CS420 HW2 Solutions

2.1)

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T \times F \mid F \\
& F \rightarrow(E) \mid a
\end{aligned}
$$

Give parse trees and derivations for each string.
2.1.c) $a+a+a$

The derivation is as follows

$$
\begin{aligned}
E & \Longrightarrow E+T \\
& \Longrightarrow E+T+T \\
& \Longrightarrow T+T+T \\
& \Longrightarrow F+T+T \\
& \Longrightarrow F+F+T \\
& \Longrightarrow F+F+F \\
& \Longrightarrow a+F+F \\
& \Longrightarrow a+a+F \\
& \Longrightarrow a+a+a
\end{aligned}
$$

2.1.d) ((a))

2.4.e) Give context-free grammars that generate

 the following languages. The alphabet \sum is $\{0,1\}$. $\left\{w \mid w=w^{R}\right.$, that is, w is a palindrome $\}$The context free gramar for the language is given by $S \rightarrow 0|1| 0 S 0|1 S 1| \epsilon$

2.6.b) Give context-free grammars generating the

 following language, The complement of the language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$.The compliment of the language L either should start with b or end in a, or if it starts with a and ends with b the substring between the two must not be in L. So we can write the grammar as follows.

$$
\begin{aligned}
& S \rightarrow b A|A a| a S b \\
& A \rightarrow a A|b A| \epsilon
\end{aligned}
$$

2.9) Give a context-free grammar that generates the language

$$
A=\left\{a^{i} b^{j} c^{k} \mid i=j \text { or } j=k \text { where } i, j, k \geq 0\right\}
$$

We can split A into two languages $A_{1}=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ where $\left.i, j, k \geq 0\right\}$ and $A_{2}=\left\{a^{i} b^{j} c^{k} \mid j=k\right.$ where $\left.i, j, k \geq 0\right\}$

CFG for the language A_{1} is as follows

$$
\begin{aligned}
S_{1} & \rightarrow S_{1} c|E| \epsilon \\
E & \rightarrow a E b \mid \epsilon
\end{aligned}
$$

CFG for the language A_{2} is as follows

$$
\begin{aligned}
S_{2} & \rightarrow a S_{2}|F| \epsilon \\
F & \rightarrow b F c \mid \epsilon
\end{aligned}
$$

We can take the union of the two CFG's for the language A

$$
S \rightarrow S_{1} \mid S_{2}
$$

For generating the string $w=a^{n} b^{n} c^{n}$ we can use either S_{1} or S_{2}, therefore the grammar is ambigous.
2.11) Convert the CFG to an equivalent PDA

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T \times F \mid F \\
& F \rightarrow(E) \mid a
\end{aligned}
$$

2.12) Convert the CFG to an equivalent PDA

$$
\begin{aligned}
& R \rightarrow X R X \mid S \\
& S \rightarrow a T b \mid b T a \\
& T \rightarrow X T X|X| \epsilon \\
& X \rightarrow a \mid b
\end{aligned}
$$

2.14) Convert the following CFG into an equivalent CFG in Chomsky normal form.

$$
\begin{aligned}
& A \rightarrow B A B|B| \epsilon \\
& B \rightarrow 00 \mid \epsilon
\end{aligned}
$$

In Chomsky Normal form every rule is of the form

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a \\
& S \rightarrow \epsilon, \text { where } S \text { is the start symbol }
\end{aligned}
$$

We first add a new start variable S_{0} to get

$$
\begin{aligned}
S_{0} & \rightarrow A \\
A & \rightarrow B A B|B| \epsilon \\
B & \rightarrow 00 \mid \epsilon
\end{aligned}
$$

Next we remove all rules containing ϵ

$$
\begin{aligned}
S_{0} & \rightarrow A \mid \epsilon \\
A & \rightarrow B A B|B A| A B|A| B \mid B B \\
B & \rightarrow 00
\end{aligned}
$$

Now we remove the unit rules to get the following

$$
\begin{aligned}
S_{0} & \rightarrow B A B|B A| A B|00| B B \mid \epsilon \\
A & \rightarrow B A B|B A| A B|00| B B \\
B & \rightarrow 00
\end{aligned}
$$

Now we can replace the terminals with a new variable U

$$
\begin{aligned}
S_{0} & \rightarrow B A B|B A| A B|U U| B B \mid \epsilon \\
A & \rightarrow B A B|B A| A B|U U| B B \\
B & \rightarrow U U \\
U & \rightarrow 0
\end{aligned}
$$

Now we need to shorten the RHS of the rules to contain only two variables

$$
\begin{aligned}
S_{0} & \rightarrow B C|B A| A B|U U| B B \mid \epsilon \\
A & \rightarrow B C|B A| A B|U U| B B \\
B & \rightarrow U U \\
U & \rightarrow 0 \\
C & \rightarrow A B
\end{aligned}
$$

This is the final CFG in Chomsky Normal Form

