4/21/22

Bitcoin Blockchain

Prof. David (Duc) Tran, PhD
University of Massachusetts, Boston (USA)

UMASS
BOSTON

Bitcoin (Satoshi Nakamoto, 2008)

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main

Blockchain “computer” architecture

3. Logic: what specific
application is served (dApp)

~ Smart Contract

Bitcoin —

1. Networking: how Nodes B Ethefeum

P2P message with each other

(|

Universal Blockchain: can run
any-purposed applications

Public vs. Private Blockchain?

* Public blockchain: service Boinohs omvone con
available to everybody s wnaargmacten
* Private blockchain: availableto <Sripple

Permissionless

certain permitted participants ~ emisercs Bockanare alow
o — ople fo act

rarsocingare | 0 anomymotsl vou

o vremsooen entty)

Case by case basis: can build ¥ FRERIC
“permissionless/permissioned” e pivate: in “prvore’ Bockehains.
and “public/private” i o PosPibwho o approved

to participate can

What is Bitcoin Blockchain?

« Bitcoin is a blockchain network implementing a digital currency
« Keep money in your own (electronic) wallet
« Transfer money P2P without intermediaries (e.g., banks)
* No need for real-life identity
* No double spending, no fake money possible
« Bitcoin currency: a digital concept that represents “money” (a
unit of value) in this blockchain network
* Open-source

* We can clone bitcoin software to build another blockchain network, not
necessarily about money. Remember, it is a blockchain network first

What is a valid transaction

A transaction = Alice sends “money” (coin) to Bob

3 things to consider

* Bob is the only recipient, not anyone else

* Bob can verify that Alice must undeniably be the sender

* Alice has enough money to send

HOW?

4/21/22

Public-Key cryptography

------------------ K, Bob's public key

= Ké Bob’s private key

message encryption cyphertext message

algorithm

decryption
algorithm

c=Kg(m) m=K,y(c)

Guarantee Bob is the only recipient of the transaction

Prof.David (Duc) Tran | duc.tran@umbedu

Bitcoin Address

« To hold Bitcoin, need a wallet (like a bank account)
« Address of Bob is hash value of his public key

Address = HASH (public key)
Example: 1BvBMSEYstWetqTFn5Audm4GFg7xJaNVN2

7 8
Private Key as a Digital Signature Sign and Verify a Transaction
s Transaction Transaction Transaction
message) H() H(m) Owner 1's Owner 2's Owner 3's
n _.“_l : | Public Key 1 ‘ Public Key ‘ Public Key
| H N\ v 2
Q > v
H() Internet <\/
7Hm) | 1 : i, A (AR :
o, Wi o ce® ESRNES o)
Sign with her private key i Verify using Alice’s public key S5
By signing, Alice proves that she is the sender; cannot deny that fact ’ Owner 1's | Owner 2's ' Owner 3's
Private Key Private Key Private Key
9 10
Ledger: Account-based Ledger: Transaction-based
Create 25 coins and credit to AliCe ccqrep gy miners heateng Whorifli
Transfer 17 coins from Alice to Bobg o uice) LTI entying
- Inputs: 1[0] whether a
Transfer 8 coins from Bob to Carolg. ., g Outputs: 17.0-Bob, 8.0-Alice transaction is
. » SIGNED(Alice) .
Transfer 5 coins from Carol to Alicegqen carol Inputs: 2[0] valid is easy
2 s v
Transfer 15 coins from Alice to Davidg,epice) Outputs: 8.0-Carol, 9.0-Bob using “input
SIGNED(Bob) .
Inputs: 2[1] pointers
* How to know if a transaction is valid? Outputs: 6.0-David, 2.0-Alice
— E.g., does Alice have the 15 coins to transfer to David?
11 12

4/21/22

A bitcoin transaction: enough fund to send?

Inputs Outputs

* Where the Transaction
money comes — * Address of each
from? ——» In Out ———» recipient

* Each input is the ln | [» * The amount of
ID of an unspent — money sent
transaction in — ™

which the sender

receives mone
4 1) Sum of Outputs <= Sum of Inputs

2) Input transactions must be unspent yet

Bitcoin Transaction Example

TXID

hash

INPUT TX ID

out

Value"'5.93100000
b U

Value':*1678.06900000

DDRESS OF PAYEE

SIGNATURE

H160 4b3SE739FC79B4bE101278988beba0cc00BETadc OP.E RIF

ADDRESS OF PAYEE

~currently at version 1
- number of input amounts
- number of output amounts
~should be 0 o in the past
For the tx to be valid and

included in a block

-of the transaction in bytes

13

14

Transaction Lock Time

* Locktime defines the earliest time that a transaction can be added to
the blockchain.
* It is set to zero in most transactions to indicate immediate execution.

* If locktime is nonzero and below 500 million, it is interpreted as a
block height, meaning the transaction is not included in the
blockchain prior to the specified block height.

« If it is above 500 million, it is interpreted as a Unix Epoch timestamp
(seconds since Jan-1-1970).

* The use of locktime is equivalent to postdating a paper check.

transactions and hundreds of blocks

larger unit

Transaction Outputs and Inputs (UTXO)

* Blockchain = a collection of UTXO transactions

* Whenever a user receives bitcoin, that amount is recorded within the blockchain as a
UTXO. Thus, a user’s bitcoin might be scattered as UTXO amongst hundreds of

* UTXO are tracked by every full-node bitcoin client in a database held in
memory, called the UTXO pool. New transactions consume (spend) one or
more of these outputs from this pool

* There is no “balance” or “account” associated with a bitcoin address
* The balance is computed by the wallet app: scanning the whole blockchain

* The bitcoin application can use several strategies to satisfy the purchase
amount: combining smaller units, finding exact change, or using a single

* Done by the user’s wallet automatically and invisible to users

15

16

Python script to call =
blockchain.info API = ~
to find UTXO of an =
address

$ python get-utxo.py

ebadfaa92f1fd29e2fe296eda702c48bd11£fd52313e986e99ddad9084062167:1 - 8000000 Satoshis
6596£d070679de96e405d52b51b8e1d644029108ecicbEeds1454486796alect:0 ~ 16050000 Satoshis
74d788804e2a2e10891d72753d1520dal206e6£4£20481cc1555b7f2cb44acal:0 - 5000000 Satoshis
b2affea89££82557c60d635a2a3137b8£88f12ecec85082£7d0alf82ee203ac4:0 ~ 10000000 Satoshis

Exam P | e Tx1 Bitcoin to Alice: 25 BTC

Tx2
Alice to Bob: 17

IN
ouT

N Give 25
Get 8in change
#

#1 to Alice (25)

Tx3
IN
#
out
#4 to Charlie (8)
#5 to Bob (9)
SIGNED(Bob)

Bob to Charlie: 8
Give 17, get 9 in change

out
#2 to Bob (17)
#3 to Alice (8)

SIGNED (Alice)

IN
#3

Alice to Dave: 3 | OUT
Give 8 #6 to Dave (3)
#7 to Alice (5)

Get 5in change /
SIGNED(Alice)

17

18

4/21/22

Old system state

Blockchain state

UTXO A: value = 1 BTC, owner = Alice

« State = The set of cu rrently UTXO B: value =2 BTC, owner = Bob

unspent transactions

(UTXO: Unspent Transaction
Output)

Transaction

Input Output
UTXOB UTXOC (05 BIC, Bob)
UTXO D (15 BTC, Alice)

New system state

'UTXO A: value = 1 BTC, owner = Alice
UTXO C: value = 0.5 BTC, owner = Bob
UTXO D: value = 1.5 BTC, owner = Alicg,

Bitcoin Protocol

* Each node: upon receipt of a new transaction from application layer, send
it to all nodes
« Other nodes: on receipt of a transaction from another node
* Validate the transaction (make sure it is a valid transaction) = put in a mempool
* Put valid transactions into 1 block
. “Timestamp” the block (to prove the birth of this block)
* Add block to local blockchain copy
* Broadcast this block to all other nodes
« Other nodes: on receipt of an arriving block (1% time)

* Validate the block (Check the integrity of hash value with the previous block + check
the validity of all transactions in the block)

* Add this block to local blockchain copy

19 20
Timestamping Bitcoin Timestamping
* Satoshi: “/ discovered Bitcoin in 2008” Timestamp = HASH(block + timestamp of prev_block)
* You: “! discovered Bitcoin in 2007” =Q I oo} -
* That means YOU are the inventor? |
— Yes, if timestamp is correct! Block Block)
— Need a trusted timestamper tem | [tem | [. [em | [tem | [..]
* Timestamping = a kind of cipher, to prove the existence of certain
data (e.g., contracts, medical records, ...) before a certain time point * Timestamping = evidence of birth of some information for the first time
against claims otherwise « Each time a block is recorded on the blockchain, it needs to be
timestamped
« Blockchain has no intermediaries, which node will do the timestamping?
21 22
Timestamp (1610): Use Anagram Robert Hooke (1660)
When Robert Hooke discovered Hooke's law in
1660, he wanted to claim invenNon without
showing content because he was not ready to
publish; so he wrote yyy
“ceiiinosssttuv” ‘jg
:" E ILI
Gali!eo Ga!ilei discoveredlthe rings of Sgturn in 1610. He wrote (anagram of “ut tensio, Sicﬁ
smaismrmilmepoetaleumibunenugttauiras Vis” with Latin meaning “as the
to claim alNssimum planetam tergeminum observavi tensi the force”) g
("l observed the most distant planet to have a triple form") CHSION, 50 thedorce
23 24

4/21/22

Anagram: Cac vi du vui

* "resoul" = "fluster"

* "funeral" = "real fun"

« "adultery" = "true lady"

* "customers" = "store scum"

« "forty five" = "over fifty”

« "William Shakespeare" = "I am a weakish speller”

Modern Timestamping

Trusted timestamping

Withn a corpany imestamping Autorty (TSA)
1011...10101 1011...10101]
e jrots..zo10) Lo11..10101) 4. vy
Caue v
vy
i s ada
0010..01011) signature of the:
Aoy privte ml ' 1o the tmestampt
e o

bual p——
. Ay

Store together

25 26
Checking Timestamp Bitcoin Timestamping
* Anyone can timestamp - called a Miner (mining bitcoin)
Data | = Timestamp| o * Only need a computer running the Bitcoin Client software
Calculsie hash(. Lr?gsﬁtci\r/eigetg to participate = receive 6.25 BTC (currently) for each good
Al iblic ke f
ot tot0 ‘ Tresamping Auborty
Calculate hash i Challenge:
N ¥ . [E’vembody wants to create the next block, choose whom? (Consensus
0010...0101. 2 0010...0101. roblem
) * How to discourage bad nodes?
If data or timestamp are changed, hashcode will disagree MProof»of—Work
27 28
“Proof of Work” (PoW) POW is not new
Miner Node * Proposed by Dwork & Naor to prevent email spamming (1992)
» Solve 1 difficult “computational puzzle” * Every time you send an email, your computer must solve a computational
. y . puzzle
* If solving first > successful block = timestamp done! * The recipient’s email program ignores your email if you don’t attach the
solution to the puzzle.
Why Pow? * A similar idea was proposed in HashCash by Adam Back (1997) for
« It takes time to solve > discourage bad nodes from abusin anti-denial-of-service
X 8 o . g i * Bitcoin extends the PoW idea of HashCash
* Slow to create a block = scarcity for bitcoin = stable/increased price
« Stronger computer - faster timestamping = good competition
29 30

4/21/22

PoW Problem for Bitcoin

Block Block

7*{ Prev Hash ‘ | Nonce]

* Problem: Find Nonce (32-bit) such that HASH (block) < 2Ad
« Difficulty level (d) is dynamically adjusted such that only 1 block can be added in

every 10 minutes
* To solve, the only way is to try Nonce = 0, 1, 2, ... until the condition above is met

E‘ Prev Hash ‘ ‘ Nonce‘

Mining Pseudocode

TARGET = (65535 << 208) / DIFFICULTY;

coinbase_nonce = 0;

while (1) {

header = makeBlockHeader(transactions,

for (header_nonce = 0; header_nonce < 232; header_nonce++) {
hash_value = SHA256(SHA256(makeBlock(header, header_nonce));
if (hash_value < TARGET) break; //block found!

_nonce);

!

coinbase_nonce++;

Prof. David (Duc) Tran | duc.tran@umb.ecl

31

32

What If No NONCE Value is Found?

prev: H(') prev: HC)

mrkl_root: H() mrkl_root: CH
nonce: 0x7a83 nonce:
hash: _ 0x0000 7

The new block always contains a coinbase transaction (to claim reward)
There is a “coinbase” field where you can enter arbitrarily
If no NONCE is found to satisfy the zero prefix, try a different coinbase

Mining Difficulty

* Increased after every 2016 blocks (2 weeks)

| next_difficulty =
(previous_difficulty*2016*10 minutes) /
(time to mine last 2016 blocks)

* Each miner independently computes the
difficulty and will only accept blocks that meet
the difficulty that they computed

. David (Duc) Tran | ductrar

value and repeat PoW

33

34

Upgrade Hardware to “mine” faster

placer mining pit mining

gold pan sluice box

Prof.David (Duc) Tran an@urmb.ede

Decentralized Consensus

« In Bitcoin, each transaction is broadcast to the network
-> each node has its own pool of pending transactions
« Challenge: how to make sure that a pending transaction is inserted
only ONCE to the blockchain?
* Need a decentralized consensus protocol!
N nodes each provide a value. Some nodes are faulty
or malicious. A distributed consensus protocol must
1. Must terminate with a value agreed by all the honest nodes
2. This value must have been generated by an honest node

35

36

4/21/22

How to know which blockchain copy is good?

* Each node has its own local copy the blockchain, updated at different
times independently

* Nodes may be dishonest (sending bad blocks to other nodes, do not
process good blocks, etc.)

Consensus
Always treat the longest copy as the correct one

Bitcoin (Nakamoto) Consensus Protocol

* A breakthrough invention!

* Randomized + Asynchronous: tolerate f < n/2 corruptions

« First to reach consensus in large-scale, permissionless environments
* Nodes are free to join at any time

* No a priori knowledge of the identities of the nodes > participants must
communicate through unauthenticated channels

* In contrast, classic consensus is small-scale and permissioned
* Only a preconfigured, known set of nodes can join the protocol

37 38
Nakamoto Protocol: Proof of Work Mining
* “Permissionless” is difficult because of “Sybil attack” * Block structure: b = (hy,.;, pow, transactions, h)
* Due to unauthenticated communication channels, a player can impersonate * hiast: hash of the previous block
many others to outnumber the honest players and disrupt the consensus « pow: an unknown number (called “proof of work”) to be found
* Mining: to create a block b
* Proof of Work (PoW): To discourage Sybil attacks, participants have to * Find pow and set h accordingly such that
“pay” a cost to join the protocol
* By having to solve a computationally-expensive puzzle to cast votes h = Hash(h,,s;, pow, transaction) < difficulty_threshold
« A player’s voting power is proportional to its computational power
* PoW guarantees consistency and liveness as long as >50% is honest (difficulty_value is chosen such that only 1 block is created per 10 minutes)
39 40
Broadcast and Update Mining Incentive in Bitcoin
* The mining node: After mining a block * Classic consensus (google, facebook): focus on fault tolerance, no incentive
. because the components 'belong to the institution
* Add block to local chain Blockchain: d tralized ssionl
. . * Blockchain: decentralized, permissionless
Broadcast local chain to all other nodes - PoW: discourage bad players
* Incentive: encourage miners to create good blocks
« The other nodes: when hearing a valid chain .
« Valid = iff each block is consistent with the hash of the previous block Per-block minin 2 rfe\fvard . o
L) . N * Block reward: initially, block reward is 50 bitcoins. After every 210,000
* Replace the local chain with the received chain if the latter is longer blocks mined (~4 years), the reward is halved; eventually becoming zero by
« “Finalized” chain = this local chain up to the K last block (e.g., K=6 enough) year 2140 (when all 21 million bitcoins are minted)
« Transaction fee: every transaction can specify a fee to pay to the miner
that includes the transaction (higher fees speed up transaction processing)
41 42

4/21/22

Mining Difficulty

« Choose difficulty_threshold = p2™ (where m = bit-length of hash)

* Where p = prob {a node mines a block in a round}

* Prob {a good block is mined in a round} =1 - (1 - p)°-5tn

* #rounds to mine a new good block = 1/(1 - (1 - p)°*'")= 1/(0.51pn)
« It takes A rounds to propagate this block to all honest nodes

« The block mining efficiency ratio can be

1
0.51pm 1

- 1 ~1-051pnA
+A 1+051pnA pn

_1
051pn

Choosing Mining Difficulty

« q: fraction of dishonest mining power (hash rate)
* To be secure, honest hash rate must be higher than the dishonest

(1-9)(1-0.51pnA) > (1+ $)q (here, d chosen arbitrary small)
0.51pnA < 1- (1+ ¢)a/(1-q)
p < (1- (1+ $)a/(1-0))/(0.51nA)

* The smaller p 2 the more difficult mining
* In practice, choose p < min(0.5/(2n4), (1- (1+ ¢)a/(1-q))/(2nd))
* The larger network delay A, the weaker security

43 44
Consistency Guarantee Chain Growth Guarantee
* C1 = some honest node’s longest chain (last K blocks removed) in « #honest nodes that mine a block in each round = (1-q)np
round r * #igood blocks added > (1-g)np(1- 2nA)
* C2 = some honest node’s longest chain (last K blocks removed) in
roundt>r
>= ’ in wi
Consistency: C1 must be a prefix of C2 :‘tf'tlzgjtn(yl'fq)ng(/{?;:)A;lergislgsany honest node’s chain will have added
45 46
Liveness Guarantee Mining Fairness: It is not fair!
In every window of consecutive K blocks in honest nodes’ longest * Fairness iff the honest block creation rate = the honest hash rate
chains, more than p := 1 - 1/(1+9) fraction are mined by honest nodes « the honest block rate is 1 := 1 - 1/(1+¢)
* the honest hash rate is 1-q
What that means Assume A=0 (ideal case for honest nodes) and set (1-q) = (1+ ¢)q
* Every now and then, an honest block is added to the blockchain * We have p:= 1 - 1/(1+¢) = 1-q/(1-q) < (1-q) (not fair!)
* Hence, liveness: transactions submitted will be recorded in honest . i ith q=499 0,
, * Attack: lit th q=49% hash rat trol 96% the blocks!
nodes’ finalized chains fairly soon (after ©(K/((1-q)np) + A) rounds) atlack: 3 coaliion with @ %o hash rate can control 96% the blocks
47 48

4/21/22

Selfish Mining Attack

« Capitalize on the unfairness of Nakamoto consensus: damage
transactions, earn block mining rewards
« Selfish miner: mine a block B, but withhold it until some honest
miner also mines a block B’ at the same length (block number) as B
* When this happens, immediately releases B

« If B is transmitted faster than B’, honest nodes’ work (B’) is wasted
* Feasible: bad nodes collude with the network relay to deliver blocks to miners

releases OB
O O Op g withholds 5 < O OB @mmw/(,.-

oW t@

Majority is not Enough:
Bitcoin Mining is Vulnerable*

Selfish Mining Attack

Ittay Eyal and Emin Giin Sirer

Department of Computer
ittay.eyal@comell.edu

nce, Cornell University
tems.cs.comell.edu

* A coalition of selfish miners -
) TS stract. The Bicoi cryploeurreney records s transctions in pib-
with 49% mining power can e it U S o e e e
control 96% the blocks! '

nal wisdom asserts that the mining protocol is incentive-
d secure against, colluding minority groups, that is, it in-
centivizes miners to follow the protocol as prescribed.

‘We show that the Bitcoin mining protocol is not incentive-compatible.

1 T T 5 . 2
Honest mming We present an attack with which colluding mirners obtain a revenue larger
than their fair share. This attack can have significant consequences for
08t H Bitcoin: Rational miners will prefer to join the selfish miners, and the
colluding group will increase in size until it becomes a majoriy. At this
06 B
04t B
slfish mining by pools that command less than 1/4 of
53 | threshold i lower than the wrongly assumed 1/2 bound, b
= the current reality where a group of any size can compromise the syster.
0
0 01 02 03 04 05 1 Introduction

Pool size

Bitcoin [23] s a cryptocurrency that has recently emerged as a popylar medium
of exchange, with a rich and extensive ccosystem. ‘The Bitcoin network runs at

49

50

The Double Spending Problem

* A malicious miner makes a payment, then secretively creates a
second conflicting transaction in a new block, which allows him to
recover the funds

* Feasible if he controls q>50% hashrate = mining faster than the rest
of the network = make his local chain the longest

* But due to randomness, if q<50%, there is still a non-zero chance

* How to minimize risk? When somebody pays you, wait some time
before delivering service. In bitcoin, wait for 6 block confirmations

Why 6 Block Confirmations?

« Consider a miner with a fraction 0 < p < 1 of the total hash rate

* The whole network takes on average T, = 10 minutes to create a block
* The miner takes on average t, = tp time to create a block
*T=T1,T2,...,Tn:inter-block mining time of block 1, block 2, ...

* Because mining is a Markov process (i.e., memoryless), T follows an
exponential distribution

f(t) = ae
where a = 1/t,

51

52

S, =T +To+...+T,.
PO ISSON La W The random variable S, follows the n-convolution of the ex-
ponential distribution and, as is well known, this gives a Gamma

. distribution with parameters (n, @),
The time needed to

discover n blocks is fs.(0 = (n‘i—'ll)':“"e’”’
Sn =TT+ 4T, '

with cumulative distribution

el
i - (at)
N(t): #blocks validated Fs,(t) = ffs"(u)du =1-e™ Z S
at time t is Poisson ° =R
with mean value at From this we conclude that if N(z) is the process counting the

number of blocks validated at time ¢ > 0, N(f) = max{n >
0; S, < t}, then we have
@)

BIN® =n] = Fs,() = Fs,,() = — =™,

Winning the race against the malicious

* g: hash rate of the malicious
* N’(t) = #malicious blocks at time t, which is Poisson

* Xn=N’(Sn) : #malicious blocks for every n i
consecutive honest blocks PIX, =k] = pqu()
* Sn = time at which the honest has mined n blocks k
* Xn = a negative binomial variable with parameters (n, p)
How likely the malicious wins if behind PQ@) = Lipg(z,1/2)
the dishonest by z blocks? (similar to where I,(a, b) is the incomplete regularized beta function

the classical gambler’s ruin problem)

_T@+b) (T
1x<a,b)_r7(a)r(h)fo -

53

54

4/21/22

Probability to win the race

A=z4
p

* The bad node and good node are racing to grow their blockchain to
be the longer. Unless q > 50%, the bad node will win with probability

p = probability an honest node finds the next block
g = probability the attacker finds the next block

* Prob (attacker catch up) = 0 quickly as z large

& afe™ [(g/p)= ™ ifk<z
Z ! [1 ifk>z

i (1=(g/p)*™)

sigmapoolcom: 05%
OKExPool: 05 % %
WAYLCN: 07 %
S8 Crypro: 07%

Spiderpool: 10 %
BTCTOR: 15 %
unknown: 2.4 %
1THash: 2.4%
Foundry usa:2.7% /[
StushPoo: 3.7 %
Huobipook: 5.1%
BTCcom: 100%

ViaBTC: 117 %

Binance Pool: 12.9 %

ArkPool: 02 % |

Bitcoin Nodes

F2pool: 156 %

—— Poolin: 14.4%

AntPool: 13.9%

GLOBAL BITCOIN NODES DISTRIBUTION
Reachable nodes as of Sat Apr 17 2021 16:47:26
GMT+0700 (Indochina Time).

9796 NODES
2a-hour charts »

Top 10 countries with their respective number of
reachable nodes are as follow.

RANK COUNTRY NODES

1 United States 1879 (19.18%)

2 wa 1807 (18.45%)
3 Germany 1796 (18.33%)
4 France 616 (6.29%)
5 Netherlands 217 (4.26%)
6 Canada 321(3.28%)
7 United Kingdom 290 (2.96%)
8 Russian Federation 260 (2.65%)
9 Cchina 203 2.07%)

10 Ssingapore 157 (1.60%)

55 56
. . . 350 —#*— Bitcoin
Bitcoin is slow T oheon
300
i @ 250
* Block size =~ 1MB Blockchain S
: . storage & 200
* Transaction size = ~250 bytes size o
 Each block = ~4,000 transactions g 150
* Block rate = 1 per 10 minutes 2 100
* Transaction rate = 7 transactions per second 50
— Particularly slow for applications that support real-
time transactions 0
— Visa: 2000-10,000 trfansacﬁons/ s 10032%1301"33%&2%2@1g},%;f{g%‘ig%%;%ig&g&?ﬁx'“"
— Paypal: 100 transactions/s
57 58
Too Much Disk Space?
Lightweight Nodes
* Recall, a coin = a chain of transactions
* Vast majority of nodes are lightweight nodes i % .
; . e * Once the latest transaction is buried under
— Run the thin or Simple Payment Verification (SPV) .)
client software enough blocks, we can discard the previous
— Don’t store the full version of the blockchain spent transactions to save disk space
* For example, If you use a wallet program, it * But would that break the block’s hash?
would typically incorporate an SPV node. Only .
store the block headers and transactions that * Solution
represent payments to your addresses. — Create the block’s hash from its transactions
P based on the Merkle Tree
59 60

10

4/21/22

Ralph Merkle

Merkle Tree
H: hash func

Hig e.g., SHA-2

Hig Hs g

Verification: is Data D3 included?

Yes, proof is
(D3, Hy Hy,, Hs—s)

In general:

log(# of items)
Born February 2, 1952 (age 66) * Qu ick
Borkaey, Galforia
ey /"’1'2\ /Hu\ /Hss\ /Hn;\ « Little space
H, H, H; H, Hy H H Hg
A A A A A A A A A :) !)) A)
61 62
Bitcoin: Merkle Hash for Transactions Discarding Earlier Transactions
Block: Block
lv Root Hash is included Block Header (Block Hash) Block Header (Block Hash)
B0k [Block Header (Block Hash) Only Roo Cres]
in block hash [Rootfseh | [Rootissh |
[Lprv Hoan] [Norcs | Space requirement o N
N\ /
Ecot Hast ¢ Block header w/out Hash01 Hashzs | T3 [Hashot | H:shz:)
. 4 4
transaction: ~80 bytes \ \
. Hash0 Hash1 Hash2 Hash3 Hash2 Hash3
/Hfsm o 6 blocks added per hour o ‘
\ \ => 1year’s disk space:]
Hash0 Hash1 Hash2 Hash3 *y ekon p el el e g
[} T 365 24 6 80 - 4.2MB Transactions Hashed in a Merkle Tree After Pruning Tx0-2 from the Block
No problem to put block . - .
(vo] [ma] [pe] [ma] P . P We can discard earlier spent transactions (Tx0, Tx1, Tx2) of a
Transactions Hashed in a Merkle Tree header in memory coin to save space; to verify.[x3,.0nly need Hash01, Hash2.
63 64
Verifying Payment? Simple!
(CogeaiProtofWorchain o Failed Verification?
Block Header Block Header \'\\\ Block Header
Prev Hash Prev Hash | | Nonce | |—+»] PrevHash * Possible, when network is overpowere an attacker who fabricates
—f»{_PrevHash | [Nonce | { Prov Hash | Possible, wh twork p d by an attacker who fabricat
Merkle Root \ Merkle Root Vi Merkle Root transactions
~ ‘ * Need to alert network nodes
[Honot | Hess * When a node is alerted
A user needs verify Tx3 hd '\ (jnems Branch for Tx3) * Download the full block and alerted transactions to confirm the inconsistency
No need a full node e H\sm'w" — * Businesses that receive frequent payments should run their own FULL
™ : ° A e
1. Get block headers of “longest” L, nodes for more independent security and quicker verificaNon.
PoW chain (by querying nodes ™) ' node has accepted
until convinced of “longest”) it, and blocks added
2. Verify on Merkle branch linking Tx3 to after further
block it's timestampedin confirm acceptance f avid (0uc Tra | doc tran@urnt
65 66

11

4/21/22

Privacy

Traditional Privacy Model

Trusted
Identities Transactions } >< Third Party

New Privacy Model

Identities. ‘ Transactions [—# Public

Total privacy: Only transactions can be seen by the public. Addresses
are visible but nobody knows WHO owns them.

b{ Counterparty Public

Before Bitcoin (<2008)
Similar solutions, or relevant:

* Hashcash (Adam Back, 1997): introduced “Proof of Work” (PoW)
* bMoney (Wei Dai, 1998): PoW + Peer-to-Peer (similar to Bitcoin)
« Bitgold (Nick Szabo, 1998)

* Reusable PoW (Hal Finney, before 2008)

67

68

12

