Ethereum Blockchain

Prof. David (Duc) Tran, PhD
University of Massachusetts, Boston (USA)

74

UMASS
BOSTON

Ethereum Vitalik Buterin

(W | | ..I........
iw#..... .5...
“HEnm HEEERN
.......
L .

v

The Ethereum Project's logo, first used in 2014

Original author(s) Vitalik Buterin, Gavin Wood,
Joseph Lubin

Initial release 30 July 2015

Repository https://github.com/ethereum gy

: i
i] Vitalik Buterin, 2016

Written in Go, C++, Rust

Operating system Clients available for Linux, DT LR AL AL s e SR
Windows, macOS, POSIX, Born January 31, 1994 (age 24)
Raspbian Kolomna, Russia

Platform x86, AMD64, ARM Nationality Russian-Canadian

Type Decentralized computing, Alma mater University of Waterloo
Blockchain, Cryptocurrency (dropped out)

License GPLv3, LGPLv3, MIT!2]

Known for Ethereum, Bitcoin Magazine

Vitalik Buterin

Butanuu MmutpueBuy By'repm-l

Vitalik Butarin R et

9 —

e Won a bronze medal in the International
Olympiad in Informatics

e Attended the University of Waterloo

* Dropped out of university in 2014 when
awarded with a a Thiel Fellowship (S100K
grant) to work full-time on Ethereum BT

Born 31 January 1994 (age 27)
Kolomna, Russia

Nationality Canadian

Education University of Waterloo
(dropped out)

Known for Ethereum, Bitcoin Magazine

Prof. David (Duc) Tran | duc.tran@umb.edu . .
Awards Thiel Fellowship

https://en.wikipedia.org/wiki/International_Olympiad_in_Informatics
https://en.wikipedia.org/wiki/University_of_Waterloo
https://en.wikipedia.org/wiki/Thiel_Fellowship

What is Ethereum?

AN NN NN NS NN NS I NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NS SN NS NN NN NN EEEEEEEEE
[]

v

What is Dapp?

Ethereum is an open software platform based on blockchain technology
that enables anyone to build and deploy decentralised applications (dapps).

/

-

Decentralised application (Dapp)

:—
=

is a new type of software program designed
to exist on the internet in a way that is not
controlled by any single entity.

~

/ Bitcoin's Blockchain

A SN

SRS
RIS
Blockchain is a distributed database that is

used to maintain a continuously growing
list of records called blocks.

A o

- Public ledger showing all

~

Bitcoin transactions

v" Online based
v" Decentralised
v Not controlled by any single entity

Shared record of the
entire transaction history

A

@ Binary.com

The birth of Ethereum

2009 2012 2013 2014 2015 2016
Etheraiiim % Ethereum Project launch
. \ : S
@ Whitepaper Announcement of Y
\ Ethereum Project v DA at?aq.,...,.?
Bitcoin was Ethereum idea R AR T — H a
launched was formed by e —— =-->Ethereun:1 splits Q
Vitalik Buterin —
Pre-sale of 60 million Ethereum Ethereum
digital tokens (Ethers) Classic
............................... » GaVin WOOd
8 & (Director)
v
Jeffrey Wilcke ... Vitalik Buterin
(Director)

(Inventor, Founder)

@ Binary.com

What is Ethereum?

Ethereum is powered by the Ethereum Virtual Machine which allows smart contracts to run on a decentralised
blockchain. These contracts self-execute only when certain conditions are met.

Normal contract Smart contract

Mike wants to buy a house Mike wants to buy a house

Transfer of

ownership Transfer of

ownership

fs B T o Aep Do

& .. @ S : i
Harvey —~ "9*"* [Mike Harvey Mike
(seller) Lamfer an (buyer) (seller) (buyer)

What is Ethereum?
“The world computer”

Ethereum provides a universal, programmable
blockchain which anyone can use.

@ Binary.com

Ethereum vs. Bitcoin

“World computer”

Ethereum

“Digital gold"

Blockchain-based technology
allowing smart contracts to run on
decentralised applications

Digital currency: Ether

Coin supply: Unlimited

Blockchain generation: every 15 seconds

First digital currency which enabled
online payment transactions using
blockchain technology

Digital currency: Bitcoin
Coin supply: 21 million

Blockchain generation: every 10 minutes

@ Binary.com

Why Ethereum

* Bitcoin limitation
* The script language too limited
* Transaction processing too slow

* Ethereum
* Also proof-of-work consensus, but
* Built-in Turing-complete programming language

* Anyone can write smart contracts with their own arbitrary rules for ownership,
transaction formats and state-transition functions

* Faster: 15 second/block vs. 10 minute/block of Bitcoin

* Whitepaper:github.com/ethereum/wiki/wiki/White-Paper

How does i1t work?

Miners verify the transaction

Developer creates a Client uses application

decentralised application
on Ethereum blockchain

Miners compete for their block to
be added to the blockchain by

solving a mathematical problem. v

New block is added to the .
blockchain. Winning miner is RO (J - O Mme.rs group the
iy : transactions together to
rewarded with miner fee.
form a block.

Ether is Ethereum's digital currency which fuels Miners are people who help secure the Ethereum network and
the Ethereum platform verify all transactions that take place in the blockchain.

Who uses ether?

Developers who intend to build Traders and investors Users who would like to access and
decentralised applications to run on the interact with smart contracts on the
Ethereum blockchain Ethereum blockchain

@ Binary.com

Ledger: Account-based

Create 25 coins and credit to Alice SSSERTED BY MINERS

Transfer 17 coins from Alice to BobSlGNED(Alice)

Transfer 8 coins from Bob to CarolSIGNED(Bob)

Transfer 5 coins from Carol to Aliceg) caron

Transfer 15 coins from Alice to DaVldSIGNED(Alice)

* How to know if a transaction is valid?
— E.g., does Alice have the 15 coins to transfer to David?

Ledger: Transaction-based

Inputs: @ o
Outputs: 25.0—-Alice Ve rlfyln g
Inputs: 1[0] whether a
Outputs: 17.0-Bob, 8.0-Alice transaction is
SIGNED(Alice) . .
Inputs: 2[0] valid is easy
Outputs: 8.0—Carol, 9.0-Bob using “input”
SIGNED(Bob) s
Inputs: 2[1] pomters
Outputs: 6.0—David, 2.0—Alice
SIGNED(Alice)

Accounts

The state of the blockchain = made up of Sta te

accounts

— Externally owned accounts (like Bitcoin __
addresses)

— Contract accounts (corresponding to each
contract) —>

Account information:

— Nonce: a counter used to ensure each
transaction can only be processed once

— Current balance (in ether, currency of
Ethereum)

— Contract code (only for contract accounts)
— Storage for data (empty by default)

14c5f8ba:
- 1024 eth

bb75a980:
- 5202 eth

If 'contract storage|tx.datal0])
contract.storage[tx.data[0]] = tx.data[l]

[0, 235235, 0, ALICE

892bf92f:
-0 eth

send(tx.value / 3, contract.storage(0])
send(tx.value / 3, contract.storage[1])
send(tx.value / 3, contract.storage(2))

[ALICE, BOB, CHARLIE]

4096ad65:
- 77 eth

Transaction: Account = Account

State

14c5f8ba:
- 1024 eth

State’

bb75a980:
- 5202 eth

if 'contract storage[tx.data(0])
contract.storage[tx.data[0]] = tx.data[1]

[0, 235235, 0, ALICE

892bf92f:
- 0 eth

send(tx.value / 3, contract.storage(0])
send(tx.value / 3, contract.storage([1])
send(tx.value / 3, contract.storage(2))

[ALICE, BOB, CHARLIE]

4096ad65:
- 77 eth

Transaction

From:
14c5f88a
To:
bb75a980
Value:
10
Data:
2y
CHARLIE
Sig:
30452fdedb3d
f7959f2ceb8al

14c5f8ba:
- 1014 eth

bb75a980:
- 5212 eth

if Icontract.storage[tx.data[0]):
contract.storage[tx.data[0]] = tx.data[l)

[0, 235235, CHARLIE, ALICE ..

892bf92f:
-0 eth

send(tx.value / 3, contract.storage[0])
send(tx.value / 3, contract.storage[1])
send(tx.value / 3, contract.storage[2])

[ALICE, BOB, CHARLIE]

4096ad65:
- 77 eth

» State transition: triggered by a transaction or message, for direct
transfer of value+information between accounts
* |f received by a contract account: execute contract code

In Contrast, Bitcoin States

State

14c5f8ba:0 | | 7b53ab84:1
3ce6f712:2 | | 892bb91f:0
4ad59065:0

Transaction

Spend: Sig:
. 304525b16785
7b53ab841 edcd79ed090c¢
\
. 30464dddafch
/ 3ce6f712:2 1c2¢651030ea
Create:
bb75a980:0| [bb752980:1| | bb75a980:2

—>

State’

14c¢5f8ba:0

892bb91f.0

4ad59065:0

bb75a980:0

bb75a980:1

bb75a980:2

* State of the Bitcoin blockchain = set of all existing
bitcoins (and their histories)

e State transition function: message = transaction:
bitcoin = address

Ethereum Transactions

* Transaction = sent from an Externally Owned
Account

— Recipient of the message

— A signature identifying sender

— Amount of ether to transfer from sender to recipient
— An optional data field

— A startgas value: representing max # of computational
steps the transaction execution is allowed to take

— A gasprice value: representing the fee the sender pays
per computational step

Messages

* Message = sent from Contract to Contract
— Sender of message (implicit)
— Recipient of the message

— Amount of ether to transfer with the message
— An optional data field

— A startgas value: representing max # of

computational steps the transaction execution is
allowed to take

State Transition Function

APPLY(state S, transaction TX) -> new state S’

1. Checkif TX is well-formed and valid. Else, ERROR

2. Transaction fee = STARTGAS * GASPRICE. Subtract this fee from the sender's
balance and increment sender's nonce. If not enough balance, ERROR

3. Initialize GAS = STARTGAS, minus a certain quantity of gas per byte to pay for the
bytes in the transaction

4. Transfer the transaction value from sender's account to receiving account

- If the receiving account does not yet exist, create it.
— If the receiving account is a contract, run the contract's code either to completion or until
the execution runs out of gas
5. If this transfer fails (sender did not have enough money, or the code execution
ran out of gas): revert all state changes except the payment of the fees, and add
the fees to the miner's account

6. Else, refund the fees for all remaining gas to sender, and send the fees paid for
gas consumed to the miner

Blockchain

e Ethereum block * |n contrast, a Bitcoin
contains block contains only a
ist of , TX list.
— LISt OT transactions — To get the state, must
— The most recent state retrieve all the blocks

 Seem inefficient? Actually not!

— State is stored as a tree, little changed from the prev state -
store only the difference (by using Merkle Patricia tree)

— A node only needs to store the latest block (not all the
blocks), because this block has all the (latest) blockchain info

S[0] |

=

6.
s

Checking if a Block is Valid

Tx[0] Tx[1]

|

APPLY > S[1] 3| APPLY S[2] > ..

Prev block referenced exists and is valid

Timestamp is greater than that of referenced prev block and less than 15

minutes into the future

Tx[n-1]

Fs

APPLY

N

PAY
BLOCK
REWARD

%

Block number, difficulty, transaction root, uncle root and gas limit (various low-

level Ethereum-specific concepts) are valid
Proof of Work on the block is valid

Let S[O] = state at the end of the prev block, TX = block's transaction list, with n

transactions.
— ForalliinO0...n-1, set S[i+1] = APPLY(S[i], TX[i])

— If any APPLY returns error, or if the total gas consumed exceeds the GASLIMIT, return ERROR

Let S_FINAL = S[n], but adding the block reward paid to the miner.

If Merkle tree root of the state S_FINAL equals the final state root provided in
the block header, then the block is valid; else, invalid.

Ether Cryptocurrency Denominations

Unit Wei Ether
Wei (wei) 1 10-18
Kwei (babbage) 1,000 10-15
Mwei (lovelace) 1,000,000 10-12
Gwei (shannon) 1,000,000,000 10-°
Twei (szabo) 1,000,000,000,000 10-6
Pwei (finney) 1,000,000,000,000,000 103

Ether (buterin) 1,000,000,000,000,000,000 1

Prof. David (Duc) Tran | duc.tran@umb.edu

Running a node and how to interact

Client node software

e Geth (“Go Ethereum”):
provided by Ethereum
Foundation, written in Go
language

* Parity (written in Rust
Language): provided by
Parity Inc, written in Rust
language

 Web3js, Mist browser,
@ Parity browser: ways to

interact with blockchain

Prof. David (Duc) Tran | duc.tran@umb.edu

Clients Sync Status 0S Netv

Mainnet: ~4000 nodes

turbo-geth: 21 (0.5%) 1503 (38.23%)
erigon: 22 (0.6%) —
nethermind: 96 (2.4%)
openethereum: 600 (15.3%)

Client software popularity

Total
108 (2.75%)
Linux
. U , 06 (2.44%)
Windows 218 (5.55%) \ 2
geth: 3135 (79.8%)
MacOS 31 (0.79%) 92 (2.34%)

Chart provided by ethernodes

Unknown 6 (0.15%) Prof. David (Duc) Tran | duc.tran@umb.edu

00)
00
N
N

Ethereum Virtual Machine (EVM)

* The runtime environment to run Ethereum smart contracts
e Operates on 256-bit integers (unlike most virtual machines)
* Helps in preventing Denial-of-Service attacks

* Each Ethereum node runs its own EVM implementation and has the
capability to execute similar instructions

* To run the EVM, there is no centralized control

Ethereum Wallet

* Ul-based software used to connect to the Ethereum blockchain, to
store, accept and send ether

* Internally, it depends on the Geth client to seamlessly perform all the
operations

e Create accounts, deploy contracts, transfer ether across accounts,
and view transaction details.

Decentralized Applications (dApps)

* Backend code runs on a blockchain network, as opposed to typical
applications where the backend code is running on centralized servers

* Frontend code and user interfaces can be written in any language that
can make calls to its backend

* Frontend can be hosted on decentralized storage such as IPFS

* Typically open-source, decentralized, incentivized through providing
tokens

https://en.wikipedia.org/wiki/InterPlanetary_File_System

Decentralized Finance (DeFi)

* DeFi = a kind of dApp providing financial services

* MakerDAO: the first DeFi app (2017) — Ethereum-based protocol

* Allow users to issue a cryptocurrency (Dai stablecoin) that’s pegged 1-1 to the
USD by using digital assets (Etherreum) as collateral

* Allow anyone to take out a loan without relying on a centralized entity

 Compound Finance (2018): a decentralized market for borrowers of
collateralized loans and lenders who earn interests from borrowers

* Uniswap (2018): a decentralized exchange for users to swap between
Ethereum tokens

Always keep in mind

A system is decentralised if and only if it is:

UnderStandlng Distributed
D ecentralisation * Trustless

e Permissionless

Prof. David (Duc) Tran | duc.tran@umb.edu

Automated Market Makers

* Traditional exchange: buyers and sellers offer up different prices for
an asset. When other users find a listed price to be acceptable, they
execute a trade and that price becomes the asset’s market price

* Due to lack of offers = trading is not always 24/7 and subject to volatility
* Traders can see the order book and manipulate prices
* Centralized = have to trust the owner of the exchange

e Automated market makers (AMMSs): allow trading 24/7 without
permission and automatically by using liguidity pools instead of a
traditional market of buyers and sellers.

* AMMs are a DeFi tool unique to Ethereum

Prof. David (Duc) Tran | duc.tran@umb.edu

https://www.gemini.com/cryptopedia/centralized-exchanges-crypto
https://www.gemini.com/cryptopedia/glossary
https://www.gemini.com/cryptopedia/glossary
https://www.gemini.com/cryptopedia/ethereum-blockchain-smart-contracts-dapps

AMM: Liquidity Pools and Liquidity Providers

* Liquidity = how easily one asset can be converted into another asset,
often a fiat currency, without affecting its market price.

* On decentralized exchanges (DEXs), which are still new, the number

of buyers and sellers was small-> difficult to find enough people
willing to trade on a regular basis

 With AMMs: creating liquidity pools and incentivizing liquidity
providers (anybody can be a provider) to supply assets to these pools
* Liquidity pool =a shared pot of tokens provided by liquidity providers
* The price of the tokens in the pool is determined by a mathematical formula
e Users trade against this pool of tokens (the liquidity pool)

https://www.gemini.com/cryptopedia/glossary
https://www.gemini.com/cryptopedia/decentralized-exchange-crypto-dex
https://www.gemini.com/cryptopedia/glossary

AMM: Pricing Model

Model: always keep x * y = constant C
* X,V is the reserves (number of) of 2 assets swappable

Consider swapping (ETH, USDC), fair price of ETH = 2000 USDC

Size of the liquidity pool = same Samount of ETH and Samount
of USDC; for example, x=5 ETH and y=10,000 USDC

 they correspond to $10,000 worth of ETH and $10,000 worth of
USDC, respectively

So in the beginning C=5 * 10,000 = 50,000.

If 3 ETH is sold for USDC: need to compute market price 1 ETH
=p USDC?

We need (x-3)(y+3*p) = 50,000 (always constant)
(5-3)(10,000+3p)=50,000
So p =5000

Prof. David (Duc) Tran | duc.tran@umb.edu

Quantity
of B

tokens
in
contract

Old
position B tokens
gained
New

position

Quantity of A tokens in contract

AMM: Front-Running Attack

e Current state (10, 10)
e | want to spend one unit of A, | would get 0.909091 B
 New state (11, 9.090909) (their product = 100)

Quantity

of B
Front-running attack: a miner can do the following: tO‘?ﬁnS
 Starting state: (10, 10) contract

Old
position

 Miner spends 1 A: (11, 9.090909), gets 0.909091 B
* |spend1A: (12, 8.333333); get 0.757576 B New
* Miner spends 0.757576 B: (11, 9.090909), gets 1 A position

 Miner earns 0.151515 B coins for free, all of which Quantity of A tokens in contract
comes out of my pocket

B tokens
gained

Prof. David (Duc) Tran | duc.tran@umb.edu

Solution?

e 2 pools: pool (10, 10) if spending A and another pool (10, 10) if spending B
e Starting state: ((10, 10), (10, 10))

* Miner spends 1 A: ((11, 9.090909), (10, 10)), gets 0.909091 B

* | spend 1 A: ((12, 8.333333), (10, 10)); get 0.757576 B

 Miner spends 1.111111 B: ((12, 8.333333), (9, 11.111111)), gets 1 A

* You still lose 0.151515 coins, but the miner loses 1.111111 - 0.909091 =
0.202020 coins

* if the purchases were both infinitesimal in size, this is a 1:1 griefing attack,

* The larger the purchase, the larger relative loss the attacker gets

Fungible vs. Non-Fungible Tokens (NFT)

* Fungible tokens: tokens are identical. A token worth S1 is the same as
another token worth S1

e E.g., BTC, Ether: every one unit of BTC is identical to another unit of BTC
* Fungibility is a fundamental property of traditional currencies, like the USD

* Non-fungible tokens (NFT): a token is a digital representation of a
unigue asset

e E.g., digital art, and in theory any real-world asset that wants to be traded
digitally
* used as digital proof-of-ownership of underlying assets.

* ERC-20 is Ethereum standard for Fungible Token
e ERC-721 is Ethereum standard for Non-Fungible Token

Gavin Wood

Co-founder Gavin Wood

* PhD in Computer Science

 Creator of Solidity (the smart contract
language for Ethereum), the EVM, and
Ethereum’s first testnet

* Left Ethereum in 2016 to work on
Web3 Foundation and its flagship
product, Polkadot

Wood speaking in 2015

Born Gavin James Wood
April 1980 (age 41)
Lancaster, Lancashire, England,

* Polkadot: a framework for building an United Kingdom
Internet of interoperable blockchains, Nationality British
based on Proof of Stake Education Lancaster Royal Grammar
School

Prof. David (Duc) Tran | duc.tran@umb.edu Alma mater University Of York

https://coinmarketcap.com/currencies/polkadot-new/

Charles Hoskinson

Co-founder Charles Hoskinson

* Studied Math in college

* CEO of the Ethereum startup in
December 2013

* Left against Vitalik Buterin’s view of
making Ethereum non-profit

* He then created a programmable
blockchain ecosystem called Cardano

Born 1987 or 1988 (age 33-34)!]
e Cardano (a Proof-of-Stake Hawaii, USAlcitation needed]
bIOCkCham): Currently considered the Known for Founder of Cardano, co-founder of
biggest rival to Ethereum Ethereum

Website iohk.io&

Prof. David (Duc) Tran | duc.tran@umb.edu

https://coinmarketcap.com/currencies/cardano/

Ethereum 2.0

* Currently underway for a major upgrade to Ethereum 2.0 or Eth2
* Transition from Proof of Work to Proof of Stake

* Purpose: to scale up the blockchain

* increase transaction throughput from currently 15 transactions/second to
tens of thousands of transactions/second

