks
— Asingle link to a child

(a) Before Splitting (b) After Splitting

Figure 3: Split Algorithm

which will tell P about other members of the cluster. P then
follows the control protocol as discussed earlier. If the new
size of the joined cluster is still in [k, 3k], no further work is
needed. Otherwise, this cluster has to be split so that the
newly created clusters must have sizes in [k, 3k]. To avoid
the overhead of splitting, we propose to do so periodically,
not right after a cluster size becomes 3k+1. Suppose we
decide to split a layer-j (j € [1, H-2]) cluster’ with a head
X and non-head peers X1, .., X,,. The non-head currently
get the content from a peer X' and X currently gets the
content from X”. Let x;; be the number of peers that are
both children of X; and layer-(j-1) members of X;. Clearly,
zi; = 0 for all ¢ because of the rules described in Section 2.2.
The split takes several steps (illustrated in Fig. 3):

(1) Partition {X, X, .., X,} into two sets U and V such
that the condition |U|, |V| € [k, 3k] is satisfied first, and
then Yx; cv,x,ev (¢s+1;) is minimized. This condition is to
effortfully reduce the number of peer reconnections affected
by the split. Suppose X € U.

(2) For each node X; € U and each node X; € V such that
x4 > 0, remove all the links from X; to layer-(j-1) members
of X, and select a random peer in V other than X; to be the
new parent for these members. Inversely, for each node X;
€ V and for each node X; € U such that z;; > 0, a similar
procedure takes place except that the new parent must not
be peer X.

(3) Now we need to elect a new head Y for cluster V. Y is
chosen to be a peer in V' with the minimum degree because
we want this change to affect a smallest number of child
peers. Y becomes a new member of the cluster at layer-
(j+1) which also contains X. Consequently, the children
of Y (after Step 2) now cannot get data from Y anymore
(due to the rules in Section 2.2). For each child cluster (i.e.,
cluster whose non-head members used to be children of Y),
we select a peer Z # Y in V having the minimum degree to
be the new parent; Z must not be the head of this cluster.
Furthermore, the highest layer of Y is not layer j anymore,
but layer j+1. Therefore, we remove the current link from
X' to Y and add a link from X" to Y. Y will happen to
have no children at this moment. This still does not violate
the rules enforcing our multicast tree.

It might happen that the cluster on layer j+1 becomes over-

'The cases where j = 0 or j = H-1 are even easier and can
be handled similarly.

size due to admitting Y. This would have to wait until the
next period when the split algorithm will be called. The split
algorithm is run locally by the head of the cluster to be split.
The results will be sent to all peers that need to change their
connections. Since the number of peers involved in the algo-
rithm is a constant, the computational time to get out the
results is not a major issue. The main overhead is the num-
ber of peers that need to reconnect. However, the theorem
below tells that the overhead is indeed very small.

Theorem 5: The worst-case split overhead is O(k?).

25 Client Departure

The new tree after a client departs must not violate the rules
specified in Section 2.2. We propose the algorithm to handle
a client departure below.

Consider a peer X who departs either purposely or acci-
dentally due to failure. As a result of the control protocol
described in Section 2.3, the parent peer of X, all members
of X (if any), and all children of X (if any) are aware of this
departure. The parent of X needs to delete the link to X.
If X’s highest layer is layer 0, no further overhead emerges.

Suppose that X’s highest layer is j > 0. For each layer-(j-
1) cluster whose non-head members are children of X, the
head Y of the cluster is responsible for finding a new parent
for them. Y just selects Z, a layer-j non-head clustermate,
that has the minimum degree, and asks it to forward data
to Y’s members at layer j-1.

Furthermore, since X used to be the head of j clusters at
layers 0, 1, .., j-1, they must have a new head. This is
handled easily. Let X’ be a random member of X at layer 0.
X' will replace X as the new head for each of those clusters.
X' also appears at layer j and gets a link from the existing
parent of X. No other change is required. The overhead of
failure recovery is consequently stated as follows:

Theorem 6: In the worst case, the number of peers that need
to reconnect due to a failure is O(k?).

As the result of many client departures, a cluster might be-
come undersize. In this case, it is merged with another clus-
ter of the same layer. Suppose that U is an undersize cluster
at layer j to be merged with another cluster V. The sim-
plest way to find V is to find a cluster having the smallest
size. Then, the following steps are taken to do the mergence:
(1) The new head of U+V is chosen between the head X
of U and the head Y of V. f Y (or X) is the head of X
(or V) at the next layer, Y (or X) will be the new head.
In the other cases, the new head is the one having a larger
degree to reduce the number of children to reconnect (since
the children of the non-chosen must reconnect). Supposing
X is the new head, Y will no longer appear at layer j+1.

(2) The new parent of non-head members in U+V is chosen
to be a layer-(j+1) non-head clustermate of X and Y. This
new parent should currently have the minimum degree.

(3) If the existing children of Y happen to be U, or that of
X happen to be V, no more work is needed since Step (2)
already handles this case. Otherwise, two possibilities can

250

happen:

e X is the head at layer j+1: For each child cluster of
Y, asibling head Z # Y that has the minimum degree
will be the new parent; Z must not be the head of this
cluster.

e X is not the head at layer j+1: The new parent for
the existing children of Y will be X.

Similar to the split procedure, the merge procedure is called
periodically to reduce overhead. It runs centrally at the head
of U with assistance from the head of V. Since the number
of peers involves is a constant, the computational complexity
should be small. In terms of number of reconnections, the
worst-case overhead is resulted from the theorem below.

Theorem 7: The worst-case merge overhead is O(k?).

3. CONCLUSIONS

We presented in this short paper a technique for streaming
media in a large P2P network. Our goal was to reduce the
worst-case values for important performance metrics such
as end-to-end delay, bandwidth bottleneck, failure recovery
overhead, control overhead, and re-configuration overhead.
No previous solution [1, 2, 3, 4] can achieve all the results
as provided by our technique. Indeed, [2] has to get the
server involved whenever a failure occurs. [4] also puts a
heavy burden on the server since it assumes that the server
has full knowledge of all distribution trees. [3] incurs severe
peer bottleneck because the tree height is forced to be at
most 2. The most recent work [1] takes advantage of the
multi-layer hierarchical clustering idea as we do, but incurs
a high bottleneck of O(logrN). Though an extension could
be done to reduce this bottleneck to a constant, the tree
height could become O(logrN X logrN). Our technique,
no worst than theirs in terms of the other metrics, has a
worst-case delay of O(logN) while keeping the bottleneck
bounded by a constant. Furthermore, the failure recovery
overhead in our technique is bounded by a constant while [1]
requires O(logyN). All these are a significant improvement
for bandwidth-intensive applications such as media stream-
ing.

4. REFERENCES

[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.
Scalable application layer multicast. In ACM
SIGCOMM, Pittsburgh, PA, 2002.

[2] H. Deshpande, M. Bawa, and H. Garcia-Molina.
Streaming live media over a peer-to-peer network. In

Work at CS-Stanford. Submitted for publication, 2002.

C. Guo, G. Shen, S. Li, and Y. Zhong. Pasa:
Peer-assisted architecture and protocol for scalable
multimedia streaming. Joined Work at Microsoft
Research and Tsinghua. Unpublished, 2002.

(3]

[4] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and
K. Sripanidkulchai. Distributing streaming media
content using cooperative networking. In ACM/IEEE

NOSSDAV, Miami, FL, USA, May 12-14 2002.

