
5/5/22

1

Decentralized Consensus
Prof. David (Duc) Tran, PhD

University of Massachusetts, Boston (USA)

1

Muddy Children Puzzle

• 10 children played in the playground, 2 having mud on forehead
• Everyone can see each other’s forehead, but not themselves
• After playing, teacher tell them “some have mud on forehead”

Problem
How do the children know that they have mud on forehead, without
communicating with one another?

Prof. David (Duc) Tran - duc.tran@umb.edu 2

2

Muddy Children Puzzle: Solution

• 10 children played in the playground, 2 having mud on forehead
• Everyone can see each other’s forehead, but not themselves
• After playing, teacher tell them “some have mud on forehead”

Solution
Teacher says to the kids: “step up if you know have mud on your
forehead”. As no one moves up, teacher repeats the request.

Question: in which round will some (all) muddy children step forward?

Prof. David (Duc) Tran - duc.tran@umb.edu 3

3

k children have mud à need k rounds

• k=1 (Muddy child: Alice)
• Alice will step up because she sees that no other child has mud

• k=2 (Muddy children: Alice, Bob)
• Round 1: Alice does not step up. She sees mud on Bob’s forehead but is not

sure if she has mud too (same thinking for Bob)
• Round 2: Bob did not step in Round 1, so Alice knows that Bob sees somebody

else having mud, and she could be one. But since she sees nobody else having
mud other than Bob, that person must be herself. Thus, she steps up (same
thinking for Bob; he steps up too)

• In general, k<n: after k rounds, all the k muddy children will step up

Prof. David (Duc) Tran - duc.tran@umb.edu 4

4

Some history

• Back in the 1970s: Aircraft control
• Computers were being used in aircraft control. As a mission-critical system, it was

important to replicate it on multiple machines to tolerate faults
• NASA sponsored the Software Implemented Fault Tolerance (SIFT) project to build a

resilient aircraft control system
• In this project, Lamport et al. (1982) introduced the well-known “Byzantine Generals

Problem” and laid the foundation of distributed consensus

• Since 2000: Industry adoption
• Companies like Google and Facebook have adopted distributed consensus for

mission-critical services such as Google Wallet and Facebook Credit.

• 2009: Bitcoin
• A new breakthrough in distributed consensus, showing that consensus is viable in a

decentralized, permissionless environment where anyone is allowed to participate

Prof. David (Duc) Tran - duc.tran@umb.edu 5

5

Prof. David (Duc) Tran - duc.tran@umb.edu 6

6

5/5/22

2

American computer scientist

B.S. degree (1960)
in mathematics from MIT

M.A. (1963) and Ph.D.
(1972) degrees in mathematics
from Brandeis University

Winner of Turing Award

Leslie Lamport

Prof. David (Duc) Tran - duc.tran@umb.edu 7

7

Byzantine Generals Problem

• Generals communicate to decide upon a
common action: ATTACK or RETREAT
• The commander calls the action and

sends it to all generals
• Some unknown generals are traitors,

including the commander
Goals
1. Consistency: All loyal generals reach

the same decision
2. Validity: If commander is loyal, all loyal

generals will obey the commander

Prof. David (Duc) Tran - duc.tran@umb.edu 8

8

Byzantine Broadcast Model

Byzantine fault: Nodes can behave arbitrarily maliciously and can
collude with each other

Byzantine Broadcast protocol
At the beginning, the sender receives an input bit ∈ {0, 1}. At the
end, every node outputs a bit. Must satisfy 2 requirements:
1. Consistency: all honest nodes must output the same bit: b = b’
2. Validity: if the sender is honest and receives input bit b, all

honest nodes must output bit b

Prof. David (Duc) Tran - duc.tran@umb.edu 9

9

Synchronous Network

• When honest nodes send messages, the honest recipients will receive
them within a bounded delay (called one “round”)

• Synchrony assumption: If an honest node sends a message in round r
to an honest recipient, then the recipient will receive the message at
the beginning of round (r + 1)

Prof. David (Duc) Tran - duc.tran@umb.edu 10

10

Main Result: Solvable iff >= 2/3rd honest

Prof. David (Duc) Tran - duc.tran@umb.edu 11

11

Solution for n>3f: Majority-Vote Idea

Sender: sends its value to all nodes
Each non-sender node: iterate over f rounds

1. Choose value = most popular value received in last round
2. Send value to all other non-sender nodes

Prof. David (Duc) Tran - duc.tran@umb.edu 12

12

5/5/22

3

Oral-Message Protocol: OM(m)

Prof. David (Duc) Tran - duc.tran@umb.edu 13

13

OM(m): Message Complexity

• Messages originate from the
commander, and a lieutenant must wait
until message is relayed via m other
lieutenants à long wait before
reaching a consensus

• Message relay path can be (m+1)
• Number of messages sent can be as

large as (n-1)(n-2)...(n-m+1) à
communication cost too expensive!

Prof. David (Duc) Tran - duc.tran@umb.edu 14

14

Prof. David (Duc) Tran - duc.tran@umb.edu 15

Can tolerate up to
1/3 Byzantine faults

15

Barbara Liskov

American computer scientist

• BA in Mathematics (1961), University of California
at Berkeley

• PhD in Computer Science (1968), Stanford
University

• One of the first women to earn a PhD in
Computer Science

• Winner of 2008 Turing Award

Prof. David (Duc) Tran - duc.tran@umb.edu 16

16

Another Approach: Randomized

• Nodes: 0 (sender), 1, 2, …, n-1
• Value at a node can be ‘0’ or ‘1’ or ‘?’ (unknown)
• Initial value at the sender is the input bit, all others have value ‘?’
• For k iterations r = 1, 2, …, k
• Round 0: A leader = r mod n

• If current value b=‘?’, set b = 0 or 1 randomly. Send value b to all nodes
• Round 1: Each node

• If current value b = ‘?’, set b = value received from leader. Send value b to all nodes
• Round 2: Each node

• Set value = value received from 2n/3+ nodes. Else, set value to ‘?’

Prof. David (Duc) Tran - duc.tran@umb.edu 17

17

Guarantees and Complexity

Complexity
• Time: 3k rounds, each round incurring n messages
• Message cost: 3kn (versus “exponential” of the Oral-Message protocol)
• However, the guarantee is only asymptotical (but it is ok in practice!)

1/3 chance that all nodes output the same value in each round; hence,

Prof. David (Duc) Tran - duc.tran@umb.edu 18

18

5/5/22

4

Solution for n<3f+1?

• Yes, as long as f <= n-2, with public-key cryptography

Assumption: an existing digital signature scheme
• Each node i has a public-secret key pair (Pki, Ski)
• The public key PKi is known to everybody
• A node signs every message (with its secret key) before sending it
• Thus, guarantee the authentication of the received message

Prof. David (Duc) Tran - duc.tran@umb.edu 19

19

Digital Signatures help

• A traitor cannot change the original message or fake an identity

Prof. David (Duc) Tran - duc.tran@umb.edu 20

20

Why n >= f+2?

Prof. David (Duc) Tran - duc.tran@umb.edu 21

21

b b

A Naïve Majority Voting Protocol
Sender

Prof. David (Duc) Tran - duc.tran@umb.edu 22

22

0 1

0

0

0

1

1

1

These nodes
output 0 because
0 gets (k+1) votes

These nodes
output 1 because
1 gets (k+1) votes

faulty

DOES NOT WORK: for example,
when n=2k+1 nodes and the faulty
Sender can attack as follows

But it is flawed

k k

Prof. David (Duc) Tran - duc.tran@umb.edu 23

23

The Dolev-Strong Protocol

Prof. David (Duc) Tran - duc.tran@umb.edu 24

24

5/5/22

5

Prof. David (Duc) Tran - duc.tran@umb.edu 25

25

Why (f+1) rounds?

We can ATTACK if there are only f rounds

• Round 0: corrupt sender sends 1 to all honest nodes.
• Thus, all honest nodes will add 1 to their extracted sets in round 1
• Round f: the corrupt nodes send 0 with f signatures to a specific

honest node v (but not the other honest nodes)

At termination (after round f): v will have 2 bits in its extracted set
whereas all other honest nodes have only 1 bit (bit 1) à inconsistent!

Prof. David (Duc) Tran - duc.tran@umb.edu 26

26

Guarantees and Complexities

• Round complexity: converge after (f+1) rounds
• Message cost: O(nf) messages sent by honest nodes

Prof. David (Duc) Tran - duc.tran@umb.edu 27

27

Deterministic/Randomized: Complexity

• Dolev and Strong (1983): f < n
Any deterministic Byzantine Broadcast incurs at least (f + 1) rounds

• Dolev and Reischuk (1985): f< n
Any deterministic Byzantine Broadcast incurs at least ⌊f /2)⌋2

communication cost (number of bits sent by honest nodes)

• Juan Garay et al. (2007): with high probability, and f < n-1
Any randomized Byzantine Broadcast incurs at least 2n/(n-f)-1 rounds

Prof. David (Duc) Tran - duc.tran@umb.edu 28

28

Blockchain Consensus

• So far, we have considered single-shot consensus
• Practical applications require consensus repeatedly over time

Now, we will work on
Blockchain = a repeated consensus abstraction
• Nodes must agree on an ever-growing, linearly-ordered log of transactions
• Also called “state machine replication” in the distributed systems literature
• The modern name “blockchain” was adopted thanks to Bitcoin

Prof. David (Duc) Tran - duc.tran@umb.edu 29

29

“Partially” Synchronous Network

Earlier, we assumed
• Strong Synchrony: If an honest node sends a message in round r to an

honest recipient, then the recipient will receive the message at the
beginning of round (r + 1)

Now, we assume (more difficult case)
• Partial Synchrony: If an honest node sends a message in round r to an

honest recipient, then the recipient will receive the message at the
beginning of round (r + Δ)

• Δ is called maximum network delay

Prof. David (Duc) Tran - duc.tran@umb.edu 30

30

5/5/22

6

Blockchain Protocol

Each node stores a local chain of transactions (in practice, batched into
blocks). A transaction can only be appended; cannot be undone

Properties
• Consistency: Let C1 = the chain of an arbitrary node at an arbitrary

round and C2= the chain of another arbitrary node at an arbitrary
round. Then C1 must be a prefix of C2 or vice versa

• Liveness: If an honest node inputs a transaction tx at round r, then it
must be recorded on every honest node’s chain at round (r+Tc). Tc is
called the confirmation time

Prof. David (Duc) Tran - duc.tran@umb.edu 31

31

A Simple Blockchain Protocol

• Constructed based on applying a sequence of an one-shot Byzantine
Broadcast (BB) protocol (for example, Dolev-Strong protocol)

• Let R = the number of rounds taken by this BB
• For round t = 1, 2, … : if t = multiple(R), run BB where

• sender = k mod n: Concatenate all pending transactions as a block and broadcast it
to all other nodes using BB

• other nodes: append this block to its chain

• This protocol satisfies consistency and O(Rn)-liveness
• Limited performance. Most blockchain protocols in practice do not follow

this BB-sequential approach

Prof. David (Duc) Tran - duc.tran@umb.edu 32

32

Asynchronous Network

• Strong Synchrony: If an honest node sends a message in round r to an
honest recipient, then the recipient will receive the message at the
beginning of round (r + 1)

• Partial Synchrony: If an honest node sends a message in round r to an
honest recipient, then the recipient will receive the message at the
beginning of round (r + Δ). Δ is called maximum network delay

• Asynchrony: there is no time clock. Every node can only be invoked
upon receiving some message from the network

Prof. David (Duc) Tran - duc.tran@umb.edu 33

33

Asynchronous Deterministic? Impossible!

Weakly Byzantine Agreement: each node receives an input bit and must agree:
• Consistency. If all honest nodes must output the same
• Weak validity. If the sender is honest all nodes are honest and receive the same

input bit, then they must all output this bit too
• Liveness: All honest nodes must output something eventually

Fischer, Lynch, and Paterson (1985)
No deterministic, asynchronous protocol can realize weakly valid Byzantine
Agreement in the presence of at most 1 node crashing

-- arguably one of the most famous theorems in distributed computing!

Prof. David (Duc) Tran - duc.tran@umb.edu 34

34

Bitcoin (Nakamoto) Consensus Protocol

• A breakthrough invention!
• Randomized + Asynchronous: tolerate f < n/2 corruptions
• First to reach consensus in large-scale, permissionless environments
• Nodes are free to join at any time
• No a priori knowledge of the identities of the nodes àparticipants must

communicate through unauthenticated channels

• In contrast, classic consensus is small-scale and permissioned
• Only a preconfigured, known set of nodes can join the protocol

Prof. David (Duc) Tran - duc.tran@umb.edu 35

35

Nakamoto Protocol: Proof of Work

• “Permissionless” is difficult because of “Sybil attack”
• Due to unauthenticated communication channels, a player can impersonate

many others to outnumber the honest players and disrupt the consensus

• Proof of Work (PoW): To discourage Sybil attacks, participants have to
“pay” a cost to join the protocol
• By having to solve a computationally-expensive puzzle to cast votes
• A player’s voting power is proportional to its computational power
• PoW guarantees consistency and liveness as long as >50% is honest

Prof. David (Duc) Tran - duc.tran@umb.edu 36

36

5/5/22

7

Mining

• Block structure: b = (hlast, pow, transactions, h)
• hlast: hash of the previous block
• pow: an unknown number (called “proof of work”) to be found

• Mining: to create a block b
• Find pow and set h accordingly such that

h = Hash(hlast, pow, transaction) < difficulty_threshold

(difficulty_value is chosen such that only 1 block is created per 10 minutes)

Prof. David (Duc) Tran - duc.tran@umb.edu 37

37

Broadcast and Update

• The mining node: After mining a block
• Add block to local chain
• Broadcast local chain to all other nodes

• The other nodes: when hearing a valid chain
• Valid = iff each block is consistent with the hash of the previous block
• Replace the local chain with the received chain if the latter is longer
• “Finalized” chain = this local chain up to the K last block (e.g., K=6 enough)

Prof. David (Duc) Tran - duc.tran@umb.edu 38

38

Mining Incentive in Bitcoin

• Classic consensus (google, facebook): focus on fault tolerance, no incentive
because the components belong to the institution
• Blockchain: decentralized, permissionless

• PoW: discourage bad players
• Incentive: encourage miners to create good blocks

Per-block mining reward
• Block reward: initially, block reward is 50 bitcoins. After every 210,000

blocks mined (~4 years), the reward is halved; eventually becoming zero by
year 2140 (when all 21 million bitcoins are minted)
• Transaction fee: every transaction can specify a fee to pay to the miner

that includes the transaction (higher fees speed up transaction processing)

Prof. David (Duc) Tran - duc.tran@umb.edu 39

39

Mining Difficulty

• Choose difficulty_threshold = p2m (where m = bit-length of hash)
• Where p = prob {a node mines a block in a round}
• Prob {a good block is mined in a round} = 1 − (1 − p)0.51n

• #rounds to mine a new good block = 1/ 1 − (1 − p)0.51n ≈ 1/(0.51pn)
• It takes Δ rounds to propagate this block to all honest nodes
• The block mining efficiency ratio can be

Prof. David (Duc) Tran - duc.tran@umb.edu 40

40

Choosing Mining Difficulty

• q: fraction of dishonest mining power (hash rate)
• To be secure, honest hash rate must be higher than the dishonest

(1-q)(1-0.51pnΔ) > (1+ φ)q (here, φ chosen arbitrary small)
0.51pnΔ < 1- (1+ φ)q/(1-q)
p < (1- (1+ φ)q/(1-q))/(0.51nΔ)

• The smaller p à the more difficult mining
• In practice, choose p < min(0.5/(2nΔ), (1- (1+ φ)q/(1-q))/(2nΔ))
• The larger network delay Δ, the weaker security

Prof. David (Duc) Tran - duc.tran@umb.edu 41

41

Consistency Guarantee

• C1 = some honest node’s longest chain (last K blocks removed) in
round r

• C2 = some honest node’s longest chain (last K blocks removed) in
round t ≥ r

Consistency: C1 must be a prefix of C2

Prof. David (Duc) Tran - duc.tran@umb.edu 42

42

5/5/22

8

Chain Growth Guarantee

• #honest nodes that mine a block in each round = (1-q)np
• #good blocks added > (1-q)np(1- 2nΔ)

After any t >= K/(qnp) rounds, any honest node’s chain will have added
at least (1-q)np(1- 2nΔ)t blocks

Prof. David (Duc) Tran - duc.tran@umb.edu 43

For any honest node; its chain is always growing

43

Liveness Guarantee

In every window of consecutive K blocks in honest nodes’ longest
chains, more than µ := 1 − 1/(1+φ) fraction are mined by honest nodes

What that means
• Every now and then, an honest block is added to the blockchain
• Hence, liveness: transactions submitted will be recorded in honest

nodes’ finalized chains fairly soon (after Θ(K/((1-q)np) + ∆) rounds)

Prof. David (Duc) Tran - duc.tran@umb.edu 44

44

Mining Fairness: It is not fair!

• Fairness iff the honest block creation rate = the honest hash rate
• the honest block rate is µ := 1 − 1/(1+φ)
• the honest hash rate is 1-q
• Assume Δ=0 (ideal case for honest nodes) and set (1-q) = (1+ φ)q
• We have µ := 1 − 1/(1+φ) = 1-q/(1-q) < (1-q) (not fair!)
• Attack: a coalition with 49% hash rate can control 96% the blocks!

Prof. David (Duc) Tran - duc.tran@umb.edu 45

45

Selfish Mining Attack

• Capitalize on the unfairness of Nakamoto consensus: damage
transactions, earn block mining rewards

• Selfish miner: mine a block B, but withhold it until some honest
miner also mines a block B’ at the same length (block number) as B
• When this happens, immediately releases B
• If B is transmitted faster than B’, honest nodes’ work (B’) is wasted
• Feasible: bad nodes collude with the network relay to deliver blocks to miners

Prof. David (Duc) Tran - duc.tran@umb.edu 46

46

Selfish Mining Attack

• A coalition of selfish miners
with 49% mining power can
control 96% the blocks!

Prof. David (Duc) Tran - duc.tran@umb.edu 47

47

The Double Spending Problem

• A malicious miner makes a payment, then secretively creates a
second conflicting transaction in a new block, which allows him to
recover the funds

• Feasible if he controls q>50% hashrateàmining faster than the rest
of the network àmake his local chain the longest

• But due to randomness, if q<50%, there is still a non-zero chance
• How to minimize risk? When somebody pays you, wait some time

before delivering service. In bitcoin, wait for 6 block confirmations

Prof. David (Duc) Tran - duc.tran@umb.edu 48

48

5/5/22

9

Why 6 Block Confirmations?

• Consider a miner with a fraction 0 < p ≤ 1 of the total hash rate
• The whole network takes on average τ0 = 10 minutes to create a block
• The miner takes on average t0 = τp time to create a block
• T = T1, T2, . . . , Tn: inter-block mining time of block 1, block 2, …
• Because mining is a Markov process (i.e., memoryless), T follows an

exponential distribution
fτ(t) = αe −αt

where α = 1/t0

Prof. David (Duc) Tran - duc.tran@umb.edu 49

49

Poisson Law

The time needed to
discover n blocks is
Sn = T1+T2+…+Tn

N(t): #blocks validated
at time t is Poisson
with mean value αt

Prof. David (Duc) Tran - duc.tran@umb.edu 50

50

Winning the race against the malicious

• q: hash rate of the malicious
• N’(t) = #malicious blocks at time t, which is Poisson
• Xn = N’(Sn) : #malicious blocks for every n

consecutive honest blocks
• Sn = time at which the honest has mined n blocks
• Xn = a negative binomial variable with parameters (n, p)

How likely the malicious wins if behind
the dishonest by z blocks? (similar to
the classical gambler’s ruin problem)
• E.g., if q=0.1, z=6, the P(z) = 1%

Prof. David (Duc) Tran - duc.tran@umb.edu 51

51

GHOST Consensus Protocol: Motivation

• Recall Bitcoin protocol
• A node maintains a chain
• When chain is updated, broadcast it
• Longest chain wins

• If validation is too quick (for example, (1 minute instead of 10
minutes/block) àmany stale blocks
• A successfully mines a block X, broadcasts it
• B successfully mines a block Y (after X is mined at A but before X arrives at B)
àwasted effort à stale block Y

• If a mining pool is too strong à grow chain quickly àwin most of
the time à centralization of power

Prof. David (Duc) Tran - duc.tran@umb.edu 52

52

GHOST Consensus Protocol

• Winning chain : not the longest, but
representing the most amount of PoW

• A node maintains a tree of all valid blocks
it received (all uncles included)
• Heavy tree implies a lot of PoW done

• When tree is updated, broadcast it
• Greedy Heaviest Observed Subtree

(GHOST) rule to pick the winning chain

Prof. David (Duc) Tran - duc.tran@umb.edu 53

53

GHOST: Example

• Each block has a score = weight of its
subtree
• Winning chain = path of blocks with highest

scores, starting from root
• Each time a block is added to tree, score

will be updated accordingly
• If block is honest -> increase score of the

winning chain à less likely to be
attacked

Prof. David (Duc) Tran - duc.tran@umb.edu 54

54

5/5/22

10

GHOST: More difficult to attack

Adversary

must grow the chain
much longer to beat
the heavy-weight
honest chain

àmore difficult

Prof. David (Duc) Tran - duc.tran@umb.edu 55

55

GHOST: Implementation in Ethereum

• B = block to be added
• B must include a parent, and 0 or more uncles
• The included uncles must satisfy
• A descendent of the 7th generation ancestor of B
• Valid block header, not necessarily previously verified/validated
• Different from uncles included in previous blocks

• For each uncle U in block B
• Miner of B gets an additional 3.125% of block reward
• Miner of U gets 93.75%

Prof. David (Duc) Tran - duc.tran@umb.edu 56

56

Nominated Proof of Stake (NPOS)

• Used in Polkadot blockchain (https://polkadot.network/)
• POS: Require a small set of “validator” nodes
• Many nodes want to serve as validators, but there can only be a few

validators. And they are the only ones to receive block rewards
• NPOS: Give opportunities for all nodes to earn block rewards
• Any node can be a “nominator”: stake money in 1 or more validator

candidates
• If their candidates win:

• the block rewards of a validator will be shared with its nominators
• If a validator behaves badly, all the deposited stake will be slashed

Prof. David (Duc) Tran - duc.tran@umb.edu 57

57

Validator Nomination and Election

• Any node may choose to become a validator candidate or a
nominator

• Each candidate: indicate how much money he wants to stake and his
desired commission fee

• Each nominator: locks some stake and publish a list of preferred
candidates

• Validator election: based on nomination ballots to choose a small set
of validators with the most backing

• When: Validator election occurs in every era (roughly 1 day)

Prof. David (Duc) Tran - duc.tran@umb.edu 58

58

Election Protocol

• Solve a multi-winner election problem
• A committee = set of validators, a minority = subset of nominators
• Voting strength = stake money

• Decentralization objective
• Each minority is represented proportionally to vote strength
• No minority is under-represented
àAvoid centralization of power in the election

• Security objective:
• If a nominator gets 2+ candidates elected, split stake among them
• Maximize and balance the aggregate support for validators
à Expensive for an adversary to gain control over one validator,
à Expensive slashing penalty as a result of a validator’s misconduct

Prof. David (Duc) Tran - duc.tran@umb.edu 59

Solve a Proportional
Representation
Problem in voting
theory

Solve a Maximin
Support Problem

59

Proportional Representation

• Work by Edvard Phragmen and Thorvald Thiele in 1894
(https://www.rangevoting.org/Phragmen.html)

• Recently, considerable research efforts to formalize the notion of
proportional representation, revisit the methods by Phragmen and
Thorvald, and optimize them algorithmically

• Validator Election in NPOS is an adaptation of Phragmen’s method
which satisfies the technical properties of Proportional Justified
Representation (Fernandez et al, 2017)

Prof. David (Duc) Tran - duc.tran@umb.edu 60

60

5/5/22

11

Example
(https://www.rangevoting.org/Phragmen.html)

Prof. David (Duc) Tran - duc.tran@umb.edu 61

A wins the 1st seat since he has the most voters, 1171
(those approving him have the least average cost, 1/1171. It is 1/1171
because the sum of these costs have to be 1, #seats chosen so far)

• Each ballot is assigned a “cost” (0 initially)
• Seats are chosen sequentially
• If a candidate with N ballots is selected, each of these

ballots will add 1/N to its cost. We will choose a
candidate if their post-select average cost is smallest
• The costs of these ballots are then re-distributed

so that they are all equal

61

Add costs

Prof. David (Duc) Tran - duc.tran@umb.edu 62

A wins the 1st seat: then we add cost 1/1171 to each of those
1171 ballots and continue…

62

Next seat

Prof. David (Duc) Tran - duc.tran@umb.edu 63

Q wins the 2nd seat because if he is chosen his 656 = 519 + 90 +
47 supporters will have smallest average cost (1+(0+90+47)/1171)/656 =
327/192044≈0.00170273. If instead B were elected, his 1124 = 1034 +
90 supporters would have higher average cost (1+1124/1171)/1124 ≈
0.00174365. Therefore Q wins.

63

Add costs

Prof. David (Duc) Tran - duc.tran@umb.edu 64

Q wins the 2nd seat, with 656 supporters. We now add 1/656 to
the costs on each of his supporters' ballots, and …

64

Redistribute costs

Prof. David (Duc) Tran - duc.tran@umb.edu 65

We redistribute those costs so that each Q-approving ballot has
cost=327/192044. Repeat procedure until all sets are assigned

65

Proportional Justified Representation

• Nominator n stakes staken , and backs a subset Cn of candidates. Need to
elect a set of V of nval validators
• Property: For each minority group N’ (a subset of nominators) such that

Prof. David (Duc) Tran - duc.tran@umb.edu 66

At least t common candidates

At least t validators
nominated by minority N’

Average support to these
t common candidates

Average support
received by a validator

66

5/5/22

12

Recommended Reading

Prof. David (Duc) Tran - duc.tran@umb.edu 67

67

Maxmin Support Problem (NP-hard)

• Need to compute the distribution of each nominator’s stake among
her chosen validators

Prof. David (Duc) Tran - duc.tran@umb.edu 68

• Objective

such that

68

Recommended
Reading

Prof. David (Duc) Tran - duc.tran@umb.edu 69

69

