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1. Abstract

This paper will prove the theorem that every positive integer can be written as the
sum of four squares. First, it will build a definition of Hamilton’s quaternions, which
comprise a four-dimensional vector space that extends the complex numbers. Just
as the norm of a complex number is a sum of two squares, the norm of a quaternion
is a sum of four squares, and so every number that can be the norm of a quaternion
can be written as a sum of four squares. A subset of these can be written as a sum
of four integral squares. The proof will show that this subset of norms is closed
under multiplication and that it contains all the positive prime integers. Thus every
positive integer will be expressible both as the norm of a rational quaternion and as
a sum of four squares.

2. Introduction to Quaternions

Much as the complex plane is constructed by adjoining the real numbers with a
new element, i =

√
−1, the ring of quaternions is constructed by adjoining the real

numbers with three new elements, creating a four-dimensional vector space.

We denote the ring of quaternions H after Sir William Hamilton, who discovered
them in 1843.

These new basis vectors are denoted j, k, l, with j2 = k2 = l2 = −1, so each is
a square root of -1. Nonetheless, they are distinct elements, with the following
relations:
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ij = k ji = −k
jk = i kj = −i
ki = j ik = −j

Thus every element α of the quaternions is expressed as a linear combination of these
basis vectors: α = a+ bi+ cj + dk. The set H = {a+ bi+ cj + dk | a, b, c, d ∈ Q} is
known as the rational quaternions.

Another way to regard the rational quaternions is as a subset of M2(C), the 2 x 2
matrices with complex entries. Here, we can define i, j, and k so that they are more
clearly distinct:

i =

[
i 0
0 −i

]
j =

[
0 1
−1 0

]
k =

[
0 i
i 0

]

If we let 1 = I2 ∈ M2(C), we can see more naturally that the above defined rela-
tionships among the basis elements hold true, and that i, j, k are all indeed distinct
square roots of -1. The matrix definitions of the elements of H also make it easier
to see that multiplication of elements is associative and distributive (since matrix
multiplication is associative and distributive). Knowing these properties hold, we
can find a product formula for (a+ bi+ cj+dk)(a′+ b′i+ c′j+d′k) by expanding and
distributing tediously. Like terms are combined, keeping in mind that the rational
numbers of the center of H; that is, rational numbers will commute with all elements
of H, i.e. 3

5
j = j 3

5
, and so like terms can be further combined.. This tedious multi-

plication yields a new element of the form a+ bi+ cj + dk, showing that H is closed
under multiplication. Closure of addition follows immediately from the definition of
addition as component-wise. Thus H is a ring.

3. Conjugate, Norm, and Inverse

For α ∈ H we will define the conjugate ᾱ and the norm N(α) as follows:

ᾱ = a− bi− cj − dk
N(α) = αᾱ = a2 + b2 + c2 + d2
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From the definition of N(α) it is clear that N(α) is a rational number, and as
such N(α) will commute with any quaternion. Further, it is clear that N(α) =
N(ᾱ).

We use these definitions to demonstrate an inverse for every nonzero quaternion. Let
α 6= 0. We claim that N(α)−1ᾱ is a multiplicative inverse:

α(N(α)−1ᾱ) = (αN(α)−1)ᾱ

= (N(α)−1α)ᾱ

= N(α)−1N(α)

= 1

and

(N(α)−1ᾱ)α = N(α)−1(ᾱα)

= N(α)−1N(ᾱ)

= N(α)−1N(α)

= 1

Since every nonzero element α ∈ H has an inverse in H, the ring of quaternions is a
division ring. It is not a field, since multiplication is not commutative (easily seen
from ij = −ji, for instance). H was the first known example of a noncommutative
division ring, or strictly skew field[?].

4. Integral Quaternions

We define a subring of H which we will call the ring of integral quaternions:

D = {a+ bi+ cj + dk | 2a, 2b, 2c, 2d are integers of the same parity}

If α ∈ D, then N(α) is an integer, by the following argument:

4N(α) = (2a)2 + (2b)2 + (2c)2 + (2d)2 ∈ Z, since we assumed 2a, 2b, 2c, 2d were all
integers.
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We also assumed 2a ≡ 2b ≡ 2c ≡ 2d (mod 2). Thus (2a)2 ≡ (2b)2 ≡ (2c)2 ≡ (2d)2

(mod 4). Thus 4N(α) ≡ 0 (mod 4), so N(α) is an integer.

Calling E the set of all norms of integral quaternions, we see that E ⊆ Z.

5. Norms of Integral Quaternions are Sums of Four Squares

Now we will prove that n ∈ E ⇐⇒ n can be written as the sum of four squares.

=⇒ Assume n ∈ E; then n = N(α) for α ∈ D. Then

4n = (2a)2 + (2b)2 + (2c)2 + (2d)2

where 2a, 2b, 2c, 2d are all integers. So write:

4n = x2 + y2 + z2 + w2

Using a parity argument, since this sum is even, it must be that x, y, z, w are all odd,
all even, or two odd and two even. At the very least we can say the latter, so assume
x ≡ y (mod 2) and z ≡ w (mod 2). Then

2n =

(
x− y

2

)2

+

(
x+ y

2

)2

+

(
z − w

2

)2

+

(
z + w

2

)2

Since x, y and z, w have the same parity, 2n is again a sum of four integral squares.

Now we have 2n = x′2 + y′2 + z′2 + w′2 for some new integers x′, y′, z′, w′, so we
can make the same parity argument and write n itself as a sum of four integral
squares.

⇐= If n = a2 + b2 + c2 + d2 = N(α), then α = ±a± b± c± d where a, b, c, d ∈ Z,
so α ∈ D, so n ∈ E.

6. All Positive Integers are Sums of Four Squares

We will take it for granted that E is closed under multiplication, since D is closed
under multiplication and N(α1)N(α2) = N(α1α2) (see [?] for details).

Now all we need to show is that all the primes belong to E and it will follow that
all positive integers belong to this set, and thus all positive integers are expressible
as the sum of four squares.
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Let p be an odd prime. There is a lemma that we can find x, y such that 1+x2+y2 ≡ 0
(mod p). (Proof: Let {r1, r2, . . . , r(p−1)/2} be the quadratic residues of p. Together
with r0 = 0, form the two subsets {r0, r1, . . . , r(p−1)/2} and {−1−r0,−1−r1, . . . ,−1−
r(p−1)/2. Each has (p− 1)/2 + 1 elements, so rj = −1− ri for some i, j. Let x2 ≡ rj
(mod p) and y2 ≡ ri (mod p). Then 1 + x2 + y2 ≡ 0 (mod p).)

Write p | 1 + x2 + y2. If we let γ = 1 + xi+ yj ∈ D, then p | γγ̄ in D. If p were prime
in D, it would have to divide either γ or γ̄ since it divides their product. But neither
γ
p

= 1
p

+ x
p
i+ y

p
j nor γ̄

p
= 1

p
− x

p
i− y

p
j is integral, so p divides neither and is not prime

in D.

Thus, we can write p = αβ for two non-units α and β. We already knew that
N(p) = p2; now we can say that N(p) = N(α)N(β) = p2. Since neither α nor β is a
unit, N(α) > 1 and N(β) > 1. Thus N(α) = N(β) = p. Since p is the norm of an
integral quaternion, it is the sum of four squares.

All odd primes thus belong to E, since 2 = 12 + 12 + 02 + 02 also does, we get every
positive integer as the sum of four primes.

7. Problems

(1) Find an isomorphism that takes an arbitrary quaternion a + bi + cj + dk to
a 2 x 2 matrix (hint: find each entry of the matrix in terms of a, b, c, and d).

(2) Prove that N(α1α2) = N(α1)N(α2).
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