
5.1 Show that EQCFG is undecidable

Let’s recall that ALLCFG is undecidable. We will prove by contradiction with
assumption that EQCFG is decidable. We can build a decider M for ALLCFG.
Indeed, M = on input ⟨G⟩, where G is a context-free grammar.

1. Create a context-free grammar H such that H accept all strings.

2. If ⟨G,H⟩ ∈ EQCFG, ACCEPT

3. Else REJECT

Machine M is a valid decider for ALLCFG since in step 1, we can easily pick a
CFG that accept every string in finite time. Moreover, EQCFG is decidable so
step 2 and 3 will terminate in finite time.
Hence, M is decider for ALLCFG (Contradiction).
Therefore, EQCFG is undecidable.

5.2 Show that EQCFG is co-Turing-recognizable

We can design a recognizer for it. M: on input ⟨G1, G2⟩ is two CFGs.

1. Repeat the following for i = 1, 2, 3,...

2. with string si, if ⟨G1, si⟩ ∈ ACFG ̸= ⟨G2, si⟩ ∈ ACFG, ACCEPT

Since ACFG is decidable and the set
∑∗

is countable, the machine M always
terminates and returns ACCEPT if ⟨G1, G2⟩ ∈ ¯EQCFG.

5.9

T = {⟨M⟩|M is a TM that accepts wR whenever it accepts w}
Suppose that T is decidable
Firstly, we design the turing machine A such that:

L(A) =

{
{01, 10}, if M accept w

{001}, otherwise
(1)

A: on input string x:

1. if x /∈ {01, 10, 001} REJECT.

2. if x ∈ {01, 10}

(a) if M accept w ACCEPT

(b) else REJECT

if x = 001:

1

(a) if M accept w REJECT

(b) else ACCEPT

So, we can build a decidable for ATM :
R: on input ⟨M,w⟩:

1. Run T on ⟨A⟩

2. If it accept, ACCEPT

3. Else REJECT

Since T is decidable so R is decider for ATM . However, ATM is undecidable
(Contradiction). Therefore, T is undecidable

5.22

(⇒) If A ≤m ATM , then A is Turing-recognizable because ATM is Turing
recognizable. (⇐) If A is Turing-recognizable, then there exists some TM R
that recognizes A. That is, R would receive an input w and accept if w is in A
(otherwise R does not accept).
To show that A ≤m ATM , we design a function f that does the following: on
input w, writes ⟨R,w⟩ on the tape and halts.
It is easy to check that w is in A if and only if f(w) = ⟨R,w⟩ ∈ ATM .
Thus, we get a mapping reduction of A to ATM.

5.23

Show that A is decidable iff A ≤m 0∗1∗.
Firstly, we will show that 0∗1∗ is decidable by designing a decider for it.
M = on input string x.

1. Design a DFA D that accept 0∗1∗

2. If ⟨D,x⟩ ∈ ADFA, ACCEPT.

3. Else REJECT.

(⇒) If A ≤m 0∗1∗, then A is decidable because 0∗1∗ is decidable.
(⇐) If A is decidable, then there exists some TM R that decides A. That is, R
would receive an input w and accept if w is in A, reject if w is not in A.
To show A ≤m 0∗1∗, we design a mapping function f that does the following:
On input w:

1. Runs R on w

2. If R accepts, outputs 01.

2

3. Otherwise, outputs 10.

Hence, we can see that w ∈ A ⇐⇒ f(w) ∈ 0∗1∗

Therefore we obtain a mapping reduction of A to 0∗1∗.

7.9

Let G = (V,E) be a graph with a set V of vertices and a set E of edges. We
enumerate all triples (u, v, w) with vertices u, v, w ∈ V and then check whether
or not all three edges (u, v), (v, w) and (u, w) exist in E. Enumeration of all
triples requires O(|V |3) time. Checking whether or not all three edges belong to
E takes O(|E|) time. Thus, the overall time is O(|V |3|E|), which is polynomial
in the length of the input ⟨G⟩. Therefore, TRIANGLE ∈ P

7.11a

Algorithm to check DFA equivalent:
On input ⟨G1, G2⟩ are two DFA:

1. Since G1 = G2, the initial states of them must be equal (q10 = q20)

2. Spread the equivalent by transition: if q1i = q2i then q1j = σ(q1i , a) =

σ(q2i , a) = q2j

3. If there is a conflict in any steps, REJECT.

4. After end of loop, ACCEPT.

The algorithm above need O(N * M) with N is the number of state and M is
size of alphabet

∑
.

Therefore EQDFA is in P.

7.12

We aim tøshow that the language ISO can be verified in polynomial time. Let
the input x be two graphs G and H and let the certificate y be the indices
{i1, i2, ..., in}. An algorithm A(x, y) verifies ISO by executing the following
steps:

• Check if the certificate y is a permutation of {1, 2, ..., n}. If no, REJECT;
else continue.

• Permute the vertices of G as given by the given permutation. Verify that
the permuted G is identical to H.

Step 1 takes at most O(V 2) time and step 2 runs in O(V + E) time, therefore
the verification algorithm A runs in O(V 2) time.

3

