
Solution to Homework 2
Spring 2015

1 Echo

Here’s my code for echo.py. It’s mostly comment, since I included my “diary” there.

1 # python program to read a file and echo its contents

2 #

3 # Ethan Bolker

4 # February 9, 2015

5 # Math 480 hw2

6 #

7 # The first time I tried this program I got an extra blank line

8 # between each line of the input file. That’s because when python

9 # reads in a line from a file it includes the newline character

10 # at the end of the line. To get just what I want to print I need to

11 # delete that last character , since the print() function will supply the

12 # newline on output. I do that by slicing the line.

13 #

14 # Google found these answers for me:

15 # http://stackoverflow.com/questions/8009882/how−to−read−large−file−line−by−line−in−python
16 # http://stackoverflow.com/questions/15478127/remove−final−character−from−string−python
17

18 import sys
19

20 filename = sys.argv[1]

21

22 for line in open(filename):
23 print(line[:−1])

2 Average

The open() function opens a file and returns an object that you can loop over with for. Before I
tried this I wondered whether I would have to strip the newline from the end of each line. I was
lucky: the float() function strips white space (blanks and tabs and newlines) at the beginning and
the end of its argument.

1 # python program to read a file of floats and calculate their average

2 #

3 # Ethan Bolker

4 # February 9, 2015

5 # Math 480 hw2

6

7 import sys
8 filename = sys.argv[1]

9

10 count = 0

11 total = 0

12 for line in open(filename):
13 count += 1

14 total += float(line)
15 print("average: " + str(total/count))

Here’s a test, pasted from Windows powershell. The leading blanks on the second line don’t
matter. The fourth line shows that the float() function can parse scientific notation.

PS C:\eb\python\hw2> type floats.txt

100

1

200

300

4e2

PS C:\eb\python\hw2> python average.py floats.txt

average: 250.0

3 Robust Average

Our main focus in this course is quick-and-dirty software to answer mathematical questions we’re
curious about. If our programs break from time to time, so what? But applications intended for
general use must not crash. To keep that from happening you have to anticipate all the things that
might go wrong, and guard against them. When something does go wrong you have to warn the
user and continue on, or exit the program.

You can detect problems either by testing in advance with an if: statement, or you can just
try: something and deal with any problem in the except: clause.

Here are the tests for robust average.py.
First look for errors telling the program what file to use – there might be no files named, or

more than one, or a file that isn’t there. (The file might be there but not be readable. I haven’t
tested for that, but could.)

PS C:\eb\python\hw2> python robust_average.py

usage: robust_average.py <filename>

PS C:\eb\python\hw2> python robust_average.py nosuchfile

File nosuchfile not found

PS C:\eb\python\hw2> python robust_average.py floats.txt floats.txt

usage: robust_average.py <filename>

If the file is really there, test for bad file contents, and warn the user when a line can’t be parsed
by float().

PS C:\eb\python\hw2> type empty.txt

PS C:\eb\python\hw2> python robust_average.py empty.txt

Warning: no floats to average

PS C:\eb\python\hw2> type .\floaterrors.txt

100

next line is blank

200

2..0

-100

2e2

1f2

average should be 100

PS C:\eb\python\hw2> python robust_average.py .\floaterrors.txt

Warning: float error on line next line is blank

Warning: float error on line

Warning: float error on line 2..0

Warning: float error on line 1f2

Warning: float error on line average should be 100

average: 100.0

1 # python program to read a file of floats and calculate their average

2 #

3 # This version has lots of error checking.

4 # Error messages are sent to stderr, not stdout

5 # (that’s where ordinary print() statements go).

6 #

7 # Note how error checking accounts for a very large fraction

8 # of the code!

9 #

2

10 # http://stackoverflow.com/questions/5574702/how−to−print−to−stderr−in−python
11 #

12 # Ethan Bolker

13 # February 10, 2015

14 # Math 480 hw2

15

16 import sys
17

18 # see if there’s exactly one filename

19 if (len(sys.argv) != 2):
20 print("usage: " + sys.argv[0] + " <filename>", file=sys.stderr)
21 exit(1) # leave program with a return value different from 0

22

23 filename = sys.argv[1]

24

25 # make sure the file is there and can be opened

26 try:
27 filecontents = open(filename)
28 except FileNotFoundError:
29 print("File " + sys.argv[1] + " not found", file=sys.stderr)
30 exit(1)

31

32 count = 0

33 total = 0

34

35 for line in open(filename):
36 # perhaps the line doesn’t contain a float

37 try:
38 total += float(line)
39 except ValueError:
40 print("Warning: float error on line " + line[:−1])
41 continue # back to top of for loop
42 count += 1

43

44 if count == 0:
45 print("Warning: no floats to average")
46 else:
47 print("average: " + str(total/count))

3

Here is the LATEX source for this document. You can cut it from the pdf and use it to start
your answers. I used the \jobname macro for the source file name, so you can call your file by any
name you like.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

\documentclass[10pt]{article}

\usepackage[textheight=10in]{geometry}

\usepackage{verbatim}

\usepackage{amsmath}

\usepackage{amsfonts} % to get \mathbb letters

\usepackage[utf8]{inputenc}

\DeclareFixedFont{\ttb}{T1}{txtt}{bx}{n}{9} % for bold

\DeclareFixedFont{\ttm}{T1}{txtt}{m}{n}{9} % for normal

% Defining colors

\usepackage{color}

\definecolor{deepblue}{rgb}{0,0,0.5}

\definecolor{deepred}{rgb}{0.6,0,0}

\definecolor{deepgreen}{rgb}{0,0.5,0}

\usepackage{listings}

%Python style from

%http://tex.stackexchange.com/questions/199375/problem-with-listings-package-for-python-syntax-coloring

\newcommand\pythonstyle{\lstset{

language=Python,

backgroundcolor=\color{white}, %%%%%%%

basicstyle=\ttm,

otherkeywords={self},

keywordstyle=\ttb\color{deepblue},

emph={MyClass,__init__},

emphstyle=\ttb\color{deepred},

stringstyle=\color{deepgreen},

commentstyle=\color{red}, %%%%%%%%

frame=tb,

showstringspaces=false,

numbers=left,numberstyle=\tiny,numbersep =5pt

}}

\usepackage{hyperref}

\begin{document}

\pythonstyle{}

\begin{center}

\Large{

Solution to Homework 2 \\

Spring 2015

}

\end{center}

\section{Echo}

Here’s my code for \lstinline!echo.py!. It’s mostly comment, since I

included my ‘‘diary’’ there.

\lstinputlisting{echo.py}

\section{Average}

The \lstinline!open()! function opens a file and returns an object that

4

you can loop over with \lstinline!for!. Before I tried this I wondered

whether I would have to strip the newline from the end of each line. I

was lucky: the \lstinline!float()! function strips white

space (blanks and tabs and newlines) at the beginning and the end of

its argument.

\lstinputlisting{average.py}

Here’s a test, pasted from Windows \verb!powershell!. The leading

blanks on the second line don’t matter. The fourth line shows that the

\lstinline!float()! function can parse scientific notation.

\begin{verbatim}

PS C:\eb\python\hw2> type floats.txt

100

200

300

4e2

PS C:\eb\python\hw2> python average.py floats.txt

average: 250.0

\end{verbatim}

\section{Robust Average}

Our main focus in this course is quick-and-dirty software to answer

mathematical questions we’re curious about. If our programs break from

time to time, so what? But applications intended for general use must

not crash. To keep that from happening you have to anticipate all the

things that might go wrong, and guard against them. When something

does go wrong you have to warn the user and continue on, or exit the

program.

You can detect problems either by testing in advance with an

\lstinline!if:! statement, or you can

just \lstinline!try:! something and deal with any problem in the

\lstinline!except:! clause.

Here are the tests for \lstinline!robust_average.py!.

First look for errors telling the program what file to use -- there

might be no files named, or more than one, or a file that isn’t there.

(The file might be there but not be readable. I haven’t tested for

that, but could.)

\begin{verbatim}

PS C:\eb\python\hw2> python robust_average.py

usage: robust_average.py <filename>

PS C:\eb\python\hw2> python robust_average.py nosuchfile

File nosuchfile not found

PS C:\eb\python\hw2> python robust_average.py floats.txt floats.txt

usage: robust_average.py <filename>

\end{verbatim}

If the file is really there, test for bad file contents, and warn the

user when a line can’t be parsed by \lstinline!float()!.

\begin{verbatim}

PS C:\eb\python\hw2> type empty.txt

PS C:\eb\python\hw2> python robust_average.py empty.txt

Warning: no floats to average

5

PS C:\eb\python\hw2> type .\floaterrors.txt

100

next line is blank

200

2..0

-100

2e2

1f2

average should be 100

PS C:\eb\python\hw2> python robust_average.py .\floaterrors.txt

Warning: float error on line next line is blank

Warning: float error on line

Warning: float error on line 2..0

Warning: float error on line 1f2

Warning: float error on line average should be 100

average: 100.0

\end{verbatim}

\lstinputlisting{robust_average.py}

\newpage

\emph{

Here is the \LaTeX{} source for this document. You can cut it from the

pdf and use it to start your answers. I used the} \verb!\jobname!

\emph{macro for the source file name, so you can call your file by any

name you like.}

\verbatiminput{\jobname}

\end{document}

6

	Echo
	Average
	Robust Average

