
Solution to Homework 3
Ethan Bolker
March 17, 2015

1 Python’s built in documentation

Just type help to get help on a function or module:

PS C:\eb\python\hw3> python

Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 6 2014, 22:15:05) [MSC v.1600 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> help(print)

Help on built-in function print in module builtins:

print(...)

print(value, ..., sep=’ ’, end=’\n’, file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.

Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.stdout.

sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

flush: whether to forcibly flush the stream.

>>> import eulerphi

eulerphi returned [’passed’, 100, ’nothing useful yet’]

>>> help(eulerphi)

Help on module eulerphi:

NAME

eulerphi

FUNCTIONS

eulerphi(b=100)

Given a positive integer b,

returns a list of the integers between 1 and b

that are relatively prime to b.

For example, eulerphi(15) returns the list

[1,2,4,7,8,11,13,14]

Use the function gcd from the fractions library.

FILE

c:\eb\python\hw3\eulerphi.py

>>> help(eulerphi.eulerphi)

Help on function eulerphi in module eulerphi:

eulerphi(b=100)

Given a positive integer b,

returns a list of the integers between 1 and b

that are relatively prime to b.

For example, eulerphi(15) returns the list

[1,2,4,7,8,11,13,14]

Use the function gcd from the fractions library.

1

>>>

I waited for someone in the class to figure this out.

2 Eulerphi

Here’s my test of the eulerphi() function:

myshell> python eulerphi.py

eulerphi(15) returned [1, 2, 4, 7, 8, 11, 13, 14]

eulerphi(16) returned [1, 3, 5, 7, 9, 11, 13, 15]

eulerphi(17) returned [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

This was pretty easy and I didn’t need to learn anything new.
Here’s the code:

1 import fractions
2

3 def eulerphi(b=100):
4 """ Given a positive integer b,

5 returns a list of the integers between 1 and b

6 that are relatively prime to b.

7

8 For example, eulerphi(15) returns the list

9 [1,2,4,7,8,11,13,14]

10

11 Use the function gcd from the fractions library.

12 """

13 relprimes = [1]

14 for i in range(2,b):
15 if fractions.gcd(i,b) == 1:
16 relprimes.append(i)

17 return relprimes
18

19 # Fake the default implicit main method that tells python

20 # where to start execution − the right trick for testing inside a module.

21 #

22 if name == ’ main ’:

23 print("eulerphi(15) returned " + str(eulerphi(15)))
24 print("eulerphi(16) returned " + str(eulerphi(16)))
25 print("eulerphi(17) returned " + str(eulerphi(17)))

3 Primes less than b

We did this in class — the sieve of Eratosthenes does the job. For fun I decided to do it differently for
homework. The web page primes.utm.edu/lists/small/10000.txt lists the first 10,000 primes,
10 to a line. I found out how to read that page in Python from http://stackoverflow.com/

questions/1843422/get-webpage-contents-with-python.
I read the web page using this Python code (borrowed from echo2.py from the second homework):

13 def primeslessthan(b):
14 """ get the first b primes from the web page

15 http://primes.utm.edu/lists/small/10000.txt

16 """

17 page = urllib.request.urlopen(’http://primes.utm.edu/lists/small/10000.txt’)

18 for line in page:
19 print(line)
20 return

2

primes.utm.edu/lists/small/10000.txt
http://stackoverflow.com/questions/1843422/get-webpage-contents-with-python
http://stackoverflow.com/questions/1843422/get-webpage-contents-with-python

and saw that

b’ The First 10,000 Primes\r\n’

b’ (the 10,000th is 104,729)\r\n’

b’ For more information on primes see http://primes.utm.edu/\r\n’

b’\r\n’

b’ 2 3 5 7 11 13 17 19 23 29 \r\n’

b’ 31 37 41 43 47 53 59 61 67 71 \r\n’

So now I need to skip the first four lines of that file, strip a few characters from the beginning
and the end of the next lines, and grab as many numbers as I need.

I googled “python get number from string” and found a wonderful pythonic solution at stackoverflow.
com/questions/4289331/python-extract-numbers-from-a-string. It uses split to separate
string into substrings separated by whitespace, then isdigit to find the numbers.

The code below works, when I’m connected to the internet. When the url is wrong or the
internet connection fails the try block doesn’t work as I think it should. I’m not going to spend
any more time on this problem — I will use the local copy of the list of primes when I need it.

1 # Get a list of primes

2 #

3 # Ethan Bolker

4 # Spring 2015 for Math 480

5

6 # I’ve already done this with my sieve of Eratosthenes program,

7 # so I will do it again here by scraping a web page. There’s a list of

8 # the first 10,000 primes, 10 to a line, at

9 # http://primes.utm.edu/lists/small/10000.txt

10

11 import urllib.request
12 import sys
13

14 def primeslessthan(b=20, local=True):
15 """ get the primes from the web page

16 http://primes.utm.edu/lists/small/10000.txt

17 """

18 if local:
19 page = open("primelist.txt")
20 else:
21 try:
22 page = urllib.request.urlopen(’http://primes.utm.edu/lists/small/10000.txt’)

23 except:
24 print("opening local file", file= sys.stderr)
25 page = open("primelist.txt")
26 linenumber = 0

27 primes = []

28 for line in page:
29 linenumber += 1

30 if linenumber < 5: # skip header lines

31 continue
32 primes += [int(s) for s in line.split() if s.isdigit()]
33 if primes[−1] > b: # cool way to get last element of a list

34 break
35 # now back up to the last prime < b

36 lastindex = −1
37 while primes[lastindex] >= b:
38 lastindex+= −1
39 return (primes[:1+lastindex])
40

41 for b in range(3,15):
42 print("primes less than " + str(b))
43 print(primeslessthan(b))

3

stackoverflow.com/questions/4289331/python-extract-numbers-from-a-string
stackoverflow.com/questions/4289331/python-extract-numbers-from-a-string

44 print(primeslessthan(1000))
45 print(primeslessthan(100, False))

4 Faster fsf

Now I’m ready to improve the function that finds the smallest factor of its input by checking a few
primes first, then looping on the numbers relatively prime to their product.

I went over the pseudocode for this in class several times. I thought it was pretty straightforward.
But when I actually wrote the code it was much harder to implement than I thought. I had to find
and fix several gotchas.

The code, from, fsf.py :

55 from eulerphi import eulerphi
56 from eratosthenes import eratosthenes
57

58 def fsf(number, b=10):
59 """find smallest factor of number.

60 First try the primes less than b,

61 then loop on possible factors relatively

62 prime their product.

63 """

64 sqrt = math.sqrt(number)

65 primelist = eratosthenes(b);

66 L = 1

67 for p in primelist:
68 if p > sqrt:

69 return number
70 if number%p == 0:
71 return p
72 L ∗= p
73 relprimelist = eulerphi(L)

74 # relprimelist begins with 1 and ends at L−1.
75 # The loop shouldn’t begin with 1, so I will

76 # strip the 1 and append L+1

77 relprimelist = relprimelist[1:] + [L + 1]

78 base = 0

79 while True: # potential infinite loop!
80 for k in relprimelist:
81 possible factor = base + k

82 if possible factor > sqrt:

83 return number
84 if number%possible factor == 0:
85 return possible factor
86 base += L

87 return −1 # should never get here!

and the code to test it, from factor6.py :

21 def timeall(number):
22 print("find smallest factor of " + str(number))
23 start = time.time()

24 smallest factor = fsf.fsf0(number)

25 elapsed = time.time() − start

26

27 print ("smallest factor: " + str(smallest factor))
28 print("fsf0: " + str(elapsed)+ " seconds")
29

30 start = time.time()

31 smallest factor = fsf.fsf1(number)

32 elapsed = time.time() − start

4

33 print("fsf1: " + str(elapsed)+ " seconds")
34

35 for b in [4,6,8,12,14,18,20]:
36 start = time.time()

37 smallest factor = fsf.fsf(number, b)

38 elapsed = time.time() − start

39 print("fsf b=" + str(b) + ": " + str(elapsed)+ " seconds")
40

41 timeall(1000000007)

42 timeall(329841239228791)

The timing study turned out interesting, and worth the work. Varying the upper bound b for
the list of primes to test first shows clearly that the setup overhead to build the list of small primes
and call eulerphi grows quickly with b. It’s worth paying that price only to factor large numbers.

In the data that follow you can see two experiments factoring two primes (found with Wolfram
Alpha). For the one with 10 digits the fastest algorithm is the new one with b = 6, so testing just
[2, 3, 5] first. For the 15 digit prime b = 14 is best, testing [2, 3, 5, 11, 13] first.

myshell> python factor6.py

find smallest factor of 1000000007

smallest factor: 1000000007

fsf0: 0.009001016616821289 seconds

fsf1: 0.003000020980834961 seconds

fsf b=4: 0.003999948501586914 seconds

fsf b=6: 0.002000093460083008 seconds

fsf b=8: 0.003000020980834961 seconds

fsf b=12: 0.00400090217590332 seconds

fsf b=14: 0.04400205612182617 seconds

fsf b=18: 0.965054988861084 seconds

fsf b=20: 21.57323384284973 seconds

find smallest factor of 329841239228791

smallest factor: 329841239228791

fsf0: 6.415367126464844 seconds

fsf1: 1.8151040077209473 seconds

fsf b=4: 2.7761590480804443 seconds

fsf b=6: 1.9321098327636719 seconds

fsf b=8: 1.5990920066833496 seconds

fsf b=12: 1.432082176208496 seconds

fsf b=14: 1.3620779514312744 seconds

fsf b=18: 2.170124053955078 seconds

fsf b=20: 22.80830407142639 seconds

When b = 20 it takes about 20 seconds just to build the list of 1.66 million numbers relatively
prime to L = 2 ∗ 3 ∗ 5 ∗ 7 ∗ 11 ∗ 13 ∗ 17 ∗ 19 = 9699690. Maybe that could be faster with an iterator.

Python 3.4.2

>>> L = 2*3*5*7*11*13*17*19

>>> L

9699690

>>> phiL = 1*2*4*6*10*12*16*18

>>> phiL

1658880

>>>

5

Here is the LATEX source for this document. You can cut it from the pdf and use it to start
your answers. I used the \jobname macro for the source file name, so you can call your file by any
name you like.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% hw3 solution

% Math 480 Spring 2015

%

% No need to read or understand anything before the comment line below

% marked

% %%%%%%%%%%%%%%%% start here %%%%%%%%%%%%%%%%

\documentclass[10pt]{article}

\usepackage[textheight=10in]{geometry}

\usepackage{verbatim}

\usepackage{amsmath}

\usepackage{amsfonts} % to get \mathbb letters

\usepackage[utf8]{inputenc}

\DeclareFixedFont{\ttb}{T1}{txtt}{bx}{n}{9} % for bold

\DeclareFixedFont{\ttm}{T1}{txtt}{m}{n}{9} % for normal

% Defining colors

\usepackage{color}

\definecolor{deepblue}{rgb}{0,0,0.5}

\definecolor{deepred}{rgb}{0.6,0,0}

\definecolor{deepgreen}{rgb}{0,0.5,0}

\usepackage{listings}

%Python style from

%http://tex.stackexchange.com/questions/199375/problem-with-listings-package-for-python-syntax-coloring

\newcommand\pythonstyle{\lstset{

language=Python,

backgroundcolor=\color{white}, %%%%%%%

basicstyle=\ttm,

keywordstyle=\ttb\color{deepblue},

emph={MyClass,__init__},

emphstyle=\ttb\color{deepred},

stringstyle=\color{deepgreen},

commentstyle=\color{red}, %%%%%%%%

frame=tb,

showstringspaces=false,

numbers=left,numberstyle=\tiny,numbersep =5pt

}}

\usepackage{hyperref}

\begin{document}

\pythonstyle{}

%%%%%%%%%%%%%%%% start here %%%%%%%%%%%%%%%%

\begin{center}

\Large{

Solution to Homework 3 \\

Ethan Bolker \\

\today

}

\end{center}

6

\section{Python’s built in documentation}

Just type \lstinline!help! to get help on a function or module:

\begin{verbatim}

PS C:\eb\python\hw3> python

Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 6 2014, 22:15:05) [MSC v.1600 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> help(print)

Help on built-in function print in module builtins:

print(...)

print(value, ..., sep=’ ’, end=’\n’, file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.

Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.stdout.

sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

flush: whether to forcibly flush the stream.

>>> import eulerphi

eulerphi returned [’passed’, 100, ’nothing useful yet’]

>>> help(eulerphi)

Help on module eulerphi:

NAME

eulerphi

FUNCTIONS

eulerphi(b=100)

Given a positive integer b,

returns a list of the integers between 1 and b

that are relatively prime to b.

For example, eulerphi(15) returns the list

[1,2,4,7,8,11,13,14]

Use the function gcd from the fractions library.

FILE

c:\eb\python\hw3\eulerphi.py

>>> help(eulerphi.eulerphi)

Help on function eulerphi in module eulerphi:

eulerphi(b=100)

Given a positive integer b,

returns a list of the integers between 1 and b

that are relatively prime to b.

For example, eulerphi(15) returns the list

[1,2,4,7,8,11,13,14]

Use the function gcd from the fractions library.

>>>

\end{verbatim}

7

I waited for someone in the class to figure this out.

\section{Eulerphi}

Here’s my test of the \lstinline!eulerphi()! function:

\begin{verbatim}

myshell> python eulerphi.py

eulerphi(15) returned [1, 2, 4, 7, 8, 11, 13, 14]

eulerphi(16) returned [1, 3, 5, 7, 9, 11, 13, 15]

eulerphi(17) returned [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

\end{verbatim}

This was pretty easy and I didn’t need to learn anything new.

Here’s the code:

\lstinputlisting{eulerphi.py}

\section{Primes less than b }

We did this in class --- the sieve of Eratosthenes does the job. For

fun I decided to do it differently for homework. The web page

\url{primes.utm.edu/lists/small/10000.txt} lists the first 10,000

primes, 10 to a line. I found out how to read that page in Python from

\url{http://stackoverflow.com/questions/1843422/get-webpage-contents-with-python}.

I read the web page using this Python code (borrowed from

\lstinline!echo2.py! from the second homework):

\lstinputlisting[firstnumber=13,firstline=13,lastline=21]{primelist0.py}

and saw that

\begin{verbatim}

b’ The First 10,000 Primes\r\n’

b’ (the 10,000th is 104,729)\r\n’

b’ For more information on primes see http://primes.utm.edu/\r\n’

b’\r\n’

b’ 2 3 5 7 11 13 17 19 23 29 \r\n’

b’ 31 37 41 43 47 53 59 61 67 71 \r\n’

\end{verbatim}

So now I need to skip the first four lines of that file, strip a few

characters from the beginning and the end of the next lines, and grab

as many numbers as I need.

I googled ‘‘python get number from string’’ and found a wonderful

pythonic solution at

\url{stackoverflow.com/questions/4289331/python-extract-numbers-from-a-string}.

It uses \lstinline!split! to separate string into substrings separated

by whitespace, then \lstinline!isdigit! to find the numbers.

The code below works, when I’m connected to the internet. When the url

is wrong or the internet connection fails the \lstinline!try! block

doesn’t work as I think it should. I’m not going to spend any more

time on this problem --- I will use the local copy of the list of

primes when I need it.

8

\lstinputlisting{primelist1.py}

\section{Faster fsf}

Now I’m ready to improve the function that finds the smallest

factor of its input by checking a few primes first, then looping on

the numbers relatively prime to their product.

I went over the pseudocode for this in class several times. I thought

it was pretty straightforward. But when I actually wrote the code it

was much harder to implement than I thought. I had to find and fix

several gotchas.

The code, from, \lstinline!fsf.py! :

\lstinputlisting[firstnumber=55,firstline=55,lastline=87]{fsf.py}

\noindent

and the code to test it, from \lstinline!factor6.py! :

\lstinputlisting[firstnumber=21,firstline=21,lastline=42]{factor6.py}

The timing study turned out interesting, and worth the work. Varying

the upper bound b for the list of primes to test first shows clearly

that the setup overhead to build the list of small primes and call

\lstinline!eulerphi! grows quickly with b. It’s worth

paying that price only to factor large numbers.

In the data that follow you can see two experiments factoring two

primes (found with Wolfram Alpha). For the one with 10 digits the

fastest algorithm is the new one with $b=6$, so testing just

$[2,3,5]$ first. For the 15 digit prime $b=14$ is best, testing

$[2,3,5,11,13]$ first.

\begin{verbatim}

myshell> python factor6.py

find smallest factor of 1000000007

smallest factor: 1000000007

fsf0: 0.009001016616821289 seconds

fsf1: 0.003000020980834961 seconds

fsf b=4: 0.003999948501586914 seconds

fsf b=6: 0.002000093460083008 seconds

fsf b=8: 0.003000020980834961 seconds

fsf b=12: 0.00400090217590332 seconds

fsf b=14: 0.04400205612182617 seconds

fsf b=18: 0.965054988861084 seconds

fsf b=20: 21.57323384284973 seconds

find smallest factor of 329841239228791

smallest factor: 329841239228791

fsf0: 6.415367126464844 seconds

fsf1: 1.8151040077209473 seconds

fsf b=4: 2.7761590480804443 seconds

fsf b=6: 1.9321098327636719 seconds

fsf b=8: 1.5990920066833496 seconds

fsf b=12: 1.432082176208496 seconds

fsf b=14: 1.3620779514312744 seconds

fsf b=18: 2.170124053955078 seconds

fsf b=20: 22.80830407142639 seconds

\end{verbatim}

9

When $b=20$ it takes about 20 seconds just to build the list of

1.66 million numbers relatively prime to $L = 2*3*5*7*11*13*17*19 =

9699690$. Maybe that could be faster with an iterator.

\begin{verbatim}

Python 3.4.2

>>> L = 2*3*5*7*11*13*17*19

>>> L

9699690

>>> phiL = 1*2*4*6*10*12*16*18

>>> phiL

1658880

>>>

\end{verbatim}

\newpage

\emph{

Here is the \LaTeX{} source for this document. You can cut it from the

pdf and use it to start your answers. I used the} \verb!\jobname!

\emph{macro for the source file name, so you can call your file by any

name you like.}

\verbatiminput{\jobname}

\end{document}

10

	Python's built in documentation
	Eulerphi
	Primes less than b
	Faster fsf

