5.1 Show that EQcrc is undecidable

Let’s recall that ALLcpr¢ is undecidable. We will prove by contradiction with
assumption that EQcr¢a is decidable. We can build a decider M for ALLcpq.
Indeed, M = on input (G), where G is a context-free grammar.

1. Create a context-free grammar H such that H accept all strings.
2. f (G, H) € EQcra, ACCEPT
3. Else REJECT

Machine M is a valid decider for ALL¢cpa since in step 1, we can easily pick a
CFG that accept every string in finite time. Moreover, EQc ¢ is decidable so
step 2 and 3 will terminate in finite time.

Hence, M is decider for ALLcra (Contradiction).

Therefore, FQ¢cra is undecidable.

5.2 Show that FQcrg is co-Turing-recognizable

We can design a recognizer for it. M: on input (G1, Ge) is two CFGs.
1. Repeat the following for i = 1, 2, 3,...
2. with string s;, if (G1,s;) € Acra # (Ga,s:) € Acra, ACCEPT

Since Acrg is decidable and the set Y." is countable, the machine M always
terminates and returns ACCEPT if (G1,G2) € EQcre.

5.9

T = {{M)|M is a TM that accepts w’* whenever it accepts w}
Suppose that T is decidable
Firstly, we design the turing machine A such that:

(A4) = {01,110}, if M accept w
{001}, otherwise

A: on input string x:
1. if x ¢ {01,10,001} REJECT.
2. if z € {01,10}

(a) if M accept w ACCEPT
(b) else REJECT

if x = 001:



(a) if M accept w REJECT
(b) else ACCEPT

So, we can build a decidable for App;:
R: on input (M, w):

1. Run T on (A)
2. If it accept, ACCEPT
3. Else REJECT

Since T is decidable so R is decider for A7,,. However, Ar,s is undecidable
(Contradiction). Therefore, T is undecidable

5.22

(=) If A <,, App, then A is Turing-recognizable because ATM is Turing
recognizable. (<) If A is Turing-recognizable, then there exists some TM R
that recognizes A. That is, R would receive an input w and accept if w is in A
(otherwise R does not accept).

To show that A <,, Arps, we design a function f that does the following: on
input w, writes (R, w) on the tape and halts.

It is easy to check that w is in A if and only if f(w) = (R, w) € Aru.

Thus, we get a mapping reduction of A to ATM.

5.23

Show that A is decidable iff A <,,, 0*1*.
Firstly, we will show that 0*1* is decidable by designing a decider for it.
M = on input string x.

1. Design a DFA D that accept 0*1*
2. If <D,J?> S ADFA7 ACCEPT.
3. Else REJECT.

(=) If A<, 0°1*, then A is decidable because 0*1* is decidable.

(<) If A is decidable, then there exists some TM R that decides A. That is, R
would receive an input w and accept if w is in A, reject if w is not in A.

To show A <,, 0*1*, we design a mapping function f that does the following;:
On input w:

1. Runs R on w

2. If R accepts, outputs 01.



3. Otherwise, outputs 10.

Hence, we can see that w € A <= f(w) € 0*1*
Therefore we obtain a mapping reduction of A to 0*1*.

7.9

Let G = (V, E) be a graph with a set V of vertices and a set E of edges. We
enumerate all triples (u, v, w) with vertices u,v,w € V and then check whether
or not all three edges (u, v), (v, w) and (u, w) exist in E. Enumeration of all
triples requires O(|V'|?) time. Checking whether or not all three edges belong to
E takes O(|E|) time. Thus, the overall time is O(|V'|?|E|), which is polynomial
in the length of the input (G). Therefore, TRIANGLE € P

7.11a

Algorithm to check DFA equivalent;:
On input (G1, G2) are two DFA:

1. Since G; = G, the initial states of them must be equal (¢} = ¢3)

1

i

= q? then q]l. = o'(qz.l,a) =

2. Spread the equivalent by transition: if ¢
o(q7,a) = ¢;

3. If there is a conflict in any steps, REJECT.

4. After end of loop, ACCEPT.

The algorithm above need O(N * M) with N is the number of state and M is
size of alphabet >_.
Therefore EQpr4 is in P.

7.12

We aim tgshow that the language ISO can be verified in polynomial time. Let
the input x be two graphs G and H and let the certificate y be the indices
{i1,42,...,in}. An algorithm A(x, y) verifies ISO by executing the following
steps:

e Check if the certificate y is a permutation of {1,2,...,n}. If no, REJECT;
else continue.

e Permute the vertices of G as given by the given permutation. Verify that
the permuted G is identical to H.

Step 1 takes at most O(V?2) time and step 2 runs in O(V + E) time, therefore
the verification algorithm A runs in O(V?) time.



