
4/21/22

1

Bitcoin Blockchain
Prof. David (Duc) Tran, PhD

University of Massachusetts, Boston (USA)

1

Bitcoin (Satoshi Nakamoto, 2008)

Prof. David (Duc) Tran | duc.tran@umb.edu 

2

Blockchain “computer” architecture

1. Networking: how Nodes 
P2P message with each other

2. Consensus: how Nodes 
agree with each other 

3. Logic: what specific 
application is served (dApp)

Bitcoin
Ethereum

Smart Contract

Specific-purposed 
Blockchain

Universal Blockchain: can run 
any-purposed applications

Prof. David (Duc) Tran | duc.tran@umb.edu 

3

Public vs. Private Blockchain?

• Public blockchain: service 
available to everybody  

• Private blockchain: available to 
certain permitted participants

Case by case basis: can build 
“permissionless/permissioned” 
and “public/private”

Prof. Duc (David) Tran - duc.tran@umb.edu 4

4

What is Bitcoin Blockchain?

• Bitcoin is a blockchain network implementing a digital currency
• Keep money in your own (electronic) wallet
• Transfer money P2P without intermediaries (e.g., banks)
• No need for real-life identity
• No double spending, no fake money possible

• Bitcoin currency: a digital concept that represents “money” (a 
unit of value) in this blockchain network

• Open-source
• We can clone bitcoin software to build another blockchain network, not 

necessarily about money. Remember, it is a blockchain network first

Prof. David (Duc) Tran | duc.tran@umb.edu 

5

What is a valid transaction

A transaction = Alice sends “money” (coin) to Bob 

3 things to consider

• Bob is the only recipient, not anyone else
• Bob can verify that Alice must undeniably be the sender
• Alice has enough money to send

HOW?

Prof. David (Duc) Tran | duc.tran@umb.edu 

6



4/21/22

2

Public-Key cryptography

Guarantee Bob is the only recipient of the transaction
Prof. David (Duc) Tran | duc.tran@umb.edu 

7

Bitcoin Address

• To hold Bitcoin, need a wallet (like a bank account)
• Address of Bob is hash value of his public key

Address = HASH (public key)
Example: 1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2

Prof. David (Duc) Tran | duc.tran@umb.edu 

8

Private Key as a Digital Signature

By signing, Alice proves that she is the sender; cannot deny that fact

Prof. David (Duc) Tran | duc.tran@umb.edu 

9

Sign and Verify a Transaction

Prof. David (Duc) Tran | duc.tran@umb.edu 

10

11 12



4/21/22

3

A bitcoin transaction: enough fund to send?

Inputs
• Where the 

money comes 
from?

• Each input is the 
ID of an unspent 
transaction in 
which the sender 
receives money

Outputs
• Address of each 

recipient
• The amount of 

money sent

Prof. David (Duc) Tran | duc.tran@umb.edu 

1) Sum of Outputs <= Sum of Inputs
2) Input transactions must be unspent yet

13 14

Transaction Lock Time

• Locktime defines the earliest time that a transaction can be added to 
the blockchain. 

• It is set to zero in most transactions to indicate immediate execution. 
• If locktime is nonzero and below 500 million, it is interpreted as a 

block height, meaning the transaction is not included in the 
blockchain prior to the specified block height. 

• If it is above 500 million, it is interpreted as a Unix Epoch timestamp 
(seconds since Jan-1-1970). 

• The use of locktime is equivalent to postdating a paper check.

Prof. David (Duc) Tran | duc.tran@umb.edu 

15

Transaction Outputs and Inputs (UTXO)

• Blockchain = a collection of UTXO transactions
• Whenever a user receives bitcoin, that amount is recorded within the blockchain as a 

UTXO. Thus, a user’s bitcoin might be scattered as UTXO amongst hundreds of 
transactions and hundreds of blocks

• UTXO are tracked by every full-node bitcoin client in a database held in 
memory, called the UTXO pool. New transactions consume (spend) one or 
more of these outputs from this pool
• There is no “balance” or “account” associated with a bitcoin address

• The balance is computed by the wallet app: scanning the whole blockchain
• The bitcoin application can use several strategies to satisfy the purchase 

amount: combining smaller units, finding exact change, or using a single 
larger unit
• Done by the user’s wallet automatically and invisible to users

Prof. David (Duc) Tran | duc.tran@umb.edu 

16

Python script to call
blockchain.info API 
to find UTXO of an 
address

Prof. David (Duc) Tran | duc.tran@umb.edu 

17

Example

Prof. David (Duc) Tran | duc.tran@umb.edu 

18



4/21/22

4

Blockchain state

• State = The set of currently 
unspent transactions
(UTXO: Unspent Transaction 
Output)

Prof. David (Duc) Tran | duc.tran@umb.edu 

19

Bitcoin Protocol

• Each node: upon receipt of a new transaction from application layer, send 
it to all nodes
• Other nodes: on receipt of a transaction from another node

• Validate the transaction (make sure it is a valid transaction) à put in a mempool
• Put valid transactions into 1 block
• “Timestamp” the block (to prove the birth of this block)
• Add block to local blockchain copy
• Broadcast this block to all other nodes

• Other nodes: on receipt of an arriving block (1st time)
• Validate the block (Check the integrity of hash value with the previous block + check 

the validity of all transactions in the block)
• Add this block to local blockchain copy

Prof. David (Duc) Tran | duc.tran@umb.edu 

20

Timestamping

• Satoshi: “I discovered Bitcoin in 2008” 
• You: “I discovered Bitcoin in 2007” 
• That means YOU are the inventor? 

– Yes, if timestamp is correct!
– Need a trusted timestamper

• Timestamping = a kind of cipher, to prove the existence of certain 
data (e.g., contracts, medical records, ...) before a certain time point 
against claims otherwise 

Prof. David (Duc) Tran | duc.tran@umb.edu 

21

Bitcoin Timestamping

• Timestamping =  evidence of birth of some information for the first time
• Each time a block is recorded on the blockchain, it needs to be 

timestamped
• Blockchain has no intermediaries, which node will do the timestamping?

Prof. David (Duc) Tran | duc.tran@umb.edu 

22

Timestamp (1610): Use Anagram

Galileo Galilei discovered the rings of Saturn in 1610. He wrote 
smaismrmilmepoetaleumibunenugttauiras
to claim alNssimum planetam tergeminum observavi
("I observed the most distant planet to have a triple form")

Prof. David (Duc) Tran | duc.tran@umb.edu 

23

Robert Hooke (1660)

When Robert Hooke discovered Hooke's law in 
1660, he wanted to claim invenNon without 
showing content because he was not ready to 
publish; so he wrote 

Prof. David (Duc) Tran | duc.tran@umb.edu 

24



4/21/22

5

Anagram: Các ví dụ vui

• "resoul" = "fluster" 
• "funeral" = "real fun" 
• "adultery" = "true lady" 
• "customers" = "store scum" 
• "forty five" = "over fifty” 
• "William Shakespeare" = "I am a weakish speller” 

Prof. David (Duc) Tran | duc.tran@umb.edu 

25

Modern Timestamping

Prof. David (Duc) Tran | duc.tran@umb.edu 

26

Checking Timestamp

Prof. David (Duc) Tran | duc.tran@umb.edu 

27

Bitcoin Timestamping

• Anyone can timestamp à called a Miner (mining bitcoin)
• Only need a computer running the Bitcoin Client software
• Incentivized to participate à receive 6.25 BTC (currently) for each good 

block created

Challenge:
• Everybody wants to create the next block, choose whom? (Consensus 

Problem)
• How to discourage bad nodes?

Solution: Proof-of-Work

Prof. David (Duc) Tran | duc.tran@umb.edu 

28

“Proof of Work” (PoW)

Miner Node
• Solve 1 difficult “computational puzzle”
• If solving first à successful block à timestamp done!

Why PoW?
• It takes time to solve àdiscourage bad nodes from abusing
• Slow to create a block à scarcity for bitcoin à stable/increased price
• Stronger computer à faster timestamping à good competition

Prof. David (Duc) Tran | duc.tran@umb.edu 

29

POW is not new

• Proposed by Dwork & Naor to prevent email spamming (1992) 
• Every time you send an email, your computer must solve a computational 

puzzle 
• The recipient’s email program ignores your email if you don’t attach the 

solution to the puzzle. 

• A similar idea was proposed in HashCash by Adam Back (1997) for 
anti-denial-of-service 
• Bitcoin extends the PoW idea of HashCash

Prof. David (Duc) Tran | duc.tran@umb.edu 

30



4/21/22

6

PoW Problem for Bitcoin

• Problem: Find Nonce (32-bit) such that HASH (block) < 2^d
• Difficulty level (d) is dynamically adjusted such that only 1 block can be added in 

every 10 minutes
• To solve, the only way is to try Nonce = 0, 1, 2, … until the condition above is met

Prof. David (Duc) Tran | duc.tran@umb.edu 

31

Mining Pseudocode

Prof. David (Duc) Tran | duc.tran@umb.edu 

32

33

Mining Difficulty

Prof. David (Duc) Tran | duc.tran@umb.edu 

34

Upgrade Hardware to “mine” faster

Prof. David (Duc) Tran | duc.tran@umb.edu 

35

Decentralized Consensus

• In Bitcoin, each transaction is broadcast to the network 
à each node has its own pool of pending transactions

• Challenge: how to make sure that a pending transaction is inserted 
only ONCE to the blockchain? 

• Need a decentralized consensus protocol! 

Prof. David (Duc) Tran | duc.tran@umb.edu 

N nodes each provide a value. Some nodes are faulty 
or malicious. A distributed consensus protocol must 
1. Must terminate with a value agreed by all the honest nodes 
2. This value must have been generated by an honest node 

36



4/21/22

7

How to know which blockchain copy is good?

• Each node has its own local copy the blockchain, updated at different 
times independently

• Nodes may be dishonest (sending bad blocks to other nodes, do not 
process good blocks, etc.)

Consensus
Always treat the longest copy as the correct one

Prof. David (Duc) Tran | duc.tran@umb.edu 

37

Bitcoin (Nakamoto) Consensus Protocol

• A breakthrough invention!
• Randomized + Asynchronous: tolerate f < n/2 corruptions
• First to reach consensus in large-scale, permissionless environments 
• Nodes are free to join at any time
• No a priori knowledge of the identities of the nodes àparticipants must 

communicate through unauthenticated channels

• In contrast, classic consensus is small-scale and permissioned
• Only a preconfigured, known set of nodes can join the protocol

Prof. David (Duc) Tran - duc.tran@umb.edu 38

38

Nakamoto Protocol: Proof of Work

• “Permissionless” is difficult because of “Sybil attack”
• Due to unauthenticated communication channels, a player can impersonate

many others to outnumber the honest players and disrupt the consensus

• Proof of Work (PoW): To discourage Sybil attacks, participants have to 
“pay” a cost to join the protocol
• By having to solve a computationally-expensive puzzle to cast votes
• A player’s voting power is proportional to its computational power
• PoW guarantees consistency and liveness as long as >50% is honest

Prof. David (Duc) Tran - duc.tran@umb.edu 39

39

Mining

• Block structure: b = (hlast, pow, transactions, h)
• hlast: hash of the previous block
• pow: an unknown number (called “proof of work”) to be found

• Mining: to create a block b
• Find pow and set h accordingly such that 

h = Hash(hlast, pow, transaction) < difficulty_threshold

(difficulty_value is chosen such that only 1 block is created per 10 minutes)

Prof. David (Duc) Tran - duc.tran@umb.edu 40

40

Broadcast and Update

• The mining node: After mining a block 
• Add block to local chain
• Broadcast local chain to all other nodes

• The other nodes: when hearing a valid chain
• Valid = iff each block is consistent with the hash of the previous block
• Replace the local chain with the received chain if the latter is longer
• “Finalized” chain = this local chain up to the K last block (e.g., K=6 enough)

Prof. David (Duc) Tran - duc.tran@umb.edu 41

41

Mining Incentive in Bitcoin

• Classic consensus (google, facebook): focus on fault tolerance, no incentive 
because the components belong to the institution
• Blockchain: decentralized, permissionless

• PoW: discourage bad players
• Incentive: encourage miners to create good blocks

Per-block mining reward 
• Block reward: initially, block reward is 50 bitcoins. After every 210,000 

blocks mined (~4 years), the reward is halved; eventually becoming zero by 
year 2140 (when all 21 million bitcoins are minted) 
• Transaction fee: every transaction can specify a fee to pay to the miner 

that includes the transaction (higher fees speed up transaction processing)

Prof. David (Duc) Tran - duc.tran@umb.edu 42

42



4/21/22

8

Mining Difficulty

• Choose difficulty_threshold = p2m (where m = bit-length of hash)
• Where p = prob {a node mines a block in a round}
• Prob {a good block is mined in a round}  = 1 − (1 − p)0.51n

• #rounds to mine a new good block = 1/( 1 − (1 − p)0.51n )≈ 1/(0.51pn)
• It takes Δ rounds to propagate this block to all honest nodes
• The block mining efficiency ratio can be 

Prof. David (Duc) Tran - duc.tran@umb.edu 43

43

Choosing Mining Difficulty

• q: fraction of dishonest mining power (hash rate)
• To be secure, honest hash rate must be higher than the dishonest

(1-q)(1-0.51pnΔ) > (1+ φ)q   (here, φ chosen arbitrary small)
0.51pnΔ < 1- (1+ φ)q/(1-q)
p < (1- (1+ φ)q/(1-q))/(0.51nΔ)

• The smaller p à the more difficult mining
• In practice, choose p < min(0.5/(2nΔ), (1- (1+ φ)q/(1-q))/(2nΔ))
• The larger network delay Δ, the weaker security

Prof. David (Duc) Tran - duc.tran@umb.edu 44

44

Consistency Guarantee

• C1 = some honest node’s longest chain (last K blocks removed) in 
round r 

• C2 = some honest node’s longest chain  (last K blocks removed) in 
round t ≥ r 

Consistency: C1 must be a prefix of C2

Prof. David (Duc) Tran - duc.tran@umb.edu 45

45

Chain Growth Guarantee

• #honest nodes that mine a block in each round = (1-q)np
• #good blocks added > (1-q)np(1- 2nΔ)

After any t >= K/(qnp) rounds, any honest node’s chain will have added 
at least (1-q)np(1- 2nΔ)t blocks

Prof. David (Duc) Tran - duc.tran@umb.edu 46

46

Liveness Guarantee

In every window of consecutive K blocks in honest nodes’ longest 
chains, more than µ := 1 − 1/(1+φ) fraction are mined by honest nodes 

What that means
• Every now and then, an honest block is added to the blockchain 
• Hence, liveness: transactions submitted will be recorded in honest 

nodes’ finalized chains fairly soon (after Θ(K/((1-q)np) + ∆) rounds)

Prof. David (Duc) Tran - duc.tran@umb.edu 47

47

Mining Fairness: It is not fair!

• Fairness iff the honest block creation rate = the honest hash rate
• the honest block rate is µ := 1 − 1/(1+φ) 
• the honest hash rate is 1-q
• Assume Δ=0 (ideal case for honest nodes) and set (1-q) = (1+ φ)q
• We have µ := 1 − 1/(1+φ) = 1-q/(1-q) < (1-q) (not fair!)
• Attack: a coalition with q=49% hash rate can control 96% the blocks!

Prof. David (Duc) Tran - duc.tran@umb.edu 48

48



4/21/22

9

Selfish Mining Attack

• Capitalize on the unfairness of Nakamoto consensus: damage 
transactions, earn block mining rewards

• Selfish miner: mine a block B, but withhold it until some honest 
miner also mines a block B’ at the same length (block number) as B
• When this happens, immediately releases B
• If B is transmitted faster than B’, honest nodes’ work (B’) is wasted
• Feasible: bad nodes collude with the network relay to deliver blocks to miners

Prof. David (Duc) Tran - duc.tran@umb.edu 49

49

Selfish Mining Attack

• A coalition of selfish miners 
with 49% mining power can 
control 96% the blocks!

Prof. David (Duc) Tran - duc.tran@umb.edu 50

50

The Double Spending Problem

• A malicious miner makes a payment, then secretively creates a 
second conflicting transaction in a new block, which allows him to 
recover the funds

• Feasible if he controls q>50% hashrate àmining faster than the rest 
of the network àmake his local chain the longest

• But due to randomness, if q<50%, there is still a non-zero chance
• How to minimize risk? When somebody pays you, wait some time

before delivering service. In bitcoin, wait for 6 block confirmations

Prof. David (Duc) Tran - duc.tran@umb.edu 51

51

Why 6 Block Confirmations?

• Consider a miner with a fraction 0 < p ≤ 1 of the total hash rate
• The whole network takes on average τ0 = 10 minutes to create a block
• The miner takes on average t0 = τp time to create a block
• T = T1, T2, . . . , Tn: inter-block mining time of block 1, block 2, …
• Because mining is a Markov process (i.e., memoryless), T follows an 

exponential distribution
fτ(t) = αe −αt

where α = 1/t0

Prof. David (Duc) Tran - duc.tran@umb.edu 52

52

Poisson Law

The time needed to 
discover n blocks is 
Sn = T1+T2+…+Tn

N(t): #blocks validated 
at time t is Poisson
with mean value αt

Prof. David (Duc) Tran - duc.tran@umb.edu 53

53

Winning the race against the malicious

• q: hash rate of the malicious
• N’(t) = #malicious blocks at time t, which is Poisson
• Xn = N’(Sn) : #malicious blocks for every n 

consecutive honest blocks
• Sn = time at which the honest has mined n blocks 
• Xn = a negative binomial variable with parameters (n, p)

How likely the malicious wins if behind 
the dishonest by z blocks? (similar to 
the classical gambler’s ruin problem)

Prof. David (Duc) Tran - duc.tran@umb.edu 54

54



4/21/22

10

Probability to win the race

• The bad node and good node are racing to grow their blockchain to 
be the longer. Unless q > 50%, the bad node will win with probability

Prof. David (Duc) Tran | duc.tran@umb.edu 

55

Bitcoin Nodes

Prof. David (Duc) Tran | duc.tran@umb.edu 

56

Bitcoin is slow

Prof. David (Duc) Tran | duc.tran@umb.edu 

57

Blockchain 
storage 
size

Prof. David (Duc) Tran | duc.tran@umb.edu 

58

Lightweight Nodes

Prof. David (Duc) Tran | duc.tran@umb.edu 

59 60



4/21/22

11

61 62

63 64

65

Failed Verification?

• Possible, when network is overpowered by an attacker who fabricates 
transactions
• Need to alert network nodes 

• When a node is alerted 
• Download the full block and alerted transactions to confirm the inconsistency 

• Businesses that receive frequent payments should run their own FULL 
nodes for more independent security and quicker verificaNon. 

Prof. David (Duc) Tran | duc.tran@umb.edu 

66



4/21/22

12

Privacy

Total privacy: Only transactions can be seen by the public. Addresses 
are visible but nobody knows WHO owns them. 

Prof. David (Duc) Tran | duc.tran@umb.edu 

67

Before Bitcoin (<2008)

Similar solutions, or relevant:

• Hashcash (Adam Back, 1997): introduced “Proof of Work” (PoW)
• bMoney (Wei Dai, 1998): PoW + Peer-to-Peer  (similar to Bitcoin)
• Bitgold (Nick Szabo, 1998)
• Reusable PoW (Hal Finney, before 2008)

Prof. David (Duc) Tran | duc.tran@umb.edu 

68


