5/5/22

Decentralized Consensus

Prof. David (Duc) Tran, PhD
University of Massachusetts, Boston (USA)

%

UMASS
BOSTON

Muddy Children Puzzle

* 10 children played in the playground, 2 having mud on forehead
« Everyone can see each other’s forehead, but not themselves
« After playing, teacher tell them “some have mud on forehead”

Problem

How do the children know that they have mud on forehead, without
communicating with one another?

Muddy Children Puzzle: Solution

* 10 children played in the playground, 2 having mud on forehead
* Everyone can see each other’s forehead, but not themselves
* After playing, teacher tell them “some have mud on forehead”

Solution
Teacher says to the kids: “step up if you know have mud on your
forehead”. As no one moves up, teacher repeats the request.

Question: in which round will some (all) muddy children step forward?

k children have mud = need k rounds

* k=1 (Muddy child: Alice)

« Alice will step up because she sees that no other child has mud
* k=2 (Muddy children: Alice, Bob)

. Bqu,u_?_;lh Alice does not step up. She sees mud on Bob'’s forehead but is not
sure if she has mud too (same thinking for Bob)

BF,u,%d_Z Bob did not step in Round 1, so Alice knows that Bob sees somebody
else having mud, and she could be one. But since she sees nobody else having
mud other than Bob, that person must be herself. Thus, she steps up (same
thinking for Bob; he steps up too)

* In general, k<n: after k rounds, all the k muddy children will step up

Some history

* Back in the 1970s: Aircraft control
« Computers were being used in aircraft control. As a mission-critical system, it was
important to replicate it on multiple machines to tolerate faults
* NASA sponsored the Software Implemented Fault Tolerance (SIFT) project to build a
resilient aircraft control system
* In this project, Lamport et al. (1982) introduced the well-known “Byzantine Generals
Problem” and laid the foundation of distributed consensus

« Since 2000: Industry adoption
* Companies like Google and Facebook have adopted distributed consensus for
mission-critical services such as Google Wallet and Facebook Credit.
* 2009: Bitcoin
* A new breakthrough in distributed consensus, showing that consensus is viable in a
decentralized, permissionless environment where anyone is allowed to participate

The Byzantine Generals Problem (1982)

The Byzantine Generals Problem

CuMMANnEw
LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE

SR International
sk artck”
to different parts of the system. This situation can be expressed abstractly in terms of a group of

- ——

ACMT ions on P ing L and Systems, Vol. 4, No. 3, July 1982, Pages 382-401.

by messenger, the generals must agree upon & comman batte plan. However, one or more of them

the loyal generals will reach agreement. It is shown that,using only oral messages, this problem is

o loyal generals, With unforgeable written messages, the problem is solvable for any number of
generals and possible traitors. Applications of the solutions to reliable computer systems are then
discussed.

5/5/22

ACM Turing Award

Leslie Lamport
American computer scientist

B.S. degree (1960)
in mathematics from MIT

M.A. (1963) and Ph.D.
(1972) degrees in mathematics
from Brandeis University

Stephen Ketle' sato statue of Alan Tuing at
Boctey Park

Awardodfor Outstanding contbutonsin
compute ssence

County Unid States

Presented by Association for Computing
Machinery (ACM)

Awards

Winner of Turing Award

Byzantine Generals Problem

* Generals communicate to decide upon a
common action: ATTACK or RETREAT

* The commander calls the action and
sends it to all generals

)

“Anay
Traitor
“He said retreat”

* Some unknown generals are traitors, “Attack”
including the commander
Goals
1. Consistency: All loyal generals reach
the same decision
2. Validity: If commander is loyal, all loyal
generals will obey the commander

£ Jonr Reward(s) US $1,000,0001
Frof Davi (Due) Tran - duc ron@oanose) First awarded 1966; 55 years ago Prot v {Duc) ran-doranguam.eck:
7 8
Byzantine Broadcast Model Synchronous Network
Byzantine fault: Nodes can behave arbitrarily maliciously and can * When honest nodes send messages, the honest recipients will receive
collude with each other them within a bounded delay (called one “round”)
Byzantine Broadcast protocol * Synchrony assumption: If an honest node sends a message in round r
At the beginning, the sender receives an input bit € {0, 1}. At the to an honest recipient, then the recipient will receive the message at
end, every node outputs a bit. Must satisfy 2 requirements: the beginning of round (r + 1)
1. Consistency: all honest nodes must output the same bit: b = b’
2. Validity: if the sender is honest and receives input bit b, all
honest nodes must output bit b
9 10
Main Result: Solvable iff >= 2/3 honest Solution for n>3f: Majority-Vote Idea
e e Sender: sends its value to all nodes
[mpOSS|bIIIty Result (e) Each non-sender node: iterate over f rounds
y . “Attack / = — 1. Choose value = most popular value received in last round
b 7// 2. Send value to all other non-sender nodes
* n: number of generals ‘/u), - Uiy
* No solution if n < 3f+1 S e said reveat” Traitor
e a a a a b c
e N . / e /b C
_
A N\ SO OGO
e G ? = N
11 12

5/5/22

Oral-Message Protocol: OM(m)

« Assumptions: (1) Every message sent is delivered correctly, (2) Receiver of a
message knows who sent it, (3) The absence of a message can be detected
Algorithm OM (0).

(1) The commander sends his value to every lieutenant.

(2) Each lieutenant uses the value he receives from the commander, or uses the value
RETREAT if he receives no value.

Algorithm OM(m), m > 0.

(1) The commander sends his value to every lieutenant.

(2) For each i, let v; be the value Lieutenant i receives from the commander, or else be
RETREAT if he receives no value. Lieutenant i acts as the commander in Algorithm
OM(m — 1) to send the value v; to each of the n — 2 other lieutenants. .

(3) For each i, and each j # i, let v; be the value Lieutenant i received from Lieutenant j
in step (2) (using Algorithm OM(m — 1)), or else RETREAT if he received no such
value. Lieutenant i uses the value majority(vi, . .., Un-1).

OM(m): Message Complexity

* Messages originate from the
commander, and a lieutenant must wait
until message is relayed via m other
lieutenants - long wait before
reaching a consensus

* Message relay path can be (m+1)

* Number of messages sent can be as
large as (n-1)(n-2)...(n-m+1) >
communication cost too expensive!

13

14

We Need a Practical Solution!

Appears in the Proceedings of the Third Symposium on Operating Systems Design and Implementation, New Orleans, USA, February 1999

Practical Byzantine Fault Tolerance

Miguel Castro and Barbara Liskov
Laboratory for Computer Science,
Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139

{castro, liskov}@lcs.mit.edu

Can tolerate up to
1/3 Byzantine faults

Barbara Liskov

American computer scientist

* BA in Mathematics (1961), University of California

at Berkeley Lok n2010

* PhD in Computer Science (1968), Stanford = et
University S

* One of the first women to earn a PhD in T iy
Computer Science S e

Thor (ojectorentd detabase)

Liskov substiuton principle
‘Spouse(s) Nathan Liskov (1870-)
Children 1

* Winner of 2008 Turing Award

. David (Duc) Tran - duc tran@umbedu Awards IEEE Jofi von Neumagn Medel (2004
o

15

16

Another Approach: Randomized

* Nodes: O (sender), 1, 2, ..., n-1
* Value at a node can be ‘0’ or ‘1’ or ‘?’ (unknown)
« Initial value at the sender is the input bit, all others have value ‘?’
* Forkiterationsr=1, 2, .., k
* Round 0: Aleader =r mod n
* If current value b="?", set b = 0 or 1 randomly. Send value b to all nodes
* Round 1: Each node
 If current value b = ‘?’, set b = value received from leader. Send value b to all nodes

* Round 2: Each node
* Set value = value received from 2n/3+ nodes. Else, set value to ‘?

Guarantees and Complexity

1/3 chance that all nodes output the same value in each round; hence,

Theorem 4 (Consistency). With probability 1 — (%)k, all nodes output the
same decision.

Theorem 5 (Validity). If the designated sender (i.e., node 1) is honest,
then all honest nodes output node 1’s input bit.

Complexity.
* Time: 3k rounds, each round incurring n messages

* Message cost: 3kn (versus “exponential” of the Oral-Message protocol)
* However, the guarantee is only asymptotical (but it is ok in practice!)

17

18

5/5/22

Solution for n<3f+17?
* Yes, as long as f <= n-2, with public-key cryptography

Assumption: an existing digital signature scheme

* Each node i has a public-secret key pair (Pk;, Sk;)

« The public key PK; is known to everybody

* A node signs every message (with its secret key) before sending it
« Thus, guarantee the authentication of the received message

“Attack: G”

@ Traitor
o 2

Digital Signatures help

« A traitor cannot change the original message or fake an identity

B

G L2 may take two actions:
+ Forward the signed message. This leads to
correct outcome
« Send a different message: will be recognized
by L1 as fake (loyal generals ignore
messages coming from known traitors)

Signature of

“Attack: G"

“Nonsense: L2"

19

20

Why n >=f+27?

@ Traitor

“Attack: G”

@ Traitor
“Attack: G: L2"

L1 cannot detect G, L2 are traitors attack!

“Attack: G”

A Naive Majority Voting Protocol

Sender (i.e. node 1) receives the bit b as input.

Round 1: Node 1 sends (8)1 to every node (including itself). @
Round 2: Every node i € [n] does the following: if a single bit (&), ®
is received, send the vote (¥);. Else send the vote (0);.

Round 3: If no bit or both bits received more than n/2 votes from
distinct nodes, then output 0. Else output the bit that received more [J
than n/2 votes from distinct nodes.

21

22

But it is flawed
@ faulty

o Sender (i.c. node 1) receives the bit b as input.

0 1

« Round 1: Node 1 sends (b); to every node (including itsel).

] 1
 Round 2: Every node i € [n] does the following: if a single bit (V)1 o | ®
is received, send the vote (b');. Else send the vote (0);.

« Round 3: If no bit or both bits received more than n/2 votes from ® o P P
distinct nodes, then output 0. Else output the bit that received more ’ .) .
than n/2 votes from distinct nodes. . A

k

DOES NOT WORK: for example,
when n=2k+1 nodes and the faulty
Sender can attack as follows

These nodes
output 0 because
0 gets (k+1) votes

These nodes

output 1 because
1 gets (k+1) votes

The Dolev-Strong Protocol

Vol 12,804

©198 Socieyforndist
83 g

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT*
D. DOLEV? axp H. R. STRONGH

Abstract. distributed
of faulty processors 1o & simple faiure 0 relay messages o all intended targets. In this paper we show.
that in spite of such an abilty t0 limit faulty behavior, and no matier what message types or protocols are.
allowed, reaching (Byzantine) agreemen requires atleast +1 phases or rounds of information exchange,

i the presence of faulty p isa centeal

based on authentication that require total number of messages sent by correelly aperating processors
that is polymomial in both ¢ and the number of processors, n. The best algorithm uses only ¢+ 1 phases
and On0) messages.

Key words. autheni cliabl

consistency, unanimity

1. Introduction. Tn this paper we consider algorithms for achieving agreement
among multiple processors. The context for this agreement is a network of unreliable

23

24

5/5/22

The Dolev-Strong protocol

Initially, every node i’s extracted set extr; = 0.
e Round 0: Sender sends (b)1 to every node.

e For each round r =1 to f+1:
For every message (b)1.j, j,....j,_, node i receives with 7 signatures
from distinct nodes including the sender:
— If b ¢ extr;: add b to extr; and send (5}111-‘,““]““1 to everyone —
note that here node i added its own signature to the set of r
signatures it received.

e At the end of round f + 1: If |extr;| = 1: node i outputs the bit
in extr;; else node ¢ outputs 0.

Why (f+1) rounds?

We can ATTACK if there are only f rounds

* Round 0: corrupt sender sends 1 to all honest nodes.
* Thus, all honest nodes will add 1 to their extracted sets in round 1

* Round f: the corrupt nodes send 0 with f signatures to a specific
honest node v (but not the other honest nodes)

At termination (after round f): v will have 2 bits in its extracted set
whereas all other honest nodes have only 1 bit (bit 1) = inconsistent!

25 26
Guarantees and Complexities Deterministic/Randomized: Complexity
* Round complexity: converge after (f+1) rounds * Dolev and Strong (1983): f<n
« Message cost: Ofnf) messages sent by honest nodes Any deterministic Byzantine Broadcast incurs at least (f + 1) rounds
* Dolev and Reischuk (1985): f< n
Any deterministic Byzantirl)e Bro%dcast in%ur; at least [t; /2))?
Theorem 2 (The Dolev-Strong protocol [DS83]). The Dolev-Strong protocol communication cost (number of bits sent by honest nodes)
achieves Byzantine Broadcast in the presence of up to f < n corrupt nodes. o »
* Juan Garay et al. (2007): with high probability, and f < n-1
Any randomized Byzantine Broadcast incurs at least 2n/(n-f)-1 rounds
27 28
Blockchain Consensus “Partially” Synchronous Network
« So far, we have considered single-shot consensus Earlier, we assumed
« Practical applications require consensus repeatedly over time * Strong Synchrony: If an honest node sends a message in round r to an
honest recipient, then the recipient will receive the message at the
beginning of round (r + 1)
Now, we will work on
Blockchain = a repeated consensus abstraction Now, we assume (more difficult case)
* Nodes must agree on an ever-growing, linearly-ordered log of transactions « Partial Synchrony: If an honest node sends a message in round r to an
* Also called “state machine replication” in the distributed systems literature honest recipient, then the recipient will receive the message at the
* The modern name “blockchain” was adopted thanks to Bitcoin beginning of round (r + &)
* Ais called maximum network delay
29 30

5/5/22

Blockchain Protocol

Each node stores a local chain of transactions (in practice, batched into
blocks). A transaction can only be appended; cannot be undone

Properties

« Consistency: Let C1 = the chain of an arbitrary node at an arbitrary
round and C2= the chain of another arbitrary node at an arbitrary
round. Then C1 must be a prefix of C2 or vice versa

« Liveness: If an honest node inputs a transaction tx at round r, then it
must be recorded on every honest node’s chain at round (r+T,). T, is
called the confirmation time

A Simple Blockchain Protocol

* Constructed based on applying a sequence of an one-shot Byzantine
Broadcast (BB) protocol (for example, Dolev-Strong protocoly

* Let R = the number of rounds taken by this BB

* Forround t=1, 2, ... : if t = multiple(R), run BB where
« sender = k mod n: Concatenate all pending transactions as a block and broadcast it
to all other nodes using BB
« other nodes: append this block to its chain

* This protocol satisfies consistency and O(Rn)-liveness

* Limited performance. Most blockchain protocols in practice do not follow
this BB-sequential approach

31 32
Asynchronous Network Asynchronous Deterministic? Impossible!
* Strong Synchrony: If an honest node sends a message in round r to an Weakly Byzantine Agreement: each node receives an input bit and must agree:
honest recipient, then the recipient will receive the message at the + Consistency. If all honest nodes must output the same
beginning of round (r + 1) * Weak %@ idity, If she-sendemis-henest all nodes are honest and receive the same
. . input bit, then they must all output this bit too
* Partial Synchrony: If an honest node sends a message in round r to an X Alh d hi "
honest recipient, then the recipient will receive the message at the Liveness’ All honest nodes must output something eventually
beginning of round (r + A). A is called maximum network delay
EMY: there is no time CIfOCk' Er\:el'y ntode li:an only be invoked No deterministic, asynchronous protocol can realize weakly valid Byzantine
upon receiving some message from the networ Agreement in the presence of at most 1 node crashing
-- arguably one of the most famous theorems in distributed computing!
33 34
Bitcoin (Nakamoto) Consensus Protocol Nakamoto Protocol: Proof of Work
* A breakthrough invention! « “Permissionless” is difficult because of “Sybil attack”
* Randomized + Asynchronous: tolerate f < n/2 corruptions * Due to unauthenticated communication channels, a _player can impersonate
. . L. . many others to outnumber the honest players and disrupt the consensus
* First to reach consensus in large-scale, permissionless environments
* Nodes are free to join at any time
« No a priori knowledge of the identities of the nodes = participants must * Proof of Work (PoW): To discourage Sybil attacks, participants have to
communicate through unauthenticated channels “pay” a cost to join the protocol
* In contrast, classic consensus is small-scale and permissioned * By having to solve a computationally-expensive puzzle to cast votes
« Only a preconfigured, known set of nodes can join the protocol * Aplayer’s voting power is proportional to its computational power
* PoW guarantees consistency and liveness as long as >50% is honest
35 36

5/5/22

Mining

« Block structure: b = (hy,,;, pow, transactions, h)

* hiast: hash of the previous block

* pow: an unknown number (called “proof of work”) to be found
* Mining: to create a block b

* Find pow and set h accordingly such that

h = Hash(h.s;, pow, transaction) < difficulty_threshold

(difficulty_value is chosen such that only 1 block is created per 10 minutes)

Broadcast and Update

* The mining node: After mining a block
* Add block to local chain
* Broadcast local chain to all other nodes

* The other nodes: when hearing a valid chain
« Valid = iff each block is consistent with the hash of the previous block
* Replace the local chain with the received chain if the latter is longer
* “Finalized” chain = this local chain up to the K last block (e.g., K=6 enough)

37 38
Mining Incentive in Bitcoin Mining Difficulty
* Classic consensus (google, facebook): focus on fault tolerance, no incentive * Choose difficulty_threshold = p2™ (where m = bit-length of hash)
because the components belong to the institution = X K
* Blockchain: decentralized, permissionless * Where p = prob {a node mines a block in a round}
* PoW: discourage bad players * Prob {a good block is mined in a round} =1 - (1 - p)stn
* Incentive: encourage miners to create good blocks
* #rounds to mine a new good block = 1/ 1 - (1 - p)°5i" = 1/(0.51pn)
Per-block mining reward . o * It takes A rounds to propagate this block to all honest nodes
« Block reward: initially, block reward is 50 bitcoins. After every 210,000 . . X
blocks mined (~4 years), the reward is halved; eventually becoming zero by * The block mining efficiency ratio can be
year 2140 (when all 21 million bitcoins are minted)
* Transaction fee: every transaction can specify a fee to pay to the miner #lpn 1 1 051pnA
= ~1-0.51pn.
that includes the transaction (higher fees speed up transaction processing) u.shm +A " 1405ipnA P
39 40
Choosing Mining Difficulty Consistency Guarantee
* q: fraction of dishonest mining power (hash rate) * C1 = some honest node’s longest chain (last K blocks removed) in
* To be secure, honest hash rate must be higher than the dishonest round r
(1-0)(1-0.51pnA) > (1+ b)q (here, b chosen arbitrary small) . Eozuzzcin;erhonest node’s longest chain (last K blocks removed) in
0.51pnA< 1- (1+ d)g/(1-q) -
p < (1- (1+ ¢)a/(1-0))/(0.51n)
Consistency: C1 must be a prefix of C2
* The smaller p - the more difficult mining
« In practice, choose p < min(0.5/(2n4), (1- (1+ ¢)q/(1-q))/(2nA))
* The larger network delay A, the weaker security
41 42

5/5/22

Chain Growth Guarantee

« #thonest nodes that mine a block in each round = (1-q)np
« #good blocks added > (1-q)np(1- 2nA)

After any t >= K/(qnp) rounds, any honest node’s chain will have added
at least (1-g)np(1- 2nA)t blocks

For any honest node; its chain is always growing

Liveness Guarantee

In every window of consecutive K blocks in honest nodes’ longest
chains, more than p := 1 - 1/(1+¢) fraction are mined by honest nodes

What that means
* Every now and then, an honest block is added to the blockchain

* Hence, liveness: transactions submitted will be recorded in honest
nodes’ finalized chains fairly soon (after ©(K/((1-q)np) + A) rounds)

43 44

Mining Fairness: It is not fair! Selfish Mining Attack
* Fairness iff the honest block creation rate = the honest hash rate * Capitalize on the unfairness of Nakamoto consensus: damage
« the honest block rate is 1 := 1 - 1/(1+¢) transactions, earn block mining rewards
« the honest hash rate is 1-q * Selfish miner: mine a block B, but withhold it until some honest

i miner also mines a block B’ at the same length (block number) as B
* Assume A=0 (ideal case for honest nodes) and set (1-q) = (1+ ¢)q .) .

: « When this happens, immediately releases B
* We have u := 1 - 1/(1+¢) = 1-q/(1-q) < (1-q) (not fair!) « If Bis transmitted faster than B', honest nodes’ work (B') is wasted
« Attack: a coalition with 49% hash rate can control 96% the blocks! * Feasible: bad nodes collude with the network relay to deliver blocks to miners
O L L8)g withholds 2o 2o Jo: |} :;i:”‘:;(:
o fy
45 46
Majority is not Enough:
Bitcoin Mining is Vulnerable*
Selfish Mining Attack S The Double Spending Problem
Department of Compute Science, Cornell Usiversity
oy exvlcornel ed, egsQspaten o
* A coalition of selfish miners Absteact, The Bt crsptocency s e framsactions i * A malicious miner makes a payment, then secretively creates a
with 49% mining power can Lol e Bkl Semomly el second conflicting transaction in a new block, which allows him to
control 96% the blocks! ot gt recover the funds
N ‘ fcin mie rtocol oot * Feasible if he controls >50% hashrate = mining faster than the rest
. ol Houest misiag /| of the network = make his local chain the longest
: "l | * But due to randomness, if q<50%, there is still a non-zero chance
L Bitcom potocol tha protecs Btcon . he beneral cac. L'p,;,.m': + How to minimize risk? When somebody pays you, wait some time
3 i o miin b oo ha e e h /ot “This before delivering service. In bitcoin, wait for 6 block confirmations
2 o0} 2 1 e e i o s
0 =7 L L L
0 0.1 02 03 04 05 1 Introduction
Pool size Prof David (0ue) - Biteoin (2} %18 eryptocurrency that has recently emerged as a popular medium :
of exchange with a rich and extensive ecosystem. The Bitcoin network runs at
47 48

5/5/22

Why 6 Block Confirmations?

« Consider a miner with a fraction 0 < p < 1 of the total hash rate

« The whole network takes on average T, = 10 minutes to create a block
* The miner takes on average t, = Tp time to create a block
*«T=T1,T2,..., Tn: inter-block mining time of block 1, block 2, ...

* Because mining is a Markov process (i.e., memoryless), T follows an
exponential distribution

fe(t) = oe
where a = 1/t,

S, =T1+T2+...+T,.
Poisson Law

The random variable S, follows the n-convolution of the ex-
ponential distribution and, as is well known, this gives a Gamma
. distribution with parameters (n, @),

The time needed to
discover n blocks is

Sn =TT+ 4T,

Ay p—
BO=Gy e

with cumulative distribution

n-1 o
Fs,(0) = f foupdu=1-e"3" % .
0 =

From this we conclude that if N(7) is the process counting the
number of blocks validated at time ¢ > 0, N(f) = max{n >
0; S, < 1}, then we have

N(t): #blocks validated
at time t is Poisson
with mean value at

P[N() = n] = Fs,() - Fs,, (1) = % e

49 50
Winning the race against the malicious GHOST Consensus Protocol: Motivation
* g: hash rate of the malicious * Recall Bitcoin protocol
 N’(t) = #malicious blocks at time t, which is Poisson * Anode maintains a chain
* Xn = N’(Sn) : #malicious blocks for every n gl * When chain is updated, broadcast it
consecutive honest blocks PIX, = k] = p"q"(") . * Longest chain wins
:)S("it"“e a‘t}"”“g'_“ ‘he_h‘l’”es_‘ ';75 m_i(":d n b'°°tks k « If validation is too quick (for example, (1 minute instead of 10
n = 3 negative binomial variable with parameters (n, p) mlnutes/blOCk) 9 many Stale blOCkS
. . . . * Asuccessfully mines a block X, broadcasts it
How !'k9|Y the malicious Wl('s I.f behind P@) = lipg(2,112) « B successfully mines a block Y (after X is mined at A but before X arrives at B)
the dishonest by z blocks? (similar to where I,(a, b) is the incomplete regularized beta function - wasted effort > stale block Y
the classical gambler’s ruin problem) Tash) (*vr o *Ifa miningpool is too strong = grow chain quickly = win most of
* E.g.,ifq=0.1,z=6, the P(z) = 1% Hab) = l‘(a)l‘(b)fo a-nTdr the time = centralization of power
51 52
GHOST Consensus Protocol GHOST: Example
Secure High-Rate 'J\:un:‘uctiou Processing in
) 3-dominant
* Winning chain : not the longest, but * Each block has a score = weight of its
representing the most amount of PoW subtree
* A node maintains a tree of all valid blocks * Winning chain = path of blocks with highest
it received (all uncles included) scores, starting from root @ &dominant
« Heavy tree implies a lot of PoW done * Each time a block is added to tree, score
* When tree is updated, broadcast it will be prdated accgrdmgly
* Greedy Heaviest Observed Subtree . If_blo_ck s hqnest > Increase score of the
(GHOST) rule to pick the winning chain winning chain = less likely to be t-dominant @ @
attacked :
v
[— , — O
53 54

5/5/22

GHOST: More difficult to attack
/12'4—‘@

/ // main chain

e f—{zo s [0 «—{sn zeome

main chain
T i
"longest" rule

Adversary

must grow the chain

much longer to beat

the heavy-weight IL‘:/
honest chain ‘

attacker's
secret chain

-> more difficult

GHOST: Implementation in Ethereum

* B = block to be added
* B must include a parent, and 0 or more uncles
* The included uncles must satisfy
« Adescendent of the 7t" generation ancestor of B
« Valid block header, not necessarily previously verified/validated
« Different from uncles included in previous blocks
* For each uncle U in block B
* Miner of B gets an additional 3.125% of block reward
* Miner of U gets 93.75%

55 56
Nominated Proof of Stake (NPOS) Validator Nomination and Election
* Used in Polkadot blockchain (https://polkadot.network/) * Any node may choose to become a validator candidate or a
* POS: Require a small set of “validator” nodes nominator
* Many nodes want to serve as validators, but there can only be a few * Each candidate: indicate how much money he wants to stake and his
validators. And they are the only ones to receive block rewards desired commission fee
« NPOS: Give opportunities for all nodes to earn block rewards * Each nominator: locks some stake and publish a list of preferred
« Any node can be a “nominator”: stake money in 1 or more validator candidates
candidates * Validator election: based on nomination ballots to choose a small set
* If their candidates win: of validators with the most backing
* the block rewards of a validator will be shared with its nominators « When: Validat lecti . (hly 1 day)
« If a validator behaves badly, all the deposited stake will be slashed Jrhen: Validator election occurs in every era {roughly ay
57 58
Election Protocol Proportional Representation
* Solve a multi-winner election problem * Work by Edvard Phragmen and Thorvald Thiele in 1894
* A committee = set of validators, a minority = subset of nominators . .
- Voting strength = stake money (https://www.rangevoting.org/Phragmen.html)
+ Decentralization objective - * Recently, considerable research efforts to formalize the notion of
+ Each minority is represented proportionally to vote strength -:;:';’::g;‘::w"a' proportional representation, revisit the methods by Phragmen and
+ No minority is under-represented -« A Thorvald, and optimize them algorithmicall
-> Avoid centralization of power in the election grceleminiele . R P . . & R Y
« Security objective: theory * Validator Election in NPOS is an adaptation of Phragmen’s method
« If a nominator gets 2+ candidates elected, split stake among them which satisfies the technical properties of Proportional Justified
* Maximize and balance the aggregate support for validators Representation (Fernandez et aI, 2017)
-> Expensive for an adversary to gain control over one validator, Solve a Maximin
-> Expensive slashing penalty as a result of a validator’s misconduct * Support Problem
59 60

10

5/5/22

Example
[———— approved
#voters canddts
+ Each ballot is assigned a “cost” (0 initially) 1034 ABC
+ Seats are chosen sequentially
« If a candidate with N ballots is selected, each of these 519 POR
ballots will add 1/N to its cost. We will choose a
candidate if their post-select average cost is smallest 90 ABQ
+ The costs of these ballots are then re-distributed
5o that they are all equal 47 APQ

A wins the 1st seat since he has the most voters, 1171
(those approving him have the least average cost, 1/1171. Itis 1/1171
because the sum of these costs have to be 1, #seats chosen so far)

Add costs
approved summed
#voters canddts cost
approved
#voters canddts 1034 ABC 1034/1171
1034 ABC 519 POR 0
519 PQR 90 ABQ 90/1171
90 ABQ 47 APQ 47/1171
47 APQ

A wins the 1st seat: then we add cost 1/1171 to each of those
1171 ballots and continue...

61 62
Next seat approved summed Add costs approved summed
#voters canddts cost #voters canddts cost
1034 ABC 1034/1171 1034 ABC 1034/1171
d d
519 PQOR 0 #voters candats cost 5;3 PQZ go/lﬁi/gg%ss
90 AB 90/1171 1034 ABC 1034/1171 AB! +
47 Apg 47§1171 = s0/0171 47 APQ 47/1171+47/656
47 APQ 47/1171
Qwins the 2nd gﬁa; becausTIif he is chosen his 656 =519 + 90 +) Qwins the 2nd seat, with 656 supporters. We now add 1/656 to
47 supporters will have smal .est average cost (1+(0+99+47)/1171)/656 = the costs on each of his supporters' ballots, and ...
327/192044~0.00170273. If instead B were elected, his 1124 = 1034 +
90 supporters would have higher average cost (1+1124/1171)/1124 =
0.00174365. Therefore Q wins. =
63 64
Redistribute costs approved summed Proportional Justified Representation
#voters canddts cost
1034 ABC 1034/1171 * Nominator n stakes stake, , and backs a subset C, of candidates. Need to
approved summed 519 POR 5 19"32;/192044 elect a set of V of n,, validators
90 ABQ 90x327/192044 I .
#voters canddts cost . . 4
Toss. anc 103471171 47 APO 47x327/192044 Property: For each minority group N’ (a subset of nominators) such that
519 PQR 519/656 1
90 ABQ 90/1171+90/656 [Mnenr Co| >t and n Z stake, > Z staken,,
47 ABQ 47/1171+47/656 At least t common candidates Y onen Twal iy
. . for some-1 < t < nyq, then [V N (UpenCpn)| > t.
We redistribute those costs so that each Q-approving ballot has
cost=327/192044. Repeat procedure until all sets are assigned Average support to these At least t validators Average support
t common candidates nominated by minority N’ received by a validator
65 66

11

5/5/22

Recommended Reading

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Phragmén’s Voting Methods and Justified Representation

Markus Brill Rupert Freeman Svante Janson Martin Lackner
University of Oxford Duke University Uppsala University University of Oxford
i ox.ac.uk j .duke.edu svantej uuse martin. ox.ac.uk

Maxmin Support Problem (NP-hard)

* Need to compute the distribution of each nominator’s stake among
her chosen validators
f:iN XV =R
such that
Z f(n,v) = stake, for each nominator n € N,
vEVNCy

* Objective
ax min ¢ rtr(v), vhere s tr(v) == 1, V).
w‘xj)‘) min suppor 7(v) where support s (v) ,(E\Z“ec f(n,v)

67

Recommended
Reading

The Maximin Support Method: An Extension
of the D'Hondt Method to Approval-Based

Multiwinner Elections

Luis Sénchez-Ferndndez
Dept. Telematic Engineering,
Universidad Carlos 111 de Madrid,

28911 Legancs, Spain
Notberto Fernandez Garcia
Centro Universitario de la Defensa,

Escucla Naval Mili
E-36920 Marin,

Jestis A. Fisteus
Dept. Telematic Engineering

Universidad Carlos TII de Madrid,

E-28911 Leganés, Spain
Markus Brill

Institute of Software Engineering and Theoretical Computer Science,

e Universitit Berlin,

Exnst-Reuter-Platz 7, D-10587 Berlin, Germany

September 7, 2018

69

68

12

