CS420 Homework 1 Solutions

1.3

The state diagram of the machine will be as follows

1.4.a

Let $L=\{w \mid w$ has at least three a 's and two b 's $\}$, then $L_{1}=\{w \mid w$ has at least three a 's $\}$ and $L_{2}=\{w \mid w$ has at least two b 's $\}$

The state diagram for L_{1} will be

The state diagram for L_{2} will be

The DFA M which is the intersection of the languages L_{1} and L_{2} will have $Q=Q_{1} \times Q_{2}=12$ states and one accept state. The state diagram for the DFA M will be as follows.

1.5.c

We have $L=\{\mathrm{w} \mid \mathrm{w}$ contains neither the substrings $a b$ nor $b a\}$
then $\bar{L}=\{\mathrm{w} \mid \mathrm{w}$ contains either the substrings $a b$ or $b a\}$.
Firstly, we design the state diagram of DFA that accepts w contains $a b$

And similarly, the state diagram of DFA that accepts w contains $b a$

Hence, the state diagram of DFA that accepts \bar{L} is the combination of two diagrams above, as follows

To get the state diagram of the DFA that accepts L we need to replace the accepting states F with $Q \backslash F$

1.6.j

The state diagram of the DFA which accepts the language
$\underline{L}=\{w \mid w$ contains at least two 0 's and and at most one 1$\}$ is

1.13

The language L is a set of strings that do not contain a pair of 1 's that are separated by an odd number of symbols, then the language \bar{L} would be the set of strings that contain atleast one pair of 1's that are separated by an odd number of symbols. The state diagram of the NFA that accepts \bar{L} would be

The transition table for the above is

State	0	1
q_{0}	q_{0}	$\left\{q_{0}, q_{1}\right\}$
q_{1}	q_{2}	q_{2}
q_{2}	q_{1}	$\left\{q_{1}, q_{3}\right\}$
q_{3}	q_{3}	q_{3}

We now need to convert the NFA to a DFA, which will have the following transition table

State	0	1
q_{0}	q_{0}	$\left\{q_{0}, q_{1}\right\}$
$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$
$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{1}, q_{3}\right\}$
$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
$\left\{q_{0}, q_{1}, q_{3}\right\}$	$\left\{q_{0}, q_{2}, q_{3}\right\}$	$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$	$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$	$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
$\left\{q_{0}, q_{2}, q_{3}\right\}$	$\left\{q_{0}, q_{1}, q_{3}\right\}$	$\left\{q_{0}, q_{1}, q_{3}\right\}$

The state diagram for the DFA will be

To get the DFA for the language L, we need to compliment the above DFA, we can also simplify the state diagram converting the states $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\left\{q_{0}, q_{1}, q_{3}\right\}$
and $\left\{q_{0}, q_{2}, q_{3}\right\}$ into one state.

1.16.b

Let $N=\left(Q, \sum, \delta, q_{0}, F\right)$ be the definition the the NFA. Let $D=\left(Q^{\prime}, \sum, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ be the DFA that is equivalent to N. Using the theorem 1.9 , we have
$Q^{\prime}=\mathcal{P}(Q)=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$. Now we need to calculate δ^{\prime}
$\delta^{\prime}(\phi, a)=\delta^{\prime}(\phi, b)=\phi$
$\delta^{\prime}(\{1\}, a)=E(\delta(1, a))=\{3\}$
$\delta^{\prime}(\{1\}, b)=E(\delta(1, b))=\phi$
$\delta^{\prime}(\{2\}, a)=E(\delta(2, a))=\{1,2\}$
$\delta^{\prime}(\{2\}, b)=E(\delta(2, b))=\phi$
$\delta^{\prime}(\{3\}, a)=E(\delta(3, a))=\{2\}$
$\delta^{\prime}(\{3\}, b)=E(\delta(3, b))=\{2,3\}$
$\delta^{\prime}(\{1,2\}, a)=E(\delta(1, a)) \cup E(\delta(2, a))=\{1,2,3\}$
$\delta^{\prime}(\{1,2\}, b)=E(\delta(1, b)) \cup E(\delta(2, b))=\phi$
$\delta^{\prime}(\{1,3\}, a)=E(\delta(1, a)) \cup E(\delta(3, a))=\{2,3\}$
$\delta^{\prime}(\{1,3\}, b)=E(\delta(1, b)) \cup E(\delta(3, b))=\{2,3\}$
$\delta^{\prime}(\{2,3\}, a)=E(\delta(2, a)) \cup E(\delta(3, a))=\{1,2\}$
$\delta^{\prime}(\{2,3\}, b)=E(\delta(2, b)) \cup E(\delta(3, b))=\{2,3\}$
$\delta^{\prime}(\{1,2,3\}, a)=E(\delta(1, a)) \cup E(\delta(2, a)) \cup E(\delta(3, a))=\{1,2,3\}$
$\delta^{\prime}(\{1,2,3\}, b)=E(\delta(1, b)) \cup E(\delta(2, b)) \cup E(\delta(3, b))=\{2,3\}$
Now $q_{0}^{\prime}=E\left(q_{0}\right)=E(1)=\{1,2\}$
$F^{\prime}=\left\{R \in Q^{\prime} \mid R\right.$ contains an accept state of $\left.N\right\}=\{\{1,2\},\{2,3\},\{1,2,3\}\}$
Drawing the state diagram using the DFA above we get,

We can simplify the diagram by removing states that are not reachable from the start state

1.19.a

We can construct NFA for the regular expression $(0 \cup 1)^{*} 000(0 \cup 1)^{*}$ as follows
the state diagram A for $(0 \cup 1)^{*}$:

the state diagram B for 000 :

Then, we combine them: ABA:

1.21.b

First we convert the DFA to a Generalized DFA by adding a new start and
accept state.

We perform union on the edge from state 1 to 2

We eliminate state 1 as follows

We perform union on edges from state 2 to 3 and from 3 to final state

We then eliminate state 2 as follows

We eliminate state 3 next

We perfom union on edge from S to F to get

The regular expression of the DFA is $\varepsilon \cup\left((a \cup b) a^{*} b\right)\left((a(a \cup b) \cup b) a^{*} b\right)^{*}(\varepsilon \cup a)$

