
Question 1

ALLDFA = {⟨A⟩|A is a DFA and L(A) =
∑∗}.

We can show that ALLDFA is decidable by design a turing machine for it:
M: on input ⟨A⟩, where A is a DFA

1. Design a DFA B such that L(B) =
∑∗

2. If ⟨A,B⟩ ∈ EQDFA, ACCEPT

3. Else REJECT.

Since EQDFA is decidable, the machine M always terminates and returns the
output ACCEPT/REJECT. Thus ALLDFA is decidable.

Question 2

¯ETM is recognizable since we can design a recognizer for it:
R: on input ⟨M⟩, where M is a Turing Machine:

1. Repeat the following for i = 1, 2, 3,

2. Run M for i steps on each input s1, s2, ..., si.

3. If any computation accepts, ACCEPT.

Since ATM is recognizable and the set
∑∗

is countable, the machine R always
terminates and returns ACCEPT if ⟨M⟩ ∈ ¯ETM .

Question 3

We can design a decider for it:
M: On input ⟨R⟩:

1. Construct X = (0 ∪ 1)∗111(0 ∪ 1)∗

2. Contruct Y = R ∩X is also a Regular Expression

3. If Y ∈ ERE , REJECT

4. Else ACCEPT.

Since ERE is decidable, the machine M always terminates and returns the output
ACCEPT/REJECT. Thus A is decidable.

1

Question 4

Prove that EQCFG is co-turing recognizable. We can design a recognizer for it.
M: on input ⟨G1, G2⟩ is two CFGs.

1. Repeat the following for i = 1, 2, 3,...

2. with string si, if ⟨G1, si⟩ ∈ ACFG ̸= ⟨G2, si⟩ ∈ ACFG, ACCEPT

Since ACFG is decidable and the set
∑∗

is countable, the machine M always
terminates and returns ACCEPT if ⟨G1, G2⟩ ∈ ¯EQCFG .

Question 5

T = {⟨M⟩|M is a TM that accepts wR whenever it accepts w}
Suppose that T is decidable
Firstly, we design the turing machine A such that:

L(A) =

{
{01, 10}, if M accept w

{001}, otherwise
(1)

A: on input string x:

1. if x /∈ {01, 10, 001} REJECT.

2. if x ∈ {01, 10}

(a) if M accept w ACCEPT

(b) else REJECT

if x = 001:

(a) if M accept w REJECT

(b) else ACCEPT

So, we can build a decidable for ATM :
R: on input ⟨M,w⟩:

1. Run T on ⟨A⟩

2. If it accept, ACCEPT

3. Else REJECT

Since T is decidable so R is decider for ATM . However, ATM is undecidable
(Contradiction). Therefore, T is undecidable

2

