Ethereum Programming

Lecture by Prof. Duc A. Tran
University of Massachusetts, Boston, MA
duc.tran@umb.edu
https://linkedin.com/in/ductran

About this Tutorial

* | tried to
— Keep it simple
— Not throw out too many names
— Discuss only those needed for the practice
— Demo on Mac OS

| learned a lot mysel from

A 101 Noob Intro to Programming Smart
Contracts on Ethereum

https://medium.com/@ConsenSys/a-101-noob-
intro-to-programming-smart-contracts-on-
ethereum-695d15cldab4

JavaScript: install nodejs

* An open-source, cross-platform JavaScript run-
time environment that executes JavaScript code
on server-side

 Download: nodejs.org (will place Node.js and
npm both in /usr/local/bin)

 Has it been installed? type “node —v” and “npm —
v’ at command line to see the version

DTs—MacBook-Pro:~ ducl$ node -v
v8.11.1

DTs-MacBook-Pro:~ ducl$ npm -v
5.6.0 -
DTs-MacBook-Pro:~ ducl$ ||

Smart Contracts: use solidity

* Most popular language for smart contracts
— like JavaScript and has “.sol” as a file extension

* |nstall solcjs (a solidity compiler, from the C++
libraries)

DTs-MacBook-Pro:~ ducl$ sudo npm install —-g solc

Password:

/usr/local/bin/solcjs —> /usr/local/lib/node_modules/solc/solcjs
+ solc@?d.4.21

added 66 packages in 2.2s

DTs-MacBook-Pro:~ ducl$ ||

IDE for Solidity

* ...0ryou can use a Solidity IDE

* REMIX
— By Ethereum

— Online IDE: http://remix.ethereum.org
* COSMO

— built in Meteorl)S web framework

— MeteorlJS (web framework)

* Free, open-source isomorphic JavaScript web framework,
written using Node.js.

e Rapid prototyping and produces cross-platform (Android,
iOS, Web) code.

web3.js

e After smart contract enters the blockchain,

how to interact with the contract?

 Use an APIl: Ethereum web3.js JavaScript API

— A set of javascript libraries to allow us to interact
with an Ethereum node, using HTTP or IPC

How to test? install truffle

* Atest-driven development of smart contracts:
write-compile-deploy-test-build DApps

— Use a JavaScript promises framework (pudding) on
top of web3.js (so it installs web3.js for you too).

* To install, type at command line

DTs-MacBook-Pro:~ ducl$ sudo npm install —-g truffle

/usr/local/bin/truffle —> /usr/local/lib/node_modules/truffle/build/cli.bundled.js
+ truffle@.1.5

added 92 packages in 5.464s

How to use a DApp?

 Option 1: run a local Ethereum node

— Command line: several, depending on your
preference for Go (geth, most popular), C++ (eth),
Python (pyethereum), Java, or Haskell

* For testing/development purposes: ganache-cli

— GUI client: Ethereum’s AlethZero or AlethOne

 Option 2: use a web browser without a node
— MetaMask

dApp Front-end Steps s neimeon °

Transactions can be

Front-end JS Keystore? signed in the Ethereum
Node by the web3 API,
L " or signed in the front-
° Solidity Contract *.sol o ° end gnd pushed to the
node “raw”
sent dapp pushes After Contract Frontend can now
compiled contract posted to make calls to
to network blockchain: Contract on
blockchain:
web3.js returns
Address + ABI call:
' Address + ABI +
.sol blnary nonce .
sol sent back nonces prevent pgshmg
to dapp _ _ duplicate transactions and
! iz i Lsis increase for the lifetime of a key
Solidity Compiler
(solc) Key Ethereum Node Key
ConsenSys/testrpc |
(at https://github.
com/ConsenSys/eth- cpp-ethereum pythereum geth
testrpc)

Your Private
Ethereum
Network

Ethereum / or Private Network

A Contract Creation Transaction is shown in steps 1-5 at above.

An Ether Transfer or Function Call Transaction is assumed in step 6.
Lecture by Prof. Duc A. Tran

Ready for An Example?

 We will need (in order):
— Programming environment: Javascript (node.js)
— Smart contract language: Solidity (solc)
npm install solc
— Ethereum development environment: truffle
npm install —g truffle
— To run a local Ethereum node: ganache-cli

npm install -g ganache-cli
* Note: this is the new name for “testrpc”

e ganache-cli vs. geth:
— ganache-cli: Node.js based Ethereum client for testing and development.

— geth: full client in GO Language, connect to the real chain or start your
own testnet server.

Install ganache-cli

$ sudo npm 1install -g ganache-cl1i

babel-preset-es2015@6.24.1: ¢¥ Thanks for using Babel: we re
commend using babel-preset-env now: please read babeljs.io/env to update!
npm nomnom@l.8.1: Package no longer supported. Contact support@n
pmjs.com for more info.
/usr/local/bin/ganache-cli -> /usr/local/lib/node_modules/ganache-cli/build/cli.
node.js
npm webpack-c1i@2.0.14 requires a peer of webpack@"4.0.0 but none is instal
led. You must install peer dependencies yourself.

+ ganache-cl1i@6.1.0
added 496 packages in 8.636s

Update available - 5.8.0
Run npm i —-g npm to update

Lecture by Prof. Duc A. Tran

Create a folder

for our Ethereum
project
(anywhere)

Go to this folder

Run “truffle init”
to initialize a new
and empty
project in this
folder

Preparation

DTs-MacBook-Pro:~ ducl$ pwd

/Users/ducl

DTs-MacBook-Pro:~ ducl$ mkdir blockchain
DTs-MacBook-Pro:~ ducl$ cd blockchain
DTs-MacBook-Pro:blockchain ducl$ mkdir examplel
DTs-MacBook-Pro:blockchain ducl$ cd examplel
DTs-MacBook-Pro:examplel ducl$ truffle init
Downloading...

Unpacking...

Setting up...

Unbox successful. Sweet!

Commands:
Compile: truffle compile
Migrate: truffle migrate

Test contracts: truffle test
DTs-MacBook-Pro:examplel ducl$ ||

Lecture by Prof. Duc A. Tran

Coding & Compiling

* Coding
— Write the Solidity code for our smart contract

— Save as a file, e.g., “whatever.sol”, in folder
“contracts/ “

e Compiling
— type at the command line: “truffle compile”

DTs-MacBook-Pro:contracts ducl$ pwd
/Users/ducl/blockchain/examplel/contracts
DTs-MacBook-Pro:contracts ducl$ ls
Migrations.sol

DTs-MacBook-Pro:contracts ducl$ truffle compile
Compiling ./contracts/Migrations.sol...

Writing artifacts to ./build/contracts

DTs-MacBook-Pro:contracts ducl$ ||

truffle

The default Truffle directory structure contains the following:

e contracts/: Contains the Solidity source files for our smart contracts.

There is an important contract in here called Migrations.sol, which

we'll talk about later.

e migrations/: Truffle uses a migration system to handle smart contract

deployments. A migration is an additional special smart contract that
keeps track of changes.

e test/:Contains both JavaScript and Solidity tests for our smart contracts

e truffle.js: Truffle configuration file

Lecture by Prof. Duc A. Tran

Project Configuration

e Set up a development network
— by editing file “truffle.js” in project folder, e.g.,

| DTs-MacBook-Pro:examplel ducl$ cat truffle.js
// See <http://truffleframework.com/docs/advanced/configuration>
// to customize your Truffle configuration!

f module.exports = {
: networks: {
development: {
host: "127.0.0.1",
port: 8545,
network_id: "x" // Match any network id

}

L };
t DTs-MacBook—-Pro:examplel ducl$

Deploy

* Assuming compilation succeeds, now type

“truffle deploy” at command line to deploy the
smart contract

* As aresult, truffle tries to connect to a
Ethereum node by a RPC manner

— By default, localhost:8545

— We can change this configuration (see last slide)
when we want (for example, actual deployment)

Try 1: Did you see this?

DTs-MacBook-Pro:examplel ducl$ truffle deploy
| Could not connect to your Ethereum client. Please check that your Ethereum clien
15

is running
is accepting RPC connections (i.e., "—-rpc" option is used in geth)

is accessible over the network
is properly configured in your Truffle configuration file (truffle.js)

DTs-MacBook—-Pro:examplel ducl$

 HIGHLY LIKELY because you have not run a
Ethereum client node.

 SOLUTION: run “ganache-cli” on a separate console
window

Lecture by Prof. Duc A. Tran

o oy duc.tran — node /usr/local/bin/ganache-cli— 80x46

Last login: Tue Sep 25 10:50:45 on ttys@00
CSMxUM00014300:~ duc.tran$ ganache-cli
Ganache CLI vé6.1.8 (ganache-core: 2.2.1)

Available Accounts

(0) 0x90ccf38458189148847908b3813e28083¢c699cb7 (~100 ETH)
(1) 0x33966b66f7fcf4a3feb6d21f5f211c221fad5F2065 (~100 ETH)
(2) 0x29d1ef@89b3cb06a80653a94312004379be728c7 (~100 ETH)
(3) Ox474a772d94aleblae8abe79e347842dc6d384c0f (~100 ETH)
(4) Oxac645151c0733b3df235cc8626d3938989297d27 (~100 ETH)
(5) 90xc89f6590ab34bee4b58d20ab3188d17fec467d38 (~100 ETH)
(6) Oxalbdeebb5dabbd2386101cfc3e762925b04126b2 (~100 ETH)
(7) 0x406df06fbSbelcab05ab6eb1247bc0956TFf836b63 (~100 ETH)
u n Oca (8) 0x9aa934b46b6T2e7¢c9f39a5d8b932a7fe3876c303 (~100 ETH)
(9) 0xb099426c2257da3babe951bf789daf937588b361 (~100 ETH)
Et h e re u | I I (@) 9x3b969b4cdé6f23des7b943ad2eee70f37c4f1ld3ae3cb6ef43bc9010a3ab2519b48
(1) 9x12348302b27975fe@b9bbfdb5b7172898030b621a63682d1e59b8613a120fel2

N d e (2) oxff8465af313f1153728f08cad7339424361a3175334fa2ad7dd3f066d5a3df5¢

Private Keys

(3) 0x9fe3efbbab4ff5901b46742a21f6a743963468495d4c13569077a67232cfc523
(4) 9x10848b114f1886c5e226127f78d86e9965d1ddel1e297560111383¢c172b5b8céb
(5) 9x664e2d36506b5399095d78a7a730a373ccffbca9dc48937009113c54e0becb40
(6) Ox75b7225855a1761e3fb3042e5fb28efa34a302bas3bfObd6cRe878e29e413d2b
(7) 0x3b3lal4sbaae98ccfd36dc571357660F4151edced@11d190241529aada3c4ccd9
(8) Ox54c4b3f968765adcf66049851ea288eda810e52e42db49c46TT64584a658e45¢e
(9) 9x5a9780e5982ae315daff6ce39399c5526a4c276b2fef5227fb9d53786d4086df

HD Wallet
10 test accounts, : . . .
. Mnemonic: fat one pledge stay lady glove jaguar junior usage token security
generated automatically, effort

Base HD Path: m/44'/60'/0'/0/{account_index}

each preloaded with 100
(fake) ETH.

Gas Price

20000000000

Gas Limit

6721975

Listening on 127.0.0.1:8545

Deploy: Try Again

DTs-MacBook-Pro:examplel ducl$ truffle deploy
Using network 'development'.

Network up to date.
DTs-MacBook-Pro:examplel ducl$

e Success! (you must run it in the project’s root folder)

* As aresult, contract’s address and ABI (JSON-version
of the compiled contract) is added to the config
directory

— This is needed to run (later) truffle test and truffle build

Lecture by Prof. Duc A. Tran

src: medium.com/@mvmurthy

Webapp Architecture

Web Browser Web Browser Curl/Wget AP caller

HTML/CSS/Javascript
Server Code running Ruby, Python, Java etc

|

Database ‘

Webapp hosted on AWS/Heroku etc

Lecture by Prof. Duc A. Tran

src: medium.com/@mvmurthy

DApp Architecture

& Dapp Web & Dapp Web
Browser Browser

HTML/CSS/Javascript HTML/CSS/Javascript
Web3js Web3js

EVM - Ethereum Virtual Machine EVM - Ethereum Virtual Machine

—»Block 2 —» Block 3 —>»Block 2 —» Block 3

Blockchain Blockchain

Ethereum Dapp - Instance 1 Ethereum Dapp - Instance 2

Replaces the database/cache and server code
Lecture by Prof. Duc A. Tran

Smart Contract

The word “contract” might be confusing to tech people

Simply think of a “contract” as a “program”, or
“application code” to run the logic of your application

Every contract has an Ethereum address

Knowing this address and the ABI of the contract we
can interact with the contract using the methods
specified in the contract

Let us design our contract next!

Example: A Simple Storage

User can
1' Store d number pragma solidity "0.4.0;
on the bIOCkChaln’ contract SimpleStorage {
which will replace uint storedbata;
the pFEViOUS|y function Z;tiuint x) public {
storedData = Xx;
stored number }
2, Read the number function get() public view returns (uint) {
tly Stored) return storedData;
curren

on the blockchain

Lecture by Prof. Duc A. Tran

Example: A Simple Coin

pragma solidity >0.4.24;

contract Coin {

Keyword pUinC: aUtom // The keyword "public" makes those variables

a‘hca”y generates a // easily readable from outside.

. address public minter;
funCUon that a”OWS mapping (address => uint) public balances;
you tO dCCess the // Events allow light clients to react to
value. For example: // changes efficiently.

event Sent(address from, address to, uint amount);

— minter() gives the
value of the public
attribute minter

— balances.call(addr)
gives balances[addr]

Keyword event: when
an event is emitted,
will trigger the
Javascript code that
has been listening on
the event

// This is the constructor whose code 1is
// run only when the contract is created.
constructor() public {

minter = msg.sender;

}

function mint(address receiver, uint amount) public {
require(msg.sender == minter);
require(amount < 1e60);
balances[receiver] += amount;

}
function send(address receiver, uint amount) public {
balances[msg.sender] —-= amount;

balances[receiver] += amount;
emit Sent(msg.sender, receiver, amount);

Lecture by Prof. Duc A. Tran

require(amount <= balances[msg.sender], "Insufficient balance.

e

Listening for an Event

Coin.Sent().watch({}, '', function(error, result) {
if ('error) {

console. log("Coin transfer: " + result.args.amount +
" coins were sent from " + result.args.from +
" to " + result.args.to + ".");

console. log("Balances now:\n" +

"Sender: " + Coin.balances.call(result.args.from) +
"Receiver: " + Coin.balances.call(result.args.to));

)

* This Javascript code is executed when the
event Sent() is emitted (previous slide)

Lecture by Prof. Duc A. Tran

pragma solidity >=0.4.22 <0.6.0;

Exa mple. /// @title Voting with delegation.
° contract Ballot {
// This declares a new complex type which will
// be used for variables later.
// It will represent a single voter.
Ba”Ot struct Voter {
uint weight; // weight is accumulated by delegation
\/r _ti bool voted; // if true, that person already voted
() r‘{; address delegate; // person delegated to
uint vote; // index of the voted proposal

}

// This is a type for a single proposal.

struct Proposal {
bytes32 name; // short name (up to 32 bytes)
uint voteCount; // number of accumulated votes

}

address public chairperson;

// This declares a state variable that

// stores a Voter' struct for each possible address.

mapping(address => Voter) public voters;

// A dynamically-sized array of 'Proposal’ structs.
Proposal[] public proposals;

/// Create a new ballot to choose one of "proposalNames .

constructor(bytes32[] memory proposalNames) public {
chairperson = msg.sender;
voters[chairperson].weight = 1;

// For each of the provided proposal names,
// create a new proposal object and add it
// to the end of the array.
for (uint i1 = 0; i < proposalNames.length; i++) {
// "Proposal({...}) creates a temporary
// Proposal object and "proposals.push(...)’
// appends it to the end of “proposals’.
proposals.push(Proposal({
name: proposalNames[i],
voteCount: O

}));

// Give ‘voter' the right to vote on this ballot.
// May only be called by ‘chairperson’.
function giveRightToVote(address voter) public {

//
//
//
//
//
//
//
//

If the first argument of ‘require’ evaluates

to "false’, execution terminates and all

changes to the state and to Ether balances

are reverted.

This used to consume all gas in old EVM versions, but
not anymore.

It is often a good idea to use "require’ to check if
functions are called correctly.

// As a second argument, you can also provide an

//

explanation about what went wrong.

require(

);

msg.sender == chairperson,
"Only chairperson can give right to vote."

require(

);

lvoters[voter].voted,
"The voter already voted."

require(voters[voter].weight == 0);
voters[voter].weight = 1;

/// Delegate your vote to the voter ‘to’.
function delegate(address to) public {
// assigns reference
Voter storage sender = voters[msg.sender];
require(!sender.voted, "You already voted.");

require(to != msg.sender, "Self-delegation is disallowed.");

// Forward the delegation as long as
// “to’ also delegated.
// In general, such loops are very dangerous,
// because if they run too long, they might
// need more gas than is available in a block.
// In this case, the delegation will not be executed,
// but in other situations, such loops might
// cause a contract to get "stuck" completely.
while (voters[to].delegate != address(0)) {
to = voters[to].delegate;

// We found a loop in the delegation, not allowed.
require(to != msg.sender, "Found loop in delegation.");

by

// Since ‘sender’ 1is a reference, this
// modifies ‘voters[msg.sender].voted’
sender.voted = true;
sender.delegate = to;
Voter storage delegate_ = voters[to];
if (delegate_.voted) {
// If the delegate already voted,
// directly add to the number of votes
proposals[delegate_.vote].voteCount += sender.weight;
} else {
// If the delegate did not vote yet,
// add to her weight.
delegate_.weight += sender.weight;

/// Give your vote (including votes delegated to you)

/// to proposal ‘proposals[proposal].name’.
function vote(uint proposal) public {
Voter storage sender = voters[msg.sender];
require(!sender.voted, "Already voted.");
sender.voted = true;
sender.vote = proposal;

// If “proposal’ is out of the range of the array,
// this will throw automatically and revert all

// changes.
proposals[proposal].voteCount += sender.weight;

Lecture by Prof. Duc A. Tran

/// @dev Computes the winning proposal taking all
/// previous votes into account.
function winningProposal() public view

returns (uint winningProposal_)

{
uint winningVoteCount = 0;
for (uint p = 0; p < proposals.length; p++) {
if (proposals[pl.voteCount > winningVoteCount) {
winningVoteCount = proposals|[p].voteCount;
winningProposal_ = p;
Iy
¥
¥

// Calls winningProposal() function to get the index
// of the winner contained in the proposals array and then
// returns the name of the winner
function winnerName() public view
returns (bytes32 winnerName_)

{

winnerName_ = proposals[winningProposal()].name;

by

Test Contract with remix.ethereum.org

4 Remix - Solidity IDE x e
® remix.ethereum.org/#optimize=false&version=soljson-v0.4.23+commit.124ca40d.js @
o 5 O O &« * browser/Storage.sol x » Compile Run Settings Analysis Debugger Support
» browser 1 pragma solidity /0.4.8; 2 Starttocompile @ Auto.
2 compile
3 - contract Storage {
» confi X
J 4 uint256 storedData;
5~ function set(uint256 data) public { Storage s Details Publish on Swarm
6 storedData = data;
7 }
& 8- function get() constant returns (uint256) { browser/Storage.sol:8:5: Warning: No visibility sX
9 return storedData;) .
10 } function get() constant returns (uint256) {
11 3} ”~ (Relevant source part starts here and spans
12

* You can write/compile/deploy/test the code
for the contract on remix.ethereum.org
(browser-based Solidity IDE)

¥y O [2] only remix transactions, scripte CT v Qroisédaidh ransiéet

Gas Limit, Gas Price

e Gas Limit (e.g., 3,000,000)
— EVM charges some gas to run each instruction.

— If a transaction’s execution exceeds the Gas Limit,
it is considered “out of gas”; it is canceled,
reverting to original state.

e Gas Price (e.g., 2Gwei per gas)

— If transaction requires 100 gas. Miner will earn
2Gwei * 100 = 200Gwei

— The higher set, the more likely miner will include
the TX in the new block

Example:

Another
Voting
Contract

&

Command Line
Terminal

Nodejs console
Web3js

Web Browser

HTML/CSS/Javascript

&

Web3js

EVM - Ethereum Virtual Machine

»Block 2

—» Block 3

»Block 4

Blockchain (testrpc)

Voting App

Lecture by Prof. Duc A. Tran

Deployed
Voting
Contract

Frond-End Webpage

Pl s s oaa we . | L 11 & | & Al L1 I 1L m==1 =

¢ Remix W Fulls x Y Full € x Full € x /' [Hello x

' @ file:///Users/duci/blockchain/examplel/index.html ¢

Votel

LI = § 1SS | SR |

i Candidate Votes
! Rama 0

| Nick 0

* Jose 0

i

'Y

R

Lecture by Prof. Duc A. Tran

-

Ooo~NOUTH WN -

Lornracioeirmuorn votng 7 vircl

// We have to specify what version of compiler this code will compile with
pragma solidity /0.4.18;

}

- contract Voting {

/* mapping field below is equivalent to an associative array or hash.

The key of the mapping is candidate name stored as type bytes32 and value is
an unsigned integer to store the vote count */

mapping (bytes32 => uint8) public votesReceived;

/* Solidity doesn't let you pass in an array of strings in the constructor (yet).
We will use an array of bytes32 instead to store the list of candidates */
bytes32[] public candidatelist;

/* This is the constructor which will be called once when you
deploy the contract to the blockchain. When we deploy the contract,
we will pass an array of candidates who will be contesting in the election */
function Voting(bytes32[] candidateNames) public {
candidatelist = candidateNames;

}

// This function returns the total votes a candidate has received so far
function totalVotesFor(bytes32 candidate) view public returns (uint8) {
require(validCandidate(candidate));
return votesReceived[candidate];

}

// This function increments the vote count for the specified candidate. This
// 1is equivalent to casting a vote
function voteForCandidate(bytes32 candidate) public {
require(validCandidate(candidate));
votesReceived[candidate] += 1;

}

function validCandidate(bytes32 candidate) view public returns (bool) {
forCuint 1 = @; 1 < candidatelist.length; i++)
if (candidatelist[i] == candidate) return true;
return false;

¥ Lecture by Prof. Duc A. Tran

truffle migrate

* Go to “migrations/” folder

* Create a new file (if not existing) named
“2 deploy contracts.js”, and add the
following content (to initiate the contract):

DTs-MacBook-Pro:migrations ducl$ cat 2_deploy_contracts.js
var Voting = artifacts.require("./Voting.sol");
module.exports = function(denlover) {

deployer.deploy(Voting, ['Rama', 'Nick','Jose']);

&
DTs-MacBook-Pro:migrations ducl$

Lecture by Prof. Duc A. Tran

1 // We have to specify what version of compiler this code will compile with

2 pragma solidity /0.4.18;

3

4+ contract Voting {

5+ /* mapping field below is equivalent to an associative array or hash,

6 The key of the mapping is candidate name stored as type bytes32 and value 1is
7/ an unsigned integer to store the vote count */

8 mapping (bytes32 => uint8) public votesReceived;

10~ /* Solidity doesn't let you pass in an array of strings in the constructor (yet).
11 We will use an array of bytes32 instead to store the list of candidates */
12 bytes3Z[] public candidatelist;

/* This 1is the constructor which will be called once when you
deploy the contract to the blockchain, When we deploy the contract,
we will pass an array of candidates who will be contesting in the election */

function Voting(bytes3Z[] candidateNames) public {
candidatelist = candidateNames;

truffle deploy

 Make sure you run a node first, “ganache-cli”
 Then, run “truffle deploy”

DTs-MacBook-Pro:examplel ducl$ truffle deploy
Using network 'development'.

Running migration: 1_initial_migration.js
Deploying Migrations...
.+« 0x53d30fleede7f5e3204d0b87c39cc64adb2dba8f60d73 CONTRACT
Migrations: 0x5dcd72360a77976df511a7b08fed2ca91fded
Saving successful migration to network... ADDRESS
. 0x316b7b490e587dffdb1f94f1148ebf60c7aca63fc827" . o S
Saving artifacts...
Running migration: 2_deploy_contracts.js
Deploying Voting...
cas OXbORAAFAAARADI7a1ARKRARNKRAfFrARRAANRARTRaNr uARARRAT1e86d338142c7F5514cC
Voting: 0x064c869859ef9d38a45506035d33d5d63¢c451170
Saving successiul MLgrdilioin LO NELWOIKa s
. Ox4aled41bb6bc45bf8ce93f7253057e2bb9f@a2bbcaebbba659f9d8140bede8551e
Saving artifacts...
DTs-MacBook-Pro:examplel ducl$

Ready to test?

 We will write a webpage javascript to allow
user to interact with the contract (i.e., to vote)

index.html (user-interface webpage)
index.js (called when user inputs)

User-Interface Webpage

% Remix P Fullex P Fulsx [Full € x /[Hello x

' @ file:///Users/duci1/blockchain/examplei/index.html

Vote!

Candidate
Rama
Nick

Jose

Lecture by Prof. Duc A. Tran

index.html (you can copy & paste)

<IDOCTYPE html>
<html>
<head>
<title>Hello World DApp</title>
<link href="https://fonts.googleapis.com/css?family=Open+Sans:400,700' rel='stylesheet' type="text/css'>
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css' rel='stylesheet' type="text/css'>
</head>
<body class="container">
<h1>A Simple Hello World Voting Application</h1>
<div class="table-responsive">
<table class="table table-bordered">
<thead>
<tr>
<th>Candidate</th>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rama</td>
<td id="candidate-1"></td>
</tr>
<tr>
<td>Nick</td>
<td id="candidate-2"></td>
</tr>
<tr>
<td>Jose</td>
<td id="candidate-3"></td>
</tr>
</tbody>
</table>
</div>
<input type="text" id="candidate" />

Vote
</body>
<script src="https://cdn.rawgit.com/ethereum/web3.js/develop/dist/web3.js"></script>
<script src="https://code.jquery.com/jquery-3.1.1.slim.min.js"></script>

<script src="./i n d ex.jS"></script>

</html>

index.js (you can copy & paste)

web3 = new Web3(new Web3.providers.HttpProvider("http://localhost:8545"));

abl = JSON.parse('[{"constant":false,"inputs":[{"name":"candidate","type": "bytes32"}] "name":"totalVotesFor","outputs":

[{"name":"","type":"uint8"}],"payable":false,"type":"function"},{"constant":false,' |nputs

[{"name":"candidate","type":"bytes32"}],"name":"validCandidate","outputs":[{"name":"","type":"bool"}]," payable":false,"type":"function"},{"constant":true,"inputs":

[{"name":"","type": "bytesSZ"}],"name" "votesReceived","outputs":[{"name":"","type": "umt8"}],"payab|e :false,"type":"function"},{"constant":true,"inputs":
[{"name":"x","type":"bytes32"}],"name":"bytes32ToString","outputs":[{"name":"","type":"string"}]," payable":false,"type":"function"},{"constant":true,"inputs":
[{"name":"","type":"uint256"}],"name":"candidateList","outputs":[{"name":"" "type" "bytes32"}] "payable false,"type":"function"},{"constant":false,"inputs":

[{"name": "candidate” ,"type":"bytes32"}],"name": voteForCandldate outputs" [],"payable :false,"type":"function"},{"constant":true,"inputs":
[,"name":"contractOwner","outputs":[{"name":"","type":"address"}], "payable :false,’ type" "function"},{"inputs":
[{"name": "candidateNames" ,"type": "bytes32[]"}],"payable" false,"type": "constructor"}])

VotingContract = web3.eth.contract(abi);

// In your nodejs console, execute contractinstance.address to get the address at which the contract is deployed and change the line be
address

contractinstance = VotingContract.at('0x064c869859ef9d38a45506035d33d5d63c45

candidates = {"Rama": "candidate-1", "Nick": "candidate-2", "Jose": "candidate-3"}

to use your deployed
l L]
0');

function voteForCandidate() {
candidateName = $("#candidate").val();

contractinsta nce.VOtEForcandidatE(candidateName, {from: web3.eth.accounts[0]

let div_id = candidates[candidateName];

$("#" + div_id).htmi(contractinstance.totalVotesFor.call(candidateName).tostring()); You can copy the json
0

} string from Voting.json
S(document).ready(function() { in ”./bUild/ContraCtS/”

candidateNames = Object.keys(candidates);
for (vari=0; i< candidateNames.length; i++) {
let name = candidateNamesli];

let val = contractinstance.totalVotesFor.call(name).tostring() Make sure the contract
S("#" + candidates[name]).html(val);
}
1

address is correct

Lecture by Prof. Duc A. Tran

Need Contract Address and ABI?

* Look inside the json file in folder “./build/
contracts/”

vVEI SL1UIl UG Z1LTCOUHNNLL.UITCOLIJL.CHISCT LPLEITT. C LAIY
}y
"networks": {
""1525798459791": {
"events": {},
"links": {},
"address": "0x048e6c8c36a671db7a8e40baabb68ebeab58b53ed",
"transactionHash":
"0x68323d042198771c70e48ce51b3aedd8b5¢cd9e843206295¢ce938761fd
82c5864"
}
Hy

|| QPR PR TN I S S | " n nlil

Lecture by Prof. Duc A. Tran

Another Example?

 MetaCoin: an example provided by Truffle. To
get it to your computer, do the following

DTs-MacBook-Pro:blockchain ducl$ mkdir MetaCoin
DTs—-MacBook-Pro:blockchain ducl$ cd MetaCoin/
DTs-MacBook-Pro:MetaCoin ducl$ truffle unbox metacoin
Downloading...

Unpacking...

Setting up...

Unbox successful. Sweet!

Commands:

Compile contracts: truffle compile

Migrate contracts: truffle migrate

Test contracts: truffle test
DTs-MacBook-Pro:MetaCoin ducl$

Lecture by Prof. Duc A. Tran

Another: Number Betting

Bet for your best number and win huge amounts of Ether

Number of bets: 4

Last number winner: 0
Total ether bet: 1.6 ether
Minimum bet: 0.1 ether
Max amount of bets: 10

Vote for the next number

How much Ether do you want to bet? 0.1 ether

Only working with the Ropsten Test Network
You can only vote once per account
Your vote will be reflected when the next block is mined

https://medium.com/@merunasgrincalaitis/the-ultimate-end-to-end-
tutorial-to-create-and-deploy-a-fully-descentralized-dapp-in-
ethereum-18f0cf6d7e0e

Lecture by Prof. Duc A. Tran

Do the following in order

1. Create a new folder, say “betting”

2. Go to this folder

3. Type “truffle init” (to initialize truffle)

4. Type “npm init —y” (to create package.json)

Front-End Preparation

* Need webpack, react, babel and web3. Type
the following:

npm i -D webpack react react-dom babel-core babel-
loader babel-preset-react babel-preset-env css-
loader style-loader json-loader web3@0.20.0

Need webpack, react, babel and web3

DTs-MacBook-Pro:betting ducl$ npm i -D webpack react react-dom babel-core babel-loader babel-prese
t-react babel-preset-env css-loader style-loader json-loader web3€0.20.0

npm babel-core is being moved from dependencies to devDependencies

npm babel-loader is being moved from dependencies to devDependencies

npm babel-preset-env is being moved from dependencies to devDependencies
npm babel-preset-react is being moved from dependencies to devDependencies
npm css-loader is being moved from dependencies to devDependencies

npm json-loader is being moved from dependencies to devDependencies

npm react is being moved from dependencies to devDependencies

npm react-dom is being moved from dependencies to devDependencies

npm style-loader is being moved from dependencies to devDependencies

npm web3 is being moved from dependencies to devDependencies
npm webpack is being moved from dependencies to devDependencies
npm betting@l1.0.0 No description

npm betting@l1.0.0 No repository field.

web3€0.20.0
babel-core@6.26.3
style-loader@0.21.0
css-loader@0.28.11
babel-preset-react@6.24.1
babel-loader@7.1.4
babel-preset-env@l.7.0
react@16.3.2
react-dom@16.3.2
webpack@4.8.2
json-loader@0.5.7

updated 11 packages and moved 1 package in 11.922s
DTs-MacBook-Pro:betting ducl$

++++++++++ +

Front-End File Organization

 Create folders for source files
(index.js, index.css) and output-
distribution files (index.html)

DTs-MacBook-Pro:betting ducl$ pwd
/Users/ducl/blockchain/betting
DTs-MacBook-Pro:betting ducl$ mkdir src
DTs-MacBook-Pro:betting ducl$ mkdir src/js

DTs-MacBook-Pro:betting ducl$ mkdir src/css
DTs-MacBook-Pro:betting ducl$ mkdir dist
DTs-MacBook-Pro:betting ducl$

Lecture by Prof. Duc A. Tran

contracts/

—— Migrations.sol
migrations/
node_modules/
test/

src/

—— ¢ss/index.css

—— js/index.js
dist/
—— index.html

package. json
truffle-config.js
truffle.js

webpack.config.js

—> Webpack.config.js

const path = require('path’)
module.exports = {
entry: path.join(__dirname, 'src/js', 'index.js'), // Our frontend will be inside the src folder
output: {
path: path.join(__dirname, 'dist'),
filename: 'build.js' // The final file will be created in dist/build.js

b

module: {

loaders: [{
SICLEII™ webpack will read this file to
e generate a single file called
test: /\.jsx?S/, // To load the js and jsx files p7, c) o c .
(oader: habel-loader, build.js” combining all the js
exclude: /node_modules/, . .
avery: and css files, to be compatible
presets: ['es2015', 'react’, 'stage-2'] .

) with new and old browsers.

test: /\.json$/, // To load the json files
loader: 'json-loader’
1
}
}

Create dist/index.html

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">

<link href="https://fonts.googleapis.com/css?family=0Open+Sans:400,700'
rel="stylesheet' type="text/css'>

<title>Casino Ethereum Dapp</title>

</head>
<body>)
<div id="root"></div> «—— react code will be
<script src="build.js"></script> inserted here:
ooy <div id="root"></div>
</html>

Contract: “Casino.sol”

pragma solidity 0.4.20;
contract Casino {
address public owner;
uint256 public minimumBet;
uint256 public totalBet;
uint256 public numberOfBets;
uint256 public maxAmountOfBets = 100;
address|[] public players;
struct Player {
uint256 amountBet;
uint256 numberSelected;
}
// The address of the player and => the user info
mapping(address => Player) public playerinfo;

function() public payable {}

function Casino(uint256 _minimumBet) public {
owner = msg.sender;
if(_minimumBet =0) minimumBet = _minimumBet;

}

function kill() public {
if(msg.sender == owner) selfdestruct(owner);

}

function checkPlayerExists(address player) public constant
returns(bool) {

for(uint256 i = 0; i < players.length; i++){
if(players[i] == player) return true;
}

return false;

// Generates a number between 1 and 10 that will be the winner

function generateNumberWinner() public {
uint256 numberGenerated = block.number % 10 + 1; // This isn't secure
distributePrizes(numberGenerated);

}

// Sends the corresponding ether to each winner depending on the total bets

function distributePrizes(uint256 numberWinner) public {
address[100] memory winners;
uint256 count = 0; // This counts the number of winners

for(uint256 i = 0; i < players.length; i++){
address playerAddress = players]i];
if(playerinfo[playerAddress].numberSelected == numberWinner){
winners[count] = playerAddress;
count++;

}
delete playerinfo[playerAddress]; // Delete all the players

players.length = 0; // Delete all the players array
uint256 winnerEtherAmount = totalBet / winners.length; // How much each winner gets
for(uint256 j = 0; j < count; j++){
if(winners[j] != address(0)) // Check that the address in this fixed array is not empty
winners[j].transfer(winnerEtherAmount);

// To bet for a number between 1 and 10 both inclusive

function bet(uint256 numChosen) public payable {
require(!checkPlayerExists(msg.sender));
require(numChosen >= 1 && numChosen <= 10);
require(msg.value >= minimumBet);

playerinfo[msg.sender].amountBet = msg.value;
playerinfo[msg.sender].numberSelected= numChosen ;

numberOfBets++;
players.push(msg.sender);
totalBet += msg.value;

Test on a Real Blockchain

So far we have tested on our local blockchain
(running on local host).

Now, lets test on a real blockchain

Testnet:
— Ropsten, Rinkeby, Kovan, etc.
— Used for testing purposes only, with fake Ether.

Mainnet (also called Homestead):

— The real blockchain used by the entire world with
real Ether.

Deploy Contract on Testnet

* Create an account with Q % © & :
MetaMask and log in o @ Fomsien . |
* Set MetaMask to
connect to Ropsten
Blockchain Testnet (for Account 1

testing purposes)

* Need Ether to test. Get
some for free at 206313
https://
faucet.metamask.io/
(wait some time to see
this money in
MetaMask)

No transaction history.

Lecture by Prof. Duc A. Tran

4 Remix - Solidity IDE X
REMIX @ 4

» Compile Run Settings Analysis Debugger Support

remix.ethereum.org

Environment Injected Web3 & Ropsten(3) ¥ 1
G o to ”RU nn ta b Account 0x8¢€6...60910 (3 ether) s B
Gas limit 3000000
Value 0 wei v
You will see
these boxes ("Gasino :)
populated Deploy uini256_minimumBet v
autom aﬁ Cd | |y as Load contract from Address At Address
a result of
|O g g| ng in L 0 pending transactions > @

MetaMask

O contract Instances

Lecture by Prof. Duc A. Tran

Testnets

Rinkeby (Geth only)

— Proof of Authority (PoA), recommended for development
(quick mining, consistent)

Kovan (Parity only)

— Proof of Authority (PoA), recommended for development
(quick mining, consistent)

Ropsten (Geth and Parity)

— closest to the Mainnet, uses Proof of Work (PoW)
consensus, has been subject to attacks in the past, more
problematic for developers

You can get free ETH to test on these test blockchain
networks

Install geth

* Remember, ganache-cli is for development
* Torun areal node that you own, need geth

— Need to run geth to sync with the blockchain network
— First time running: will take long time, so be patient!

orew update

orew upgrade

orew tap ethereum/ethereum
orew install ethereum

v UnN N Wn

Calling a Contract inside a Contract (1)

e Say, we want to interact with a contract
deployed at addr ox692a70d2e424a5602¢6c272a97d1a86395877b3a

pragma solidity 20.4.18;
contract SimpleStorage {
uint public value = 1;
function set(uint a) public { value = a; }
function get() view public returns (uint) {
return value;

Calling a Contract inside a Contract (2)

// need this prototype
°
NOW, the contract SimpleStorage {

curre nt Contra Ct function set(uint) public;

function get() view public returns (uint);

}
¢ Set _add ress tO contract CurrentContract {

0x692a70d2e424a56d2c6¢ SimpleStorage deployed_contract;
constructor(address _address) public {

27aa97d1a86395877b3a deployed_contract = SimpleStorage(_address);
}

tO pu ” OUt the function get1() public view returns (uint result) {

! t depl d tract.get();
Slmplestorage } return deployed_contract.get();
CO ntra Ct from function set1(uint _val) public {

deployed_contract.set(_val);

the blockchain } }

