Question 1

$A L L_{D F A}=\left\{\langle A\rangle \mid A\right.$ is a DFA and $\left.L(A)=\sum^{*}\right\}$.
We can show that $A L L_{D F A}$ is decidable by design a turing machine for it: M : on input $\langle A\rangle$, where A is a DFA

1. Design a DFA B such that $L(B)=\sum^{*}$
2. If $\langle A, B\rangle \in E Q_{D F A}, A C C E P T$
3. Else REJECT.

Since $E Q_{D F A}$ is decidable, the machine M always terminates and returns the output ACCEPT/REJECT. Thus $A L L_{D F A}$ is decidable.

Question 2

$E_{T M}^{-}$is recognizable since we can design a recognizer for it:
R : on input $\langle M\rangle$, where M is a Turing Machine:

1. Repeat the following for $i=1,2,3, \ldots$.
2. Run M for i steps on each input $s_{1}, s_{2}, \ldots, s_{i}$.
3. If any computation accepts, ACCEPT.

Since $A_{T M}$ is recognizable and the set \sum^{*} is countable, the machine R always terminates and returns ACCEPT if $\langle M\rangle \in E_{T M}^{-}$.

Question 3

We can design a decider for it:
M : On input $\langle R\rangle$:

1. Construct $X=(0 \cup 1)^{*} 111(0 \cup 1)^{*}$
2. Contruct $Y=R \cap X$ is also a Regular Expression
3. If $Y \in E_{R E}, R E J E C T$
4. Else ACCEPT.

Since $E_{R E}$ is decidable, the machine M always terminates and returns the output ACCEPT/REJECT. Thus A is decidable.

Question 4

Prove that $E Q_{C F G}$ is co-turing recognizable. We can design a recognizer for it. M: on input $\left\langle G_{1}, G_{2}\right\rangle$ is two CFGs.

1. Repeat the following for $\mathrm{i}=1,2,3, \ldots$
2. with string s_{i}, if $\left\langle G_{1}, s_{i}\right\rangle \in A_{C F G} \neq\left\langle G_{2}, s_{i}\right\rangle \in A_{C F G}$, ACCEPT

Since $A_{C F G}$ is decidable and the set \sum^{*} is countable, the machine M always terminates and returns ACCEPT if $\left\langle G_{1}, G_{2}\right\rangle \in E Q_{C F G}^{-}$.

Question 5

$T=\left\{\langle M\rangle \mid \mathrm{M}\right.$ is a TM that accepts w^{R} whenever it accepts $\left.w\right\}$
Suppose that T is decidable
Firstly, we design the turing machine A such that:

$$
L(A)=\left\{\begin{array}{l}
\{01,10\}, \text { if M accept } w \tag{1}\\
\{001\}, \text { otherwise }
\end{array}\right.
$$

A: on input string x :

1. if $x \notin\{01,10,001\}$ REJECT.
2. if $x \in\{01,10\}$
(a) if M accept w ACCEPT
(b) else REJECT
if $x=001$:
(a) if M accept w REJECT
(b) else ACCEPT

So, we can build a decidable for $A_{T M}$:
R : on input $\langle M, w\rangle$:

1. Run T on $\langle A\rangle$
2. If it accept, ACCEPT
3. Else REJECT

Since T is decidable so R is decider for $A_{T M}$. However, $A_{T M}$ is undecidable (Contradiction). Therefore, T is undecidable

