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Exercises

1. Study the posted solutions to the first homework. Then write a sentence or two (or a paragraph
or two) explaining what you will do differently this time based on what you discovered there.

2. How many permutations are there of the six letters in the word APPLES ?

We’ve seen this word before. To answer the question, first find out how many ways there are
to place the two Ps.

There are

(
6

2

)
ways to place the two Ps, and 4! ways of permuting the remaining four letters

for a total of
6!4!

2!4!
=

6!

2!
= 360.

3. How many permutations are there of the letters in the word BOOKKEEPER? 1

If all ten letters were different, there would be 10! permutations. To take into account the
multiple counting of repeated letters, we have to divide by the number of ways of permuting
each repeated letter. Letters O and K each occur twice and letter E occurs three times, so the
total number of permutations is

10!

2!2!3!
= 151, 200.

You can do the previous problem this way too, and arrive at the same correct answer.

4. How many permutations are there of the letters in the word BOOKKEEPER in which the two Os
and the two Ks are adjacent (but not necessarily next to each other).

If each of the two pairs of Os and Ks are adjacent, we can think of each of them as one letter,
(OO and KK). Now we’re permuting eight “letters”, with three repeated Es, which gives us a
total of

8!

3!
= 6, 720 permutations.

5. How many permutations are there of the string ABCDEFGGG in which exactly two of the Gs are
adjacent?

There are two ways to think about this. First, consider a GG pair to be a single letter and
count the permutations of the remaining letters where the third G isn’t adjacent to the GG

pair. We temporarily remove the single G and see there are 7! permutations of the remaining
letters. In each of those there are eight potential slots for the G, but two are adjacent to GG,
so only six are valid. This gives us 6 · 7! = 30, 240 permutations.

A slightly easier way is to count all the permutations, and subtract the ones that aren’t
allowed, namely the permutations where all three Gs are consecutive. The total is

9!

3!
= 60, 480.

1Other than trivial variations (’bookkeepers’ and ’bookkeeping’), this is the only word in the English language to
have three consecutive sets of repeated letters.
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The invalid cases are when we have a GGG, which we can pretend is a letter. This gives us 7!
permutations that aren’t allowed, for an adjusted total of

9!

3!
− 7! = 60, 480− 30, 240 = 30, 240 permutations, which agrees with our earlier result.

6. How many ways can b books be placed on s numbered shelves

I declared this problem too difficult, so you didn’t have to solve it. Matt did;
here’s his solution. It’s full of useful strategies.

(a) if the books are indistinguishable copies of the same title?

When trying to solve math problems we’ve never seen before, sometimes half the battle
is choosing the best symbols to represent the problem. Before we provide the solutions,
let’s take a step back and try to look at a “bigger picture” of the different ways of
counting.

Most counting problems fall into two categories: the objects being counted are distinct
(different), or indistinct (identical). If you have n distinct objects, then you might as
well call them 1, 2, 3, . . . , n. If you have n indistinct objects, then you might as well think
of them as n copies of the number 1.

If you think of the numbers 1, 2, 3, . . . , n as the elements of the set {1, 2, 3, . . . , n}, then
breaking distinct objects into parts can be thought of as ways of partitioning a set, or
set partitions. If you think of n objects as n 1s, then breaking indistinct objects into
parts can be thought of as partitioning an integer 2, or integer partitions.

If we’re distributing b indistinguishable books on s numbered shelves, then we’re looking
at ways of partitioning the number b into s parts. This type of distribution is called
a composition. We’re counting the number of ways an integer can be broken up (or
composed), where order matters. (Problem 17 is when order doesn’t matter).

Now Matt derives the formula for counting compositions, much the way we
did it in class. So you can think of what follows as notes from that class.

As usual, let’s try small numbers, say b = 5, s = 3. We can think of 5 as 11111, but
how do we express the ways of breaking that up into 3 parts? We do this by placing
a delimiter (say | or +) among the 1s. Using | conveys the idea of partitions, while +
conveys the idea of summands. Since | resembles a 1, we’ll use +, but you might find |
to be easier to write on paper. Some examples would be 11 + 11 + 1 (2, 2, 1), 1 + 1 + 111
(1, 1, 3) or 1 + 11 + 11 (1, 2, 2).

Since we’re used to the idea of choosing objects none at a time, we should be comfortable
with the idea that some parts of a composition might be 0. Since we don’t have a symbol
for 0, we’ll express this with two consecutive +s, denoting a 0 in that part. If the first
(or last) part is a 0, then we’ll begin (or end) with a +. For example, a few more
compositions could be +111 + 11 (0, 3, 2), 1 + 1111+ (1, 4, 0) or 11 + +111 (2, 0, 3).

If you look at all the strings of 1s and +s, it should be clear why we always have five 1s,
but notice that we only have two +s, not three. This is because wherever the two +s
are, we have three partitions: the 1s before the first +, between the first and second +
and after the second +.

It should also be clear that every permutation of 1s and +s is a unique composition,
and conversely, every composition is a unique permutation of 1s and +s. So now we see
that counting compositions is the same as counting permutations of 1s and +s, where
the number of 1s = n and the number of +s = number of parts, minus 1.

We can now state that the number of compositions of n into k parts is

(n + k − 1)!

n!(k − 1)!
=

(
n + k − 1

k − 1

)
=

(
n + k − 1

n

)
.

Let’s try a sanity check for extreme values for k and n and see if they make sense. If
k = 1 then we’re counting compositions of n into one part. There should only be one

2When counting, unless otherwise stated, when we say “integer”, we really mean “non-negative integer”, to save
time and verbiage. When studying number theory, “integer” includes the negatives.



way to do this, and if we plug k = 1 into(
n + k − 1

k − 1

)
we get

(
n

0

)
=

(
n

n

)
= 1,

so this makes sense.

If n = 1, we’re composing 1 into k parts. This might sound strange, but there’s nothing
wrong. We’re used to working with n and k as counting subsets where k ≤ n, but we no
longer have that restriction here, as long as k > 0 and n ≥ 0. In this case, we’re going
to have one of the k parts with 1 and the rest with 0s, so there should be k ways to do
this. Plugging n = 1 into(

n + k − 1

n

)
we get

(
k

k − 1

)
=

(
k

1

)
= k,

so this makes sense.

Finally, if we let n = 0, then there should be only one way to compose 0 into k parts,
namely k 0s. Letting n = 0(

n + k − 1

n

)
=

(
k − 1

k − 1

)
=

(
k − 1

0

)
= 1,

so this also makes sense.

In the original problem, n = b and k = s, so this becomes

(b + s− 1)!

b!(s− 1)!
=

(
b + s− 1

s− 1

)
=

(
b + s− 1

b

)
.

In our example, b = n = 5 and s = k = 3, so the number of those compositions would be

(5 + 3− 1)!

5!(3− 1)!
=

(
7

2

)
=

(
7

5

)
= 21.

This is a relatively small number, so you are encouraged to list them all.

(b) if no two books are the same, but the positions of the books on each shelf don’t matter?

Now the objects are distinct, so we should think of them as a set with elements {1, 2, 3, . . . , b}
We can place book #1 in s places. Since the relative positions of the books on a shelf
don’t matter, then we also have s places for book #2. The same argument holds for all
the books, since the number of ways of placing each book is independent from the rest.
Therefore, we have sb different arrangements.

More generally, if we have k distinct objects going into n sets, where the order of the
sets matters (but not the order within the set), the total number of arrangements = nk.

(c) if no two books are the same, and the positions of the books on each shelf matter?

To solve this problem, we’ll first take the “scenic route”, where we’ll encounter some new
ideas which you might see in future classes, and see how they relate. Finally, we’ll how
the answer ties into a recent result.

We can place book #1 in s places. We can place book #2 in s − 1 places where there
are empty shelves and also either before or after book #1, giving us (s− 1) + 2 = s + 1
places. Each time we add a book, we increase the number of places we can place the
next book by one. Therefore, the number of arrangements is s(s+1)(s+2) · · · (s+b−1).
This looks like a strange kind of factorial, where each factor increases by one, unlike n!,
whose factors decrease by one, until we reach the number 1. This increasing product is
called a rising factorial. If we start with n and have a total of k terms, each one more

than the last, this is denoted as nk. In our problem, the number of arrangements is sb.

nk = n(n + 1)(n + 2) · · · (n + k − 1).

We can also express a rising factorial as the quotient of two factorials.

nk =
(n + k − 1)!

(n− 1)!
or nk+1 =

(n + k)!

(n− 1)!
or (n + 1)k =

(n + k)!

n!
= k!

(
n + k

n

)



Just as we have the concept of a rising factorial, we can also have a falling factorial. In
this case, we have a product of k terms, beginning with n, but with each term one less
than the last. In this case we end with the term n− k + 1, in general not equal to 1. We
can think of this as a truncated factorial, since we usually stop before 1. In this sense
this is a more natural generalization of n! than the rising factorial. This is expressed as
nk and is defined as

nk = n(n− 1)(n− 2) · · · (n− k + 1).

We can also express a falling factorial as the quotient of two factorials, which should
look familiar.

nk =
n!

(n− k)!
= k!

(
n

k

)
This is the number of ways of taking a subset of size k from a set of size n, where the
order of the elements in the k subset matters.

You should see that
n1 = n1 = n and that nn = n!

What is nn+1?

We can also define a falling factorial in terms of a rising factorial, where we have k terms,
starting with the largest term n, ending with n− k + 1 and reverse the order:

nk = n(n− 1)(n− 2) · · · (n− k + 1) = (n− k + 1)(n− k + 2) · · · (n− 1)n = (n− k + 1)k

Conversely, we can also express a rising factorial in terms of a falling factorial, where we
have k terms, starting with the smallest term n and ending with (n+ k− 1) and reverse
the order:

nk = n(n + 1)(n + 2) · · · (n + k − 1) = (n + k − 1)(n + k − 2) · · · (n + 1)n = (n + k − 1)k

Since the falling factorial is a more natural idea, rising factorials are frequently expressed
in terms of falling factorials:

nk = (n + k − 1)k =
(n + k − 1)!

(n− 1)!
= k!

(
n + k − 1

k

)
= k!

(
n + k − 1

n− 1

)
Recalling the original problem, the answer would be

sb = (s + b− 1)b =
(s + b− 1)!

(s− 1)!
= b!

(
s + b− 1

b

)
This should look familiar. Recall that the number of compositions of n into k parts is(

n + k − 1

k − 1

)
=

(
n + k − 1

n

)
and the number of ordered subsets of size k from a set size n is

n!

(n− k)!
= k!

(
n

k

)
so this is also the number of compositions of n into k ordered subsets. Instead of looking
at ordered integer partitions (compositions), we’re looking at ordered set partitions. If
we took our result

b!

(
s + b− 1

b

)
and pretended all the books were identical, then we would have to divide by b!, which
would give us the answer for part a): (

s + b− 1

b

)
If you saw the connection between problems a) and c), without going the long way, then
you have good intuition.



7. How many ways are there to deal hands of seven cards to each of five players from a standard
deck of 52 cards?

Traditionally, each player is dealt one card, then two, until each has the requisite number of
cards. Equivalently, the first player can receive all seven cards, then the second, and so on.
The second way is easier to work with. It should also be clear that the order of the cards in
each player’s hand isn’t relevant. There are(

52

7

)
ways of dealing seven cards to the first player. Now that the deck has 45 cards, there are(

45

7

)
ways of dealing the next seven cards to the second player. If we continue with all five players,
we’ll have the following total number of possibilities:(

52

7

)(
45

7

)(
38

7

)(
31

7

)(
24

7

)
If we expand, we can see there will be some cancellations:(

52!

7!45!

)(
45!

7!38!

)(
38!

7!31!

)(
31!

7!24!

)(
24!

7!17!

)
=

(
52!

17!(7!)5

)
≈ 7 ∗ 1034

3

The number of 5-card poker hands is(
52

5

)
= 2, 598, 960.

A common combinatorial exercise is to count how many ways there are to get each kind of
poker hand (1 pair, 2 pair, 3 of a kind, 4 of a kind, full house, straight, flush, straight flush and
royal flush) and rank them by frequency. We won’t have time for that, but you’re encouraged
to figure them out. Note: generally the more common the hand, the harder it is to count –
not because there are more possibilities, but because you have to make sure you’re not double
counting a rarer hand.

8. How many subsets of a 20 element set contain exactly 4 elements? How many contain at most
4 elements?

For the first part, this is simply(
20

4

)
=

(20)(19)(18)(17)

4!
= 4, 845.

For the second part, this is(
20

0

)
+

(
20

1

)
+

(
20

2

)
+

(
20

3

)
+

(
20

4

)
= 1 + 20 + 190 + 1, 140 + 4, 845 = 6, 196.

What if the problem asked how many subsets contain at least 4 elements?

9. If you flip a fair coin 20 times, what is the probability that you get exactly 4 heads? At most
4 heads?

The probability is the number of ways of picking four heads out of 20 flips, times the proba-
bility of getting 4 heads and 16 tails. Let p = probability of a head and q = probability of a
tail. Since we have a fair coin, p = q = 1

2 :(
20

4

)(
1

2

)20

=
4, 845

220
≈ 0.46%

3Matt suggests that you might want to check his calculation.



The probability of getting at most 4 heads is(
1

2

)20 [(
20

0

)
+

(
20

1

)
+

(
20

2

)
+

(
20

3

)
+

(
20

4

)]
=

6, 196

220
≈ 0.59%

10. How many numbers less than one million have exactly four ones in their binary representation?
What are the largest and smallest such numbers?

Since 210 ≈ 1, 000 then 220 ≈ 1, 000, 000. We know this is an underestimate, so 999, 999 has
20 digits in binary. If we allow for all 20 digits to be used (which might give us numbers too
large), then the answer is again (

20

4

)
= 4, 845.

The largest of these is 111100000000000000002 = 219 + 218 + 217 + 216 = 216(8 + 4 + 2 + 1) =
15 ∗ 216 = 983, 040, so we didn’t overshoot. The smallest is 11112 = (8 + 4 + 2 + 1) = 15 .

11. The roads in a city are laid out on a square grid with numbered Streets and Avenues, so each
corner is defined as the intersection of a Street and an Avenue. For example, (2, 4) is the
corner of Second Street and Fourth Avenue.

Let T (m,n) be the number of ways to walk from (1, 1) to (m,n) so that at each stage either the
Street number or the Avenue number increases. For example, here are two of the T (2, 4) = 4
ways to get to (2, 4):

(1, 1)→ (1, 2)→ (2, 2)→ (2, 3)→ (2, 4)

(1, 1)→ (1, 2)→ (1, 3)→ (2, 3)→ (2, 4)

Find a closed form expression for T (m,n). You may want to start by computing some small
examples.

All paths have m− 1 rightward components and n− 1 upward components, for a total length
of (m−1)+(n−1) = m+n−2. Each path is determined by which of the m+n−2 steps goes
right, or goes up. You should see that choosing the rightward steps determines the upward
ones, and vice versa. Looking at the rightward steps, we see that each way to choose the
m− 1 rightward steps from the total path length of m+n− 2 determines a unique path, and
also each unique path has a different choice of rightward steps. The same argument holds if
we just consider upward steps. Therefore

T (m,n) =

(
m + n− 2

m− 1

)
=

(
m + n− 2

n− 1

)
.

If we take another sanity check and see what happens if either m or n = 1, we would get a
one-dimensional path, which would have no degrees of freedom and only one possibility. We
see that

T (1, n) = T (m, 1) =

(
m + n− 2

0

)
=

(
m + n− 2

0

)
= 1,

independent of m or n.

12. An identity. Let

M(n) =

n∑
j=1

j

(
n

j

)
.

That identity is correct – because I fixed a typo. This was the original:

M(n) =

n∑
j=1

n

(
n

j

)
.

• Calculate the first few values of M .

M(1) = 1

(
1

1

)
= 1



M(2) = 1

(
2

1

)
+ 2

(
1

2

)
= 4

M(3) = 1

(
3

1

)
= 2

(
3

2

)
+ 3

(
3

3

)
= 3 + 6 + 3 = 3(1 + 2 + 1) = 3(4) = 12

M(4) = 1

(
4

1

)
+ 2

(
4

2

)
+ 3

(
4

3

)
+ 4

(
4

4

)
= 4 + 12 + 12 + 4 = 4(1 + 3 + 3 + 1) = 4(8) = 32

M(5) = 1

(
5

1

)
+ 2

(
5

2

)
+ 3

(
5

3

)
+ 4

(
5

4

)
+ 5

(
5

5

)
=

5 + 20 + 30 + 20 + 5 = 5(1 + 4 + 6 + 4 + 1) = 5(16) = 80

• Guess the pattern. Here’s a hint: look at M(n + 1)/2M(n).

If you didn’t see the pattern, here are the first few terms of M(n + 1)/2M(n)

M(2)

2M(1)
=

4

2(1)
= 2

M(3)

2M(2)
=

12

2(4)
=

3

2

M(4)

2M(3)
=

32

2(12)
=

4

3

M(5)

2M(4)
=

80

2(32)
=

5

4

So it seems that a good guess for M(n + 1)/2M(n) is (n + 1)/(n)

Based on that ratio, we see that dividing by 2 keeps the expression stable, it looks that
M(n) doubles with n, so it should have a power of 2. Factoring that out, M(n) seems
to grow like n, so a reasonable guess is that M(n) = n(2n), or n(2n−1), or n(2n+1).

You might’ve seen the pattern that each sum was expressed as n(sum of the (n − 1)th
row of Pascal’s Triangle).

• Guess a closed form expression for M(n).

If you used the first way, then by trial and error, you probably came to the same con-
clusion as if you used the second way, namely M(n) = n(2n−1).

• Prove that your guess is correct. Here are hints for two different proofs - do both if you
can. (1) Use the binomial theorem and differentiate (1 + x)n. (2) Try induction.

1) The binomial theorem says that

(x + y)n =

n∑
j=0

(
n

j

)
(xjyn−j)

Setting y = 1, we have

(x + 1)n =

n∑
j=0

(
n

j

)
xj

Note that j starts at 0, but M(n) has j starting at 1. This turns out to be no problem,
because we can let j start with 0 without changing the sum. (Do you see why?).

You might also be wondering why we’re differentiating the binomial theorem. M(n) is
the sum of binomial coefficients, suggesting that the binomial theorem will be involved,
but we need to introduce the j coefficient somehow. Since the binomial theorem is the
sum of xjs, differentiating will bring down the j.

d

dx
(x + 1)n = n(x + 1)n−1 =

d

dx

n∑
j=0

(
n

j

)
xj =

n∑
j=0

j

(
n

j

)
xj−1



so we have
n∑

j=0

j

(
n

j

)
xj−1 = n(x + 1)n−1

Substituting x = 1,
n∑

j=0

j

(
n

j

)
=

n∑
j=1

j

(
n

j

)
= n(2n−1).

2) Here is Matt’s induction. It’s not pretty – I should have tried it myself
before I asked you to!

We want to prove that

M(n) =

n∑
j=1

j

(
n

j

)
= n(2n−1), for all n.

Let n = 1 be our base case. M(1) = 1(21−1) = 1(1) = 1. So our base case works.

We assume this is true for a given n. Now we have to show this is true for n + 1.

Given that M(n) = n(2n−1), proving that M(n+ 1) = (n+ 1)2n is equivalent to proving
4

M(n + 1)−M(n) = (n + 1)2n − n(2n−1) = (2n−1(2(n + 1)− n)) = 2n−1(n + 2).

M(n + 1) =

n+1∑
j=1

j

(
n + 1

j

)
=

n∑
j=1

j

(
n + 1

j

)
+ (n + 1)

(
j + 1

j + 1

)
=

n∑
j=1

j

(
n + 1

j

)
+ (n + 1)

M(n + 1)−M(n) =

n∑
j=1

j

(
n + 1

j

)
+ (n + 1)−

n∑
j=1

j

(
n

j

)
=

(n + 1) +

n∑
j=1

j

[(
n + 1

j

)
−
(
n

j

)]
Let’s focus on the binomial coefficients.(

n + 1

j

)
−
(
n

j

)
=

[
(n + 1)!

j!(n + 1− j)!
− n!

j!(n− j)!

]
=

(n + 1)!− n!(n + 1 + j)!

j!(n + 1− j)!
=

n!((n + 1)− (n + 1− j))

j!(n + 1− j)!
=

n!j

j!(n + 1− j)!
=

n!

(j − 1)!(n + 1− j)!
=

(
n

j − 1

)

Inserting back into the summation, M(n + 1)−M(n) = (n + 1) +

n∑
j=1

j

(
n

j − 1

)
=

(n + 1) +

n∑
j=1

(j − 1)

(
n

j − 1

)
+

(
n

j − 1

)
=

(n + 1) +

n∑
j=1

(j − 1)

(
n

j − 1

)
+

n∑
j=1

(
n

j − 1

)
=

4The LATEX equations that follow should be formatted with the align* environment.



Looking at the first summation, if j were allowed to go to n + 1, then that would be
M(n), so the first term = M(n) less when j = n + 1 which is n, so the first summation
= M(n)− n.

Looking at the second summation, if j were allowed to go to 0, then that would be 2n,
so the second term = 2n less when j = 0, which is 1, so the second summation = 2n− 1.

This gives us (n+1)+(M(n)−n)+(2n−1) = n2n−1+2n = 2n−1(n+2), and we’re done.

13. From the symmetry of the binomial coefficients, it is not too hard to see that when n is an
odd number, the number of subsets of {1, 2, . . . , n} of odd size equals the number of subsets
of even size. Is that true when n is even? Why or why not?

The number is the same for even n too. Here’s why. Think about all the subsets of n− 1 and
divide them into two equal piles – the even ones and the odd ones. These are also subsets of
an n element set – the ones that don’t contain the new guy who walks in the door. The ones
that do contain him you get by adding him to all the ones we listed before. The odd ones
become even and the even ones become odd, so there are the same number of each of these
kinds too.

Here’s a second solution. In Pascal’s triangle, the numbers in row n row alternate counting the
number of even and odd subsets of an n element set. Remember that the binomial theorem
says

(1 + x)n =

(
n

0

)
+

(
n

1

)
x +

(
n

2

)
x2 + . . . +

(
n

n

)
xn.

Setting x = −1 tells us that for n > 0

0 = (1− 1)n =

(
n

0

)
−
(
n

1

)
+

(
n

2

)
− . . .±

(
n

n

)
.

Moving the negative terms to the other side of the equation proves the identity we want.

Note: the assertion is false when n = 0. The empty set has just one subset, itself, which has
an even number of elements (0 is even). It has no subsets with an odd number of elements.

14. Apples and bananas

We spent a full class on this an the next few questions, and Matt answered it
above, so there are no new answers here.

Kids in first grade spend a fair amount of time mastering addition of small numbers by
answering questions like

If you have some apples and some bananas and you have 10 pieces of fruit
altogether, how many of each might you have?

They work at listing all the possible answers to this question. They use 10 more often than any
other total since combinations making 10 are the most important when learning arithmetic.

(a) How many ways solutions are there for n pieces of fruit?

(b) The kids often ask (as they should!) whether it’s OK to have no apples. Which answer
makes the most mathematical sense?

(c) Answer the first question both when 0 is allowed as a summand and when it’s not.

15. Apples, bananas and cherries.

Ask and answer the questions in the previous exercise for three kinds of fruit.

16. Apples, bananas, cherries, dates, eggplants, . . .



• How many ways are there to write n as the sum of an ordered list of k nonnegative
integers?

We spent a full day on this in class. The answer is(
m + n− 1

n− 1

)
.

You can think of that as the number of ways to place n− 1 dividers in m+n− 1 spaces;
you count the other spaces to find the size of each of the k summands.

Luke Chen pointed out in class that Problem 11 is essentially the same problem. Look
at the vertical steps as the dividers and the horizontal steps as counting the sizes of the
summands, row by row. You need to use one extra row to get the total right.

• How many ways are there to write n as the sum of an ordered list of k positive integers?

• (Trick question) How many ways are there to write n as the sum of an ordered list of k
integers?

Infinitely many. For example, when k = 2 we have

n = (n− 1) + 1 = (n− 2) + 2 = · · · = (n− n) + n = −1 + (n + 1) = · · ·

17. The previous questions are all much harder if the list isn’t ordered. Then 3 + 7 and 7 + 3
count as the same way to sum to 10. Each way to write n is a partition of n.

Let P (n) be the number of partitions of n. Find the first few values of P (n) and then look
up the sequence at the On-Line Encyclopedia of Integer Sequences (http://oeis.org/ and
http://oeis.org/wiki/Welcome).

1 = 1 so P (1) = 1.

2 = 1 + 1 so P (2) = 2.

3 = 1 + 2 = 1 + 1 + 1 so P (3) = 3.

4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1 so P (4) = 5.

5 = 1 + 4 = 2 + 3 = 1 + 1 + 3 = 1 + 2 + 2 = 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 so P (5) = 7

Searching the on line encylopedia for 1, 2, 3, 5, 7 finds 754 sequences. The first of these is the
sequence of counts of partitions. It continues

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, . . .

http://oeis.org/
http://oeis.org/wiki/Welcome
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\section*{Exercises}

\begin{enumerate}

\item Study the posted solutions to the first homework.

Then write a sentence or two (or a paragraph or two) explaining what

you will do differently this time based on what you discovered there.

\item How many permutations are there of the six letters in the word

\verb!APPLES! ?

We’ve seen this word before. To answer the question, first find out

how many ways there are to place the two \verb!P!s.

There are $\dbinom{6}{2}$ ways to place the two \verb!P!s, and $4!$ ways of permuting the remaining four letters for a total of \[ \dfrac{6!4!}{2!4!} = \dfrac{6!}{2!} = 360. \]

\item How many permutations are there of the letters in the word

\verb!BOOKKEEPER!? \footnote{Other than trivial variations

(’bookkeepers’ and ’bookkeeping’), this is the only word in the

English language to have three consecutive sets of repeated

letters.}

If all ten letters were different, there would be $10!$ permutations.

To take into account the multiple counting of repeated letters, we

have to divide by the number of ways of permuting each repeated

letter. Letters \verb!O! and \verb!K! each occur twice and letter

\verb!E! occurs three times, so the total number of permutations is \[

\dfrac{10!}{2!2!3!} = 151,200. \]

You can do the previous problem this way too, and arrive at the same

correct answer.

\item How many permutations are there of the letters in the word

\verb!BOOKKEEPER! in which the two \verb!O!s and the two



\verb!K!s are adjacent (but not necessarily next to each other).

If each of the two pairs of \verb!O!s and \verb!K!s are adjacent, we

can think of each of them as one letter, (\verb!OO! and \verb!KK!).

Now we’re permuting eight ‘‘letters’’, with three repeated \verb!E!s,

which gives us a total of

%

\[

\dfrac{8!}{3!} = 6,720 \text{\quad permutations.}

\]

\item How many permutations are there of the string

\verb!ABCDEFGGG! in which exactly two of the

\verb!G!s are adjacent?

There are two ways to think about this. First, consider a \verb!GG!

pair to be a single letter and count the permutations of the remaining

letters where the third \verb!G! isn’t adjacent to the \verb!GG! pair.

We temporarily remove the single \verb!G! and see there are $7!$

permutations of the remaining letters. In each of those there are

eight potential slots for the \verb!G!, but two are adjacent to

\verb!GG!, so only six are valid. This gives us $6 \cdot 7! = 30,240$

permutations.

A slightly easier way is to count all the permutations, and subtract

the ones that aren’t allowed, namely the permutations where all three

\verb!G!s are consecutive. The total is \[ \dfrac{9!}{3!}=60,480. \]

The invalid cases are when we have a \verb!GGG!, which we can pretend

is a letter. This gives us 7! permutations that aren’t allowed, for

an adjusted total of

%

\[

\dfrac{9!}{3!} - 7! = 60,480 - 30,240 = 30,240

\text{\quad permutations, which agrees with our earlier result.}

\]

\item How many ways can $b$ books be placed on $s$ numbered shelves

\textbf{I declared this problem too difficult, so you didn’t have to

solve it. Matt did; here’s his solution. It’s full of useful

strategies.

}

\begin{enumerate}

\item if the books are indistinguishable copies of the same title?

When trying to solve math problems we’ve never seen before, sometimes

half the battle is choosing the best symbols to represent the problem.

Before we provide the solutions, let’s take a step back and try to

look at a ‘‘bigger picture’’ of the different ways of counting.

Most counting problems fall into two categories: the objects being

counted are distinct (different), or indistinct (identical). If you

have $n$ distinct objects, then you might as well call them

$1,2,3, \ldots, n$. If you have $n$ indistinct objects, then you might as

well think of them as $n$ copies of the number $1$.

If you think of the numbers $1,2,3, \ldots, n$ as the elements of the

set $\{1,2,3, \ldots,n\}$, then breaking distinct objects into parts can be

thought of as ways of partitioning a set, or \emph{set partitions}.

If you think of $n$ objects as $n$ $1$s, then breaking indistinct



objects into parts can be thought of as partitioning an

integer \footnote {When counting, unless otherwise stated,

when we say ‘‘integer’’, we really mean ‘‘non-negative integer’’, to

save time and verbiage. When studying number theory, ‘‘integer’’

includes the negatives.

}, or \emph{integer partitions}.

If we’re distributing $b$ indistinguishable books on $s$ numbered

shelves, then we’re looking at ways of partitioning the number $b$

into $s$ parts. This type of distribution is called a

\emph{composition}. We’re counting the number of ways an integer can

be broken up (or composed), \emph{where order matters}. (Problem 17

is when order doesn’t matter).

\vspace{0.2in}

\textbf{Now Matt derives the formula for counting compositions, much

the way we did it in class. So you can think of what follows as

notes from that class.}

\vspace{0.2in}

As usual, let’s try small numbers, say $b=5, s=3$. We can think of

$5$ as $11111$, but how do we express the ways of breaking that up

into $3$ parts? We do this by placing a delimiter (say $\vert$ or +)

among the $1$s. Using $\vert$ conveys the idea of partitions, while +

conveys the idea of summands. Since $\vert$ resembles a $1$, we’ll

use +, but you might find $\vert$ to be easier to write on paper.

Some examples would be $11+11+1$ $(2,2,1),$ $1+1+111$ $(1,1,3)$ or

$1+11+11$ $(1,2,2).$

Since we’re used to the idea of choosing objects none at a time, we

should be comfortable with the idea that some parts of a composition

might be $0$. Since we don’t have a symbol for $0$, we’ll express

this with two consecutive +s, denoting a $0$ in that part. If the

first (or last) part is a $0$, then we’ll begin (or end) with a +.

For example, a few more compositions could be $+111+11$ $(0,3,2)$,

$1+1111+$ $(1,4,0)$ or $11++111$ $(2,0,3).$

If you look at all the strings of $1$s and +s, it should be clear why

we always have five $1$s, but notice that we only have two +s, not

three. This is because wherever the two +s are, we have three

partitions: the $1$s before the first +, between the first and second

+ and after the second +.

It should also be clear that every permutation of $1$s and +s is a

unique composition, and conversely, every composition is a unique

permutation of $1$s and +s. So now we see that counting compositions

is the same as counting permutations of $1$s and +s, where the number

of $1$s $=n$ and the number of +s = number of parts, minus 1.

We can now state that the number of compositions of $n$ into $k$ parts

is \[ \dfrac{(n+k-1)!}{n!(k-1)!} = \dbinom{n+k-1}{k-1} =

\dbinom{n+k-1}{n}. \]

Let’s try a sanity check for extreme values for $k$ and $n$ and see if

they make sense. If $k=1$ then we’re counting compositions of $n$

into one part. There should only be one way to do this, and if we

plug $k=1$ into

%

\[ \dbinom{n+k-1}{k-1} \text{ we get }\dbinom{n}{0} = \dbinom{n}{n} =

1,



\]

%

so this makes sense.

If $n=1$, we’re composing $1$ into $k$ parts. This might sound

strange, but there’s nothing wrong. We’re used to working with $n$

and $k$ as counting subsets where $k\le n$, but we no longer have that

restriction here, as long as $k>0$ and $n\ge 0.$ In this case, we’re

going to have one of the $k$ parts with $1$ and the rest with $0$s, so

there should be $k$ ways to do this. Plugging $n=1$ into

%

\[

\dbinom{n+k-1}{n} \text{ we get }\dbinom{k}{k-1} = \dbinom{k}{1} =

k,

\]

so this makes sense.

Finally, if we let $n=0$, then there should be only one way to compose

$0$ into $k$ parts, namely $k$ $0$s. Letting $n=0$

%

\[

\dbinom{n+k-1}{n} = \dbinom{k-1}{k-1} =\dbinom{k-1}{0} = 1,

\]

%

so this also makes sense.

In the original problem, $n=b$ and $k=s$, so this becomes

%

\[

\dfrac{(b+s-1)!}{b!(s-1)!} = \dbinom{b+s-1}{s-1} =

\dbinom{b+s-1}{b}.

\]

In our example, $b=n=5$ and $s=k=3$, so the number of those

compositions would be

%

\[ \dfrac{(5+3-1)!}{5!(3-1)!} = \dbinom{7}{2} =

\dbinom{7}{5} = 21.

\]

This is a relatively small number, so you are encouraged to list them all.

\item if no two books are the same, but the positions of the books on

each shelf don’t matter?

Now the objects are distinct, so we should think of them as a set

with elements $\{1,2,3,\dots, b\}$

We can place book \#1 in $s$ places. Since the relative positions

of the books on a shelf don’t matter, then we also have $s$ places

for book \#2. The same argument holds for all the books, since the

number of ways of placing each book is independent from the rest.

Therefore, we have $s^{b}$ different arrangements.

More generally, if we have $k$ distinct objects going into $n$ sets,

where the order of the sets matters (but not the order within the

set), the total number of arrangements $= n^{k}.$

\item if no two books are the same, and the positions of the books on



each shelf matter?

To solve this problem, we’ll first take the ‘‘scenic route’’, where

we’ll encounter some new ideas which you might see in future

classes, and see how they relate. Finally, we’ll how the answer

ties into a recent result.

We can place book \#1 in $s$ places. We can place book \#2 in $s-1$

places where there are empty shelves and also either before or after

book \#1, giving us $(s-1)+ 2 = s+1$ places. Each time we add a

book, we increase the number of places we can place the next book by

one. Therefore, the number of arrangements is

$s(s+1)(s+2)\cdots(s+b-1).$ This looks like a strange kind of

factorial, where each factor increases by one, unlike $n!$, whose

factors decrease by one, until we reach the number 1. This

increasing product is called a \emph{rising factorial}. If we start

with $n$ and have a total of $k$ terms, each one more than the last,

this is denoted as $n^{\overline{k}}$. In our problem, the number

of arrangements is $s^{\overline{b}}.$

%

\[

n^{\overline{k}} = n(n+1)(n+2)\cdots(n+k-1).

\]

We can also express a rising factorial as the quotient of two factorials.

\[

n^{\overline{k}} = \dfrac{(n+k-1)!}{(n-1)!} \text{\quad or \quad}

n^{\overline{k+1}} = \dfrac{(n+k)!}{(n-1)!} \text{\quad or \quad}

(n+1)^{\overline{k}} = \dfrac{(n+k)!}{n!}=k!\dbinom{n+k}{n}

\]

Just as we have the concept of a rising factorial, we can also have

a \emph{falling factorial}. In this case, we have a product of $k$

terms, beginning with $n$, but with each term one less than the

last. In this case we end with the term $n-k+1$, in general not

equal to $1$. We can think of this as a truncated factorial, since

we usually stop before $1$. In this sense this is a more natural

generalization of $n!$ than the rising factorial. This is expressed

as $n^{\underline{k}}$ and is defined as

%

\[

n^{\underline{k}} = n(n-1)(n-2)\cdots(n-k+1).

\]

We can also express a falling factorial as the quotient of two

factorials, which should look familiar.

%

\[ n^{\underline{k}} = \dfrac{n!}{(n-k)!} = k!\dbinom{n}{k}

\]

This is the number of ways of taking a subset of size $k$ from a

set of size $n$, where the order of the elements in the $k$ subset

matters.

You should see that

\[

n^{\overline{1}} = n^{\underline{1}} = n

\text{\quad and that }n^{\underline{n}} = n!



\]

%

What is $ n^{\underline{n+1}}$?

We can also define a falling factorial in terms of a rising

factorial, where we have $k$ terms, starting with the largest term

$n$, ending with $n-k+1$ and reverse the order:

\[

n^{\underline{k}} = n(n-1)(n-2)\cdots(n-k+1) = (n-k+1)(n-k+2)\cdots

(n-1)n = (n-k+1)^{\overline{k}}

\]

Conversely, we can also express a rising factorial in terms of a

falling factorial, where we have $k$ terms, starting with the

smallest term $n$ and ending with $(n+k-1)$ and reverse the

order:

\[ n^{\overline{k}} = n(n+1)(n+2)\cdots(n+k-1) =

(n+k-1)(n+k-2)\cdots(n+1)n = (n+k-1)^{\underline{k}}

\]

Since the falling factorial is a more natural idea, rising

factorials are frequently expressed in terms of falling factorials:

\[

n^{\overline{k}} = (n+k-1)^{\underline{k}} = \dfrac{(n+k-1)!}{(n-1)!}

= k!\dbinom{n+k-1}{k} = k!\dbinom{n+k-1}{n-1}

\]

Recalling the original problem, the answer would be

%

\[

s^{\overline{b}} = (s+b-1)^{\underline{b}} =

\dfrac{(s+b-1)!}{(s-1)!} = b!\dbinom{s+b-1}{b}

\]

This should look familiar. Recall that the number of compositions

of $n$ into $k$ parts is

%

\[

\dbinom{n+k-1}{k-1} = \dbinom{n+k-1}{n}

\]

%

and the number of ordered subsets of size $k$ from a set size $n$ is

%

\[

\dfrac{n!}{(n-k)!} = k!\dbinom{n}{k}

\]

%

so this is also the number of compositions of $n$ into $k$ \emph

{ordered} subsets. Instead of looking at ordered integer partitions

(compositions), we’re looking at ordered set partitions. If we took

our result

%

\[

b!\dbinom{s+b-1}{b}

\]

%

and pretended all the books were identical, then we would have to

divide by $b!$, which would give us the answer for part

a):



%

\[

\dbinom{s+b-1}{b}

\]

If you saw the connection between problems a) and c), without going

the long way, then you have good intuition.

\end{enumerate}

\item How many ways are there to deal hands of seven cards to each of

five players from a standard deck of $52$ cards?

Traditionally, each player is dealt one card, then two, until each has

the requisite number of cards. Equivalently, the first player can

receive all seven cards, then the second, and so on. The second way

is easier to work with. It should also be clear that the order of the

cards in each player’s hand isn’t relevant. There are

%

\[

\dbinom{52}{7}

\]

%

ways of dealing seven cards to the first player.

Now that the deck has 45 cards, there are

%

\[

\dbinom{45}{7}

\]

%

ways of dealing the next seven cards to the second player. If we

continue with all five players, we’ll have the following total number

of possibilities:

%

\[

\dbinom{52}{7}\dbinom{45}{7}\dbinom{38}{7}\dbinom{31}{7}\dbinom{24}{7}

\]

If we expand, we can see there will be some cancellations:

%

\[

\left(\dfrac{52!}{7!45!}\right)\left(\dfrac{45!}{7!38!}\right)

\left(\dfrac{38!}{7!31!}\right)\left(\dfrac{31!}{7!24!}\right)

\left(\dfrac{24!}{7!17!}\right)

= \left(\dfrac{52!}{17!(7!)^{5}}\right) \approx 7*10^{34}

\]

\footnote{Matt suggests that you might want to check his calculation.}

The number of $5$-card poker hands is

%

\[ \dbinom{52}{5} = 2,598,960.

\]

A common combinatorial exercise is to count how many ways there are to

get each kind of poker hand (1 pair, 2 pair, 3 of a kind, 4 of a kind,

full house, straight, flush, straight flush and royal flush) and rank

them by frequency. We won’t have time for that, but you’re encouraged

to figure them out. Note: generally the more common the hand, the

harder it is to count -- not because there are more possibilities, but

because you have to make sure you’re not double counting a rarer



hand.

\item How many subsets of a $20$ element set contain exactly $4$

elements? How many contain at most $4$ elements?

For the first part, this is simply

%

\[

\dbinom{20}{4} = \dfrac{(20)(19)(18)(17)}{4!} = 4,845.

\]

For the second part, this is

%

\[

\dbinom{20}{0}+\dbinom{20}{1}+\dbinom{20}{2}

+\dbinom{20}{3}+\dbinom{20}{4}=1+20+190+1,140+4,845

= 6,196.

\]

What if the problem asked how many subsets contain \emph{at least} $4$

elements?

\item If you flip a fair coin $20$ times, what is the probability that

you get exactly $4$ heads? At most $4$ heads?

The probability is the number of ways of picking four heads out of

$20$ flips, times the probability of getting $4$ heads and $16$ tails.

Let $p$ = probability of a head and $q$ = probability of a tail.

Since we have a fair coin, $p=q=\frac{1}{2}$:

%

\[

\dbinom{20}{4}\left(\dfrac{1}{2}\right)^{20} =

\dfrac{4,845}{2^{20}}\approx 0.46\%

\]

The probability of getting at most $4$ heads is

%

\[

\left(\dfrac{1}{2}\right)^{20}\left[\dbinom{20}{0}

+\dbinom{20}{1}+\dbinom{20}{2}+\dbinom{20}{3}+\dbinom{20}{4}\right]=

\dfrac{6,196}{2^{20}}\approx 0.59\%

\]

\item How many numbers less than one million have exactly four ones

in their binary representation? What are the largest and smallest

such numbers?

Since $2^{10}\approx 1,000$ then $2^{20}\approx 1,000,000$. We know

this is an underestimate, so $999,999$ has $20$ digits in binary. If we

allow for all $20$ digits to be used (which might give us numbers too

large), then the answer is again

%

\[

\dbinom{20}{4}=4,845.

\]

%

The

largest of these is $11110000000000000000_{2} =

2^{19}+2^{18}+2^{17}+2^{16} = 2^{16}(8+4+2+1)= 15*2^{16} = 983,040$,

so we didn’t overshoot. The smallest is $1111_{2} = (8+4+2+1) =15$ .



\item The roads in a city are laid out on a square grid with numbered

Streets and Avenues, so each corner is defined as the intersection

of a Street and an Avenue. For example, $(2,4)$ is the corner of

Second Street and Fourth Avenue.

Let $T(m,n)$ be the number of ways to walk from $(1,1)$ to $(m, n)$

so that at each stage either the Street number or the Avenue number

increases. For example, here are two of the $T(2,4) = 4$ ways to get

to $(2,4)$:

% This commented line tells TeX not to start a new paragraph

\begin{equation*}

(1,1) \rightarrow

(1,2) \rightarrow

(2,2) \rightarrow

(2,3) \rightarrow

(2,4)

\end{equation*}

%

\begin{equation*}

(1,1) \rightarrow

(1,2) \rightarrow

(1,3) \rightarrow

(2,3) \rightarrow

(2,4)

\end{equation*}

Find a closed form expression for $T(m,n)$. You may want to start by

computing some small examples.

All paths have $m-1$ rightward components and $n-1$ upward components,

for a total length of $(m-1)+(n-1)= m+n-2.$ Each path is determined

by which of the $m+n-2$ steps goes right, or goes up. You should see

that choosing the rightward steps determines the upward ones, and vice

versa. Looking at the rightward steps, we see that each way to choose

the $m-1$ rightward steps from the total path length of $m+n-2$

determines a unique path, and also each unique path has a different

choice of rightward steps. The same argument holds if we just

consider upward steps. Therefore

%

\[

T(m,n) = \dbinom{m+n-2}{m-1} = \dbinom{m+n-2}{n-1}.

\]

If we take another sanity check and see what happens if either $m$ or

$n=1$, we would get a one-dimensional path, which would have no

degrees of freedom and only one possibility. We see that

%

\[

T(1,n)=T(m,1) = \dbinom{m+n-2}{0} = \dbinom{m+n-2}{0} = 1,

\]

%

independent of $m$ or $n$.

\item An identity.

%

Let

\begin{equation*}

M(n) = \sum_{j=1}^n j \binom{n}{j}.

\end{equation*}



\emph{That identity is correct -- because I fixed a typo. This was the

original:}

\begin{equation*}

M(n) = \sum_{j=1}^n n \binom{n}{j}.

\end{equation*}

\begin{itemize}

\item Calculate the first few values of $M$.

\[ M(1) = 1\binom{1}{1} = 1\]

\[ M(2) = 1\binom{2}{1} + 2\binom{1}{2} = 4 \]

\[ M(3) = 1\binom{3}{1} = 2\binom{3}{2}+3\binom{3}{3}= 3+6+3 = 3(1+2+1)= 3(4) =12\]

\[ M(4) = 1\binom{4}{1} + 2\binom{4}{2} +3\binom{4}{3} +4\binom{4}{4} = 4+12+12+4= 4(1+3+3+1) =4(8)=32\]

\[ M(5) = 1\binom{5}{1} +2\binom{5}{2} +3\binom{5}{3} +4\binom{5}{4} +5\binom{5}{5} = \]

\[ 5+20+30+20+5 = 5(1+4+6+4+1)= 5(16)=80\]

\item Guess the pattern. Here’s a hint: look at $M(n+1)/2M(n)$.

If you didn’t see the pattern, here are the first few terms of $M(n+1)/2M(n)$

\[\dfrac{M(2)}{2M(1)} = \dfrac{4}{2(1)}= 2\]

\[\dfrac{M(3)}{2M(2)} = \dfrac{12}{2(4)}= \dfrac{3}{2}\]

\[\dfrac{M(4)}{2M(3)} = \dfrac{32}{2(12)}= \dfrac{4}{3}\]

\[\dfrac{M(5)}{2M(4)} = \dfrac{80}{2(32)}= \dfrac{5}{4}\]

So it seems that a good guess for $M(n+1)/2M(n)$ is $(n+1)/(n)$

Based on that ratio, we see that dividing by 2 keeps the expression

stable, it looks that $M(n)$ doubles with $n$, so it should have a

power of $2$. Factoring that out, $M(n)$ seems to grow like $n$, so a

reasonable guess is that $M(n)= n(2^{n}),$ or $n(2^{n-1}),$ or

$n(2^{n+1}).$

You might’ve seen the pattern that each sum was expressed as $n$(sum

of the $(n-1)$th row of Pascal’s Triangle).

\item Guess a closed form expression for $M(n)$.

If you used the first way, then by trial and error, you probably came

to the same conclusion as if you used the second way, namely $M(n) =

n(2^{n-1}).$

\item Prove that your guess is correct. Here are hints for two different

proofs - do both if you can. (1) Use the binomial theorem and differentiate

$(1+x)^n$. (2) Try induction.

1) The binomial theorem says that

\[ (x+y)^{n} = \sum_{j=0}^{n}\dbinom{n}{j}(x^{j}y^{n-j}) \]

Setting $y=1$, we have



\[ (x+1)^{n} = \sum_{j=0}^{n}\dbinom{n}{j}x^{j}\]

Note that $j$ starts at $0$, but $M(n)$ has $j$ starting at $1$. This

turns out to be no problem, because we can let $j$ start with $0$

without changing the sum. (Do you see why?).

You might also be wondering why we’re differentiating the binomial

theorem. $M(n)$ is the sum of binomial coefficients, suggesting that

the binomial theorem will be involved, but we need to introduce the

$j$ coefficient somehow. Since the binomial theorem is the sum of

$x^{j}s$, differentiating will bring down the $j$.

\[

\dfrac{d}{dx}(x+1)^n = n(x+1)^{n-1} =

\dfrac{d}{dx}\sum_{j=0}^{n}\dbinom{n}{j}x^{j} = \sum_{j=0}^{n}j

\dbinom{n}{j}x^{j-1}

\]

%

so we have

%

\[

\sum_{j=0}^{n}j \dbinom{n}{j}x^{j-1} = n(x+1)^{n-1}

\]

%

Substituting $x=1$,

%

\[

\sum_{j=0}^{n}j \dbinom{n}{j} = \sum_{j=1}^{n}j \dbinom{n}{j} =

n(2^{n-1}).

\]

2) \textbf{Here is Matt’s induction. It’s not pretty -- I should have

tried it myself before I asked you to!}

\vspace{0.2in}

We want to prove that

\[ M(n) = \sum_{j=1}^n j \binom{n}{j} = n(2^{n-1}), \text{for all $n$.} \]

Let $n=1$ be our base case. $M(1) = 1(2^{1-1}) = 1(1) = 1.$ So our base case works.

We assume this is true for a given $n$. Now we have to show this is true for $n+1$.

Given that $M(n) = n(2^{n-1}),$ proving that $M(n+1) = (n+1)2^{n}$ is

equivalent to proving

\footnote{The \LaTeX{} equations that follow should be formatted with

the align* environment.}

\[M(n+1)- M(n) = (n+1)2^{n} - n(2^{n-1}) = (2^{n-1}(2(n+1)-n))=2^{n-1}(n+2).\]

\[ M(n+1) = \sum_{j=1}^{n+1} j \binom{n+1}{j} = \sum_{j=1}^{n} j \binom{n+1}{j} + (n+1)\dbinom{j+1}{j+1} = \sum_{j=1}^{n} j \binom{n+1}{j} + (n+1)\]

\[ M(n+1)-M(n) = \sum_{j=1}^{n} j \binom{n+1}{j} + (n+1)- \sum_{j=1}^{n} j \binom{n}{j}=\]

\[ (n+1) + \sum_{j=1}^{n} j \left[ \binom{n+1}{j}- \binom{n}{j}\right]\]

Let’s focus on the binomial coefficients.



\[

\binom{n+1}{j}- \binom{n}{j} =

\left[\dfrac{(n+1)!}{j!(n+1-j)!}-\dfrac{n!}{j!(n-j)!}\right]=

\]

\\

\[ \dfrac{(n+1)!-n!(n+1+j)!}{j!(n+1-j)!}= \dfrac{n!((n+1)-(n+1-j))}{j!(n+1-j)!}=\]

\\

\[\dfrac{n!j}{j!(n+1-j)!}= \dfrac{n!}{(j-1)!(n+1-j)!} = \dbinom{n}{j-1} \]

\[ \text{Inserting back into the summation, } M(n+1)-M(n) = (n+1) + \sum_{j=1}^{n} j \binom{n}{j-1}=\]

\[ (n+1)+\sum_{j=1}^{n} (j-1) \binom{n}{j-1} + \dbinom{n}{j-1}=\]

\[ (n+1)+\sum_{j=1}^{n} (j-1) \binom{n}{j-1} + \sum_{j=1}^{n}\dbinom{n}{j-1}=\]

Looking at the first summation, if $j$ were allowed to go to $n+1$,

then that would be $M(n)$, so the first term $=M(n)$ less when $j=n+1$

which is $n$, so the first summation $=M(n)-n$.

Looking at the second summation, if $j$ were allowed to go to $0$,

then that would be $2^{n}$, so the second term $=2^{n}$ less when

$j=0$, which is $1$, so the second summation $=2^{n}-1.$

\[ \text{This gives us } (n+1) +(M(n)-n)+(2^{n}-1) =

n2^{n-1}+2^{n}=2^{n-1}(n+2), \text{and we’re done.}\]

\end{itemize}

\item From the symmetry of the binomial coefficients, it is not too

hard to see that when $n$ is an odd number, the number of subsets of

$\{1,2, \ldots, n\}$ of odd

size equals the number of subsets of

even size. Is that true when $n$ is even?

Why or why not?

The number is the same for even $n$ too. Here’s why. Think about all

the subsets of $n-1$ and divide them into two equal piles -- the even

ones and the odd ones. These are also subsets of an $n$ element set --

the ones that don’t contain the new guy who walks in the door. The

ones that do contain him you get by adding him to all the ones we

listed before. The odd ones become even and the even ones become odd,

so there are the same number of each of these kinds too.

Here’s a second solution. In Pascal’s triangle, the numbers in row $n$

row alternate counting the number of even and odd subsets of an $n$

element set. Remember that the binomial theorem says

%

\begin{equation*}

(1+x)^n = \binom{n}{0}

+ \binom{n}{1}x

+ \binom{n}{2}x^2 + \ldots

+ \binom{n}{n}x^n .

\end{equation*}

%

Setting $x = -1$ tells us that for $n > 0$

\begin{equation*}

0 = (1-1)^n = \binom{n}{0}

- \binom{n}{1}

+ \binom{n}{2} - \ldots



\pm \binom{n}{n} .

\end{equation*}

%

Moving the negative terms to the other side of the equation proves the

identity we want.

Note: the assertion is false when $n=0$. The empty set has just one

subset, itself, which has an even number of elements ($0$ is even). It

has no subsets with an odd number of elements.

\item Apples and bananas

\vspace{0.2in}

\textbf{We spent a full class on this an the next few questions, and

Matt answered it above, so there are no new answers here.}

\vspace{0.2in}

Kids in first grade spend a fair amount of time mastering

addition of small numbers by answering questions like

\begin{quotation}

If you have some apples and some bananas and you have $10$ pieces of

fruit altogether, how many of each might you have?

\end{quotation}

They work at listing all the possible answers to this question. They

use $10$ more often than any other total since combinations making

$10$ are the most important when learning arithmetic.

\begin{enumerate}

\item How many ways solutions are there for $n$ pieces of fruit?

\item The kids often ask (as they should!) whether it’s OK to have

\emph{no} apples. Which answer makes the most mathematical sense?

\item Answer the first question both when $0$ is allowed as a summand

and when it’s not.

\end{enumerate}

\item Apples, bananas and cherries.

Ask and answer the questions in the previous exercise for three kinds

of fruit.

\item Apples, bananas, cherries, dates, eggplants, \ldots

\begin{itemize}

\item How many ways are there to write $n$ as the sum of an ordered list of

$k$ nonnegative integers?

We spent a full day on this in class. The answer is

\begin{equation*}

\binom{m+n-1}{n-1} .

\end{equation*}

You can think of that as the number of ways to place $n-1$ dividers in

$m+n-1$ spaces; you count the other spaces to find the size of each of

the $k$ summands.



Luke Chen pointed out in class that Problem 11 is essentially the same

problem. Look at the vertical steps as the dividers and the horizontal

steps as counting the sizes of the summands, row by row. You need to

use one extra row to get the total right.

\item How many ways are there to write $n$ as the sum of an ordered list of

$k$ positive integers?

\item (Trick question) How many ways are there to write $n$ as the sum

of an ordered list of $k$ integers?

Infinitely many. For example, when $k=2$ we have

%

\begin{equation*}

n = (n-1) + 1 = (n-2) + 2 = \cdots = (n-n) + n = -1 + (n+1) = \cdots

\end{equation*}

\end{itemize}

\item The previous questions are all \emph{much harder} if the list

isn’t ordered. Then $3+7$ and $7+3$ count as the same way to sum to

$10$. Each way to write $n$ is a \emph{partition} of $n$.

Let $P(n)$ be the number of partitions of $n$. Find the first few

values of $P(n)$ and then look up the sequence at the On-Line

Encyclopedia of Integer Sequences (\url{http://oeis.org/} and

\url{http://oeis.org/wiki/Welcome}).

$1=1$ so $P(1) = 1$.

$2 = 1+1$ so $P(2) = 2$.

$3 = 1+2 = 1+1+1$ so $P(3) = 3$.

$4 = 1+3 = 2+2 = 1+1+2 = 1+1+1+1$ so $P(4) = 5$.

$5 = 1+4 = 2+3 = 1+1+3 = 1+2+2 =1+1+1+2 = 1+1+1+1+1$ so $P(5) = 7$

Searching the on line encylopedia for $1,2,3,5,7$ finds $754$

sequences. The first of these is the sequence of counts of

partitions. It continues

\begin{equation*}

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, \ldots

\end{equation*}

\end{enumerate}
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