
Factoring with Python – continued
Spring 2015

Our goal is write a python program to factor integers. This document and the first few classes
model the software development process. We build a complex program one step at a time, docu-
menting the process and keeping track of the steps along the way.

2 Arranging user input

One problem with factor1.py is that I have to edit it in order to factor a different number.
factor2.py asks user for input, after suggesting an interesting number to test:

> python factor2.py

test with 10967535067

number, please: 10967535067

smallest factor of 10967535067 is 104723

computation took 0.11700701713562012 seconds

I also added some code to time the algorithm. It took just over a tenth of a second on my PC
for python to find that the smallest factor of the 11 digit number 10967535067 is the six digit prime
104723. In this case that number is nearly the square root, so the while loop had to execute more
than 100,000 times. A tenth of a second is a lot of computer time. Soon I will want to tinker with
the algorithm to see if I can get it to run faster.

Here’s how I asked for input in factor2.py

11 import math
12 import time
13

14 print("test with 10967535067")
15 # The input function writes a prompt and reads a string from the terminal

16 # The int function converts that string to an integer

17 number = int(input(’number, please: ’))

and here’s the timing code surrounding the real work. Only lines 21-22 and 35-36 are new.

21 # record the current time

22 start = time.time()

23 possible factor = 2

24 while (possible factor <= sqrt):
25 remainder = number % possible factor

26 if remainder == 0:
27 break
28 possible factor = possible factor + 1

29

30 if (possible factor > sqrt):

31 smallest factor = number # we have a prime number

32 else:
33 smallest factor = possible factor

34

35 # done, so calculate elapsed time

36 elapsed = time.time() − start

3 Functions – making code modular

In this next version of the factor program I will separate the algorithm from the input and output
code, so I can experiment with different factoring algorithms to find a faster one.

We know about some of the builtin python functions – print(), str(), input(), int() and
exit(). Now we’ll see how to create a function of your own. The python keyword is def.

I tested repeatedly to check that this program behaves just the way the last one did. That was
easy since I’d arranged for prompted input, so that I didn’t have to edit the program each time.

1

I made some small improvements in the loop body, too, so that it begins to look more like
idiomatic python than beginner’s python:

• I start out assuming that the number I want to factor is a prime. Then I don’t need to test
after the loop to see whether I’ve gone as far as the square root.

• I no longer need the variable remainder since I test (number % possible factor == 0) directly.

• I use the neat increment operator += 1 to add 1 to possible factor.

1 # factor3.py

2 #

3 # get an integer from the user,

4 # call find smallest factor to find its smallest factor

5 # time how long the program takes

6 #

7 # no error handling if the user doesn’t enter a number

8 #

9 # Ethan Bolker

10 # January 15, 2015

11

12 import math
13 import time
14

15 # def defines a function(with arguments)

16 # indent the function body

17 # stuff in quotes at start of body is built in documentation

18 def find smallest factor(number):
19 """ naive search for smallest factor of input

20

21 loop over possible factors 2,3,4,..., sqrt

22 if you find a 0 remainder you have a factor

23 if you haven’t found a factor by now, you have a prime

24 """

25 sqrt = math.sqrt(number)

26 answer = number # start out assuming prime

27

28 # loop body a little more idiomatic than in last version

29 possible factor = 2

30 while (possible factor <= sqrt):
31 if (number % possible factor == 0):
32 answer = possible factor # not prime!

33 break
34 possible factor += 1 # add 1 to a variable

35 # the return keyword tells the caller what this function calculated

36 return answer
37

38 # code to execute begins here

39 number = int(input(’number, please: ’))
40

41 start = time.time()

42 # give smallest factor the value returned by the function

43 smallest factor = find smallest factor(number)

44 elapsed = time.time() − start

45

46 print ("smallest factor of " + str(number) + " is " + str(smallest factor))
47 print("computation took " + str(elapsed)+ " seconds")

2

4 Modules – making code even more modular

In my algorithm’s while loop I increment the possible factor by 1 each time. But I know that’s
inefficient. If I just test first to see if the number is even, then I can loop just over the odd numbers
3, 5, 7, That should make the algorithm twice as fast for big numbers. If I also test for
divisibility by 3 then I can loop over 5, 7, 11, 13, 17, 19, 23, 25, . . . (alternately adding 2 and 4).
That should make the algorithm three times as fast as the naive one (for big numbers) since I only
look at two out of every six possible factors.

I will put the naive algorithm in a function called fsf0 and the faster one in function fsf1. Then
I will put those two functions in a file by themselves – a python module I’ll call fsf.py.

When you read the body of fsf1 you will see that it uses return statements in the middle of
the function, not just at the end. Some people think this is not a good thing, since it may make it
harder for a reader to figure out what the function is doing.

Here is the module:

1 # fsf.py

2 #

3 # functions to find the smallest factor of an integer

4 # Ethan Bolker

5 # January 13, 2015

6

7 import math
8

9 def fsf0(number):
10 """ naive search for smallest factor of input

11

12 loop over possible factors 2,3,4,..., sqrt

13 if you find a 0 remainder you have a factor

14 if you haven’t found a factor by now, you have a prime

15 """

16 sqrt = math.sqrt(number)

17 answer = number # start out assuming prime

18

19 possible factor = 2

20 while (possible factor <= sqrt):
21 if (number % possible factor == 0):
22 answer = possible factor # not prime!

23 break
24 possible factor += 1 # add 1 to a variable

25 return answer
26

27 # This algorithm should be 3 times as fast as the naive one,

28 # since it loops only over possible divisors congruent to

29 # 1 or 5 mod 6.

30 def fsf1(number):
31 """ better than naive search for smallest factor of input

32

33 if number is even, found factor 2

34 if 3 divides number, found factor 3

35 loop over possible factors 5,7,11,13,17,19,..., sqrt

36 if you find a 0 remainder you have a factor

37 if you haven’t found a factor by now, you have a prime

38 """

39 if (number%2 == 0):
40 return 2
41 if (number%3 == 0):
42 return 3
43 sqrt = math.sqrt(number)

44

45 possible factor = 5

46 while (possible factor <= sqrt):

3

47 if (number % possible factor == 0):
48 return possible factor # all done − don’t bother with break

49 possible factor += 2 # next value mod 6

50 if (number % possible factor == 0):
51 return possible factor
52 possible factor += 4 # next value mod 6

53 return number # started with a prime

The program that calls the functions in that module is

1 # factor4.py

2 #

3 # separate the mathematics from input/output interface

4 #

5 # get an integer from the user,

6 # call imported functions fsf0, fsf1 to find its smallest factor

7 # compare timings

8 #

9 # Ethan Bolker

10 # January 15, 2015

11

12 import math
13 import time
14 import fsf # module with several functions to find smallest factor
15

16 print("test with 10967535067")
17 number = int(input(’number, please: ’))
18

19 start = time.time()

20 smallest factor = fsf.fsf0(number)

21 elapsed = time.time() − start

22

23 print ("smallest factor of " + str(number) + " is " + str(smallest factor))
24 print("fsf0 computation took " + str(elapsed)+ " seconds")
25

26 start = time.time()

27 smallest factor = fsf.fsf1(number)

28 elapsed = time.time() − start

29

30 print ("smallest factor of " + str(number) + " is " + str(smallest factor))
31 print("fsf1 computation took " + str(elapsed)+ " seconds")

Here is the output:

$ python factor4.py

test with 10967535067

number, please: 10967535067

smallest factor of 10967535067 is 104723

fsf0 computation took 0.10400605201721191 seconds

smallest factor of 10967535067 is 104723

fsf1 computation took 0.029001951217651367 seconds

I can see that fsf1 is indeed about three times as fast as fsf0, as I predicted.

4

Here is the LATEX source for this document. You can cut it from the pdf and use it to start
your answers. I used the \jobname macro for the source file name, so you can call your file by any
name you like.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

\documentclass[10pt]{article}

\usepackage[textheight=10in]{geometry}

\usepackage{verbatim}

\usepackage{amsmath}

\usepackage{amsfonts} % to get \mathbb letters

\usepackage[utf8]{inputenc}

\DeclareFixedFont{\ttb}{T1}{txtt}{bx}{n}{9} % for bold

\DeclareFixedFont{\ttm}{T1}{txtt}{m}{n}{9} % for normal

% Defining colors

\usepackage{color}

\definecolor{deepblue}{rgb}{0,0,0.5}

\definecolor{deepred}{rgb}{0.6,0,0}

\definecolor{deepgreen}{rgb}{0,0.5,0}

\usepackage{listings}

%Python style from

%http://tex.stackexchange.com/questions/199375/problem-with-listings-package-for-python-syntax-coloring

\newcommand\pythonstyle{\lstset{

language=Python,

backgroundcolor=\color{white}, %%%%%%%

basicstyle=\ttm,

otherkeywords={self},

keywordstyle=\ttb\color{deepblue},

emph={MyClass,__init__},

emphstyle=\ttb\color{deepred},

stringstyle=\color{deepgreen},

commentstyle=\color{red}, %%%%%%%%

frame=tb,

showstringspaces=false,

numbers=left,numberstyle=\tiny,numbersep =5pt

}}

\usepackage{hyperref}

\begin{document}

\pythonstyle{}

\setcounter{section}{1} % start with section 2

\begin{center}

\Large{

Factoring with Python -- continued \\

Spring 2015

}

\end{center}

Our goal is write a python program to factor integers. This document

and the first few classes model the software development process. We

build a complex program one step at a time, documenting the process

and keeping track of the steps along the way.

\section{Arranging user input}

One problem with

5

\lstinline!factor1.py! is that I have to edit it in order to

factor a different number.

\lstinline!factor2.py! asks user for input, after suggesting

an interesting number to test:

\begin{verbatim}

> python factor2.py

test with 10967535067

number, please: 10967535067

smallest factor of 10967535067 is 104723

computation took 0.11700701713562012 seconds

\end{verbatim}

I also added some code to \emph{time} the algorithm. It took

just over a tenth of a second on my PC for python to find that the

smallest factor of the 11 digit number 10967535067

is the six digit prime 104723. In this case that number is nearly the

square root, so the \lstinline!while! loop had to execute more than

100,000 times. A tenth of a second is a lot of computer time. Soon I

will want to tinker with the algorithm to see if I can get it to run faster.

Here’s how I asked for input in \lstinline!factor2.py!

\lstinputlisting[firstnumber=11, firstline=11,lastline=17]{factor2.py}

%\lstinputlisting[firstline=11,lastline=17]{factor2.py}

and here’s the timing code surrounding the real work. Only lines 21-22

and 35-36 are new.

\lstinputlisting[firstnumber=21,firstline=21,lastline=36]{factor2.py}

\section{Functions -- making code modular}

In this next version of the factor program I will separate the

algorithm from the input and output code, so I can experiment

with different factoring algorithms to find a faster one.

We know about some of the

builtin python functions -- \lstinline!print()!,

\lstinline!str()!,

\lstinline!input()!,

\lstinline!int()!

and \lstinline!exit()!.

Now we’ll see how to create a function of your own.

The python keyword is \lstinline!def!.

I tested repeatedly to check that this program behaves just the way

the last one did. That was easy since I’d arranged for prompted input,

so that I didn’t have to edit the program each time.

I made some small improvements in the loop body, too, so that it

begins to look more like idiomatic python than beginner’s python:

\begin{itemize}

\item I start out assuming that the number I want to factor is a

prime. Then I don’t need to test after the loop to see whether I’ve

gone as far as the square root.

\item I no longer need the variable \lstinline!remainder! since I test

\lstinline!(number % possible_factor == 0)! directly.

6

\item I use the neat \emph{increment} operator \lstinline!+= 1! to

add 1 to \lstinline!possible_factor!.

\end{itemize}

\lstinputlisting{factor3.py}

\section{Modules -- making code even more modular}

In my algorithm’s \lstinline!while! loop I increment the possible

factor by 1 each time. But I know that’s inefficient. If I just test

first to see if the number is even, then I can loop just over the odd

numbers 3, 5, 7, \ldots. That should make the algorithm twice as fast

for big numbers. If I also test for divisibility by 3 then I can loop

over 5, 7, 11, 13, 17, 19, 23, 25, \ldots (alternately adding 2 and

4). That should make the algorithm three times as fast as the naive

one (for big numbers) since I only look at two out of every six

possible factors.

I will put the naive algorithm in a function called

\lstinline!fsf0!

and the faster one in function

\lstinline!fsf1!.

Then I will put those two functions in a file by themselves -- a

python

\lstinline!module! I’ll call

\lstinline!fsf.py!.

When you read the body of

\lstinline!fsf1! you will see that

it uses \lstinline!return! statements in the middle of the function,

not just at the end. Some people think this is not a good

thing, since it may make it harder for a reader to figure out

what the function is doing.

Here is the module:

\lstinputlisting{fsf.py}

The program that \emph{calls} the functions in that module is

\lstinputlisting{factor4.py}

Here is the output:

\begin{verbatim}

$ python factor4.py

test with 10967535067

number, please: 10967535067

smallest factor of 10967535067 is 104723

fsf0 computation took 0.10400605201721191 seconds

smallest factor of 10967535067 is 104723

fsf1 computation took 0.029001951217651367 seconds

\end{verbatim}

I can see that \lstinline!fsf1!

is indeed about three times as fast as

\lstinline!fsf0!,

as I predicted.

7

\newpage

\emph{

Here is the \LaTeX{} source for this document. You can cut it from the

pdf and use it to start your answers. I used the} \verb!\jobname!

\emph{macro for the source file name, so you can call your file by any

name you like.}

\verbatiminput{\jobname}

\end{document}

8

	Arranging user input
	Functions – making code modular
	Modules – making code even more modular

