
 

Simple Wiki Embedded Editing Tool 

SWEET 

Requirements Analysis 
 

 
by 

Michael Kouyessein 
Brian Sullivan 

Yuan-Hsun Tang 
Fangyan Xu 

 
 

Computer Science Department 
University of Massachusetts Boston 

 
 
 
 
 

Released on 
DEC.17.2007 

 
 
 



                SWEET TEAM 
 

DEC.17.2007 1

MENU 

I. Vision Statement ............................................................. 2 

II. Customer and Potential Users ....................................... 3 

III. Short Stories .................................................................... 4 

IV. Functional Requirements ............................................... 8 

V. Non-functional Requirements ....................................... 9 

VI. Development Methodology .......................................... 11 

VII. Architecture .................................................................. 17 

VIII. Deliverables ................................................................... 19 

IX. Risks Analysis ............................................................... 20 

X. Project Schedule ........................................................... 21 

 

Reference 

XI. Use Cases ....................................................................... 27 

XII. Critique and Analysis of Work to Date....................... 38 

 

 

Vision Statement 



                SWEET TEAM 
 

DEC.17.2007 2

 

SWEET is a project to develop a WYSIWYG wiki editor that will suggest 
relevant web links to its users. The main goal is to have these links be suggested as 
seamlessly as a spellchecker suggests alternate spellings.  

The number of available Semantic Web tools has rapidly increased over the past 
few years. A semantic web editor integrates ontologies and semantic annotation systems. 
But, current Semantic Web tools are not automated to help wiki users mark up their 
documents.  

Semantic Mediawiki is an extension to Mediawiki, one of the main wiki engines 
of the world. This is the wiki engine Wikipedia runs on. Semantic Mediawiki allows the 
specification of typed data inside articles and the typing of links between them in an 
easy-to-use manner. These semantic enhancements bring to wikis the benefits of today's 
semantic technologies: more specific ways of searching and browsing.  

 

 

 

 

 

 

 

 

 

Customer and Potential Users 



                SWEET TEAM 
 

DEC.17.2007 3

 
 Customer: Jeff Fried, vice president advanced solutions, FAST. 

 
 Users:  

 Any party that uses MediaWiki website to discuss and organize their 
knowledge base. For example: 
1. Our SWEET Team, a team formed for the Software Engineering course 

of UMASS BOSTON CS Dept., is using MediaWiki to maintain and 
schedule our project.  

2. A high school who feels like using MediaWiki to organize their events or 
recourses (e.g. field trips, graduation ceremony, homework, study plan 
for SAT). 
 

 Those who will also feel like contributing their knowledge and discuss 
articles on that wiki site. Especially, those who are lacking mark-up language 
background (e.g. language like html, xml). For example, continuing the 
examples given above:  
1. Those students who also take the same Software Engineering courses, or 

other students also studying at UMASS BOSTON. 
2. The students, teachers or students' parents of that high school. 

 

 

 

 

 

 

 



                SWEET TEAM 
 

DEC.17.2007 4

Short Stories 

 

1. Installation 

It's May 2008 and Sam Shaw who is an Analyst at Environmental Systems 
Research Institute is excited - the first release of SWEET is now online and he can't 
wait to try it out. He has heard the name SWEET a year ago when the developing team 
at UMass Boston has started the project. He has convinced the manager to use SWEET 
as an extention to their MediaWiki for the whole company’s internal communication. 
He has also confirmed with Andy who is the administrator at the IT department to 
install SWEET today.  
 

Andy downloads the installation package and the documentation from 
sourceforge.net onto the MediaWiki server. Following the installation instructions, he 
easily and successfully installs the application as an add-on to the MediaWiki.  
 

He opens up the wiki and sees SWEET is there. He calls Sam to start using 
SWEET and report any problems if he has.  



                SWEET TEAM 
 

DEC.17.2007 5

 

2. Editing new page 

Sam is reading an article - "ESRI Survey and Engineering Resources" on his 
institute’s wiki. He would like to add a new article "GIS for Civil Engineering" which 
is related to the one that he is reading. He decides to use SWEET because he can put 
links automatically as he types along.  
 

As Sam begins to type he sees the second word - "Workflow" he just typed in 
gets underlined. SWEET has suggested several web pages as possible links for 
"Workflow". He looks at the underlined word "Workflow" and then at the first 
suggestion which is a link to another article in the same wiki. He decides that is a good 
link and tells SWEET to include that link and continues on typing. He looks at the next 
words - "GIS database" that get underlined and the possible links that SWEET provides. 
He decides and tells SWEET to include the second suggested link which is a page on 
msn.com for "GIS database".  
 

He continues typing again on "GIS for Civil Engineering" and a phrase of four 
words - "Streamline field data collection" becomes underlined. He looks at the 
suggested links and feels that he likes the third suggestion but he is not quite sure the 
exact contents on that page. So he selects the third suggestion and previews the page. 
He decides it was not what he is looking for, but while on that page he browses to 
another page where he would like that phrase to be linked to. He tells SWEET to use 
that link instead and then keeps going on. Sam does not believe the next word that gets 
underlined needs a link so he tell SWEET to ignore it.  
 

As Sam types the phrase "mobile and server GIS technologies", he thinks it is 
necessary to mark it up. So he selects and highlights the phrase and asks SWEET to 
make suggestions for it. Sam decides the first link is a great one and tells SWEET to 
include it. He repeats this process until he gets his work completed. He saves his work 
and feels very proud of his accomplishments by using SWEET.  
 
 



                SWEET TEAM 
 

DEC.17.2007 6

 

3. Editing existing page 

Fang Harris, Sam’s assistant at Environmental Systems Research Institute also 
goes to the wiki. There is some additional information that she needs to put on the wiki 
about the article - "GIS for Civil Engineering" that Sam created earlier. She opens up 
the article with SWEET. There are various words that get underlined showing they 
could be marked-up. So she tells SWEET to include the desired links for the words that 
she would like to mark up and to ingore the links for the words which do not need 
further information as described in Editing new page. Smoothly, she gets everything 
done just in five minutes and saves her work. Perfect! It’s exactly what Fang was 
expecting. 
 



                SWEET TEAM 
 

DEC.17.2007 7

 

4. Upload Word document 

Sam receives an email from his colleague in Boston and it has a Word file 
attached with the title “BU Bio Lab Construction Effects to Greater Boston Area”. 
 

He skims the file and wants to upload it to the wiki for further use. He decides 
to use SWEET to load the Word document. SWEET uploads Word documents very 
easily because it follows the regular file upload convention. He finds the place where he 
saved the file, selects the file name and tells SWEET to upload. After SWEET has 
uploaded the file, the contents appear in the editing area and Sam sees some words are 
underlined with suggested links. Since Sam has to go to a meeting he saves his work 
and plans to add in the links later.  
 

After the meeting, Sam reopens the uploaded file in SWEET and he can still see 
the various underlined words. Sam goes through the Editing existing page process and 
puts appropriate links to the uploaded file. After he has finished selecting the links, he 
saves his work. Sam is so pleased with what SWEET can do for him; it is really a sweet 
gift.  

 

 

 

 

 

 

 

 

 



                SWEET TEAM 
 

DEC.17.2007 8

Functional Requirements 
 

• SWEET is an extension to MediaWiki 
• Suggest links to relevant web pages or internal documents for keywords  

o Internal Link (to the local Wiki site)  
 via Wiki Engine  

o External Link (to any web pages on the Internet)  
 via Search Engine ex. Google  

o Documents within a corporation  
 via FAST  

• Support uploading Microsoft Word documents to the wiki.  
• A WYSIWYG User Interface  

o SWEET will allow users to edit an article similar to Microsoft word and 
not in WikiText.  

o SWEET will allow the user to bold, underline and italicize a selection and 
see their changes in the editor as it will appear on the wiki article. SWEET 
will also allow for adding hyperlinks, headings and horizontal lines.  

 

 

 

 

 

 

 

 



                SWEET TEAM 
 

DEC.17.2007 9

Non-Functional Requirements 
 

 Technical Aspects 
1. Operating Systems: OS independent 

2. Application Server: MediaWiki 1.11.0 + Semantic MediaWiki 1.0 Extension 

3. Web Servers: Apache or IIS 

4. User Interface: Web-based (Internet Explorer) 

5. IDE: ECLIPSE + PDT (Eclipse PHP Development Tool) 

6. Programming Languages: PHP, JavaScript 

7. Markup Languages: HTML, XML, CSS 

8. Protocols: HTTP, SOAP 

9. Search Engines: MediaWiki Search Engine, FAST, GOOGLE 

10. Databases: MySQL, Entreprise Databases, the WEB 

11. Version Control System: svn://dssg.cs.umb.edu/cs682-3/. 

12. Project Wiki Page: http://sf07.cs.umb.edu/mediawiki/index.php/SWEET 

 

 

 

 

 

 

 

 

 

 



                SWEET TEAM 
 

DEC.17.2007 10

 Functional Aspects 
1. Security: The product shouldn’t create a security bridge in the user’s system 

2. Reliability: The product must perform as expected and free of errors 

3. Maintainability: The product must be easy to maintain 

4. Portability: The product is portable because implemented in interpreted 

languages 

5. Extensibility: The product is easily extendable, because it is 

object-oriented-based design 

6. Reusability: Components of the software can be reused 

7. Flexibility: The product must be easy to modify 

 

 

 

 

 

 

 

 

 

 

 

 



                SWEET TEAM 
 

DEC.17.2007 11

Development Methodology 

 
 Team Organization 

 
The SWEET team has four members and we intend assigning project 

responsibilities according to the bellow tasks decomposition. But above all, every 
member is a coder, a commenter and a tester of the module he is implementing. 

 
The different roles can be switched, modified or cumulated momentarily 

depending on particular situations that can arise. However, all new changes should be 
done in the only goal of sustaining an effective project development flow. 
 
 
1. Team Manager 

Profile:  

- schedules meetings and defines their agenda 

- assigns tasks to team member 

- divides the project into phases 

- coordinates code development  

- tracks the project progress and updates the project schedule 

- maintains communication with the client and the project advisor 

 
 
2. Design and Integration Manager 

Profile: 

- manages the software architecture design process (component and class 

diagrams) 

- researches technologies and tools for the development process 

- integrates the different tested software codes  

- updates code and build versions in the SVN repository 



                SWEET TEAM 
 

DEC.17.2007 12

3. Testing and Quality Assurance Lead 

Profile: 

- verifies that all modules are bug-free before integration 

- manages the bug tracking system 

- ensures that the product meets the client’s requirements 

- runs the overall system testing and the acceptance test 

 
4. Technical Writer 

Profile: 

- notes taker and meetings reporter 

- updates the project website (webmaster) 

- writes online help scripts 

- writes the user’s manual (installation, removal and usage instructions) 

- writes the development legacy documentation (analysis and design decisions, 

the project’s final state, possible ameliorations and extensions) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                SWEET TEAM 
 

DEC.17.2007 13

 Implementation Approach 
 

We’ve decided to follow the Extreme Programming methodology to a certain 
point since we are working on a mid-sized project. Indeed, Extreme Programming is 
adequate for our project because it emphasizes customer involvement and promotes 
team work. It is also suitable for projects with dynamic requirements and leads to a 
development process that is more responsive to the customer needs. Our project will 
then experience greater success and developer productivity. 
 
The main values of Extreme Programming are: 
 
1. Communication: 

Building software systems requires communicating system requirements to the 
developers of the system .The goal is to give all developers a shared view of the 
system which matches the view held by the users of the system. To this end, 
Extreme Programming favors simple designs, common metaphors, collaboration 
of users and programmers, frequent verbal communication, and feedback. 

 
2. Simplicity: 

Extreme Programming encourages starting with the simplest solution. Extra 
functionality can then be added later. Coding and designing for uncertain future 
requirements implies the risk of spending resources on something that might not 
be needed. 

 
3. Feedback: 

Feedbacks are of major importance in Extreme Programming. Feedback from the 
system: by writing unit tests, or running periodic integration tests. Feedback from 
the customer: the functional tests (acceptance tests) are written by the customer 
and the testers. Feedback from the team: when customers come up with new 
requirements in the planning game the team directly gives an estimation of the 
time that it will take to implement. 

 
4. Courage: 

Several practices embody courage. Courage enables developers to feel comfortable 
with refactoring their code when necessary. Another example of courage knows 
when to throw code away. Also, courage means persistence. 

 
 



                SWEET TEAM 
 

DEC.17.2007 14

5. Respect: 
The respect value manifests in several ways. In Extreme Programming, team 
members respect each other because programmers should never commit changes 
that break compilation, that make existing unit-tests fail. Members respect their 
work by always striving for high quality and seeking for the best design for the 
solution at hand. Nobody on the team should feel unappreciated or ignored. This 
ensures high level of motivation and encourages loyalty toward the team, and the 
goal of the project. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                SWEET TEAM 
 

DEC.17.2007 15

 Development Process 
Extreme Programming also describes four basic activities that are performed 
within the software development process: 

 
1. Coding:  

The only truly important product of the system development process is code 
 

2. Testing:  
One cannot be certain of anything unless one has tested it 

 
3. Listening:  

Programmers do not necessarily know anything about the business side of the 
system under development 

 
4. Designing:  

Creating a design structure that organizes the logic in the system. Good design 
will avoid lots of dependencies within a system 
 
 
 
 

To apply the Extreme Programming recommendations effectively, we intend the 
following:  

 Assignation of the different project roles relatively to each member’s 
willingness and skills. 

 
 At least two team meetings will be held each week 

 
 A comprehensive and realistic project schedule will be established that will 

take into account task planning, risk management and development reviews 
 

 Constant communication will be maintained between the team members 
 

 The client and the advisor will be weekly notified of the project advancement 
 
 
 
 



                SWEET TEAM 
 

DEC.17.2007 16

 Coding, testing and integration rules will be defined to show: 

- Object model of coding (hierarchy and levels of abstraction) 

- Incremental development process 

- Evolvement of architectural and software designs 

- Commenting and documentation of codes and classes 

- Continuous integration and testing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                SWEET TEAM 
 

DEC.17.2007 17

Architecture 
 

 
 
 
 
 
 
 
 



                SWEET TEAM 
 

DEC.17.2007 18

ARCHITECTURE DESCRIPTION 
 

SYSTEM 

LAYERS 
SYSTEM 

COMPONENTS 
COMPONENT 

FUNCTIONALITIES 
COMPONENT 

CODING 

LANGUAGE 
Presentation 

Layer 
Features display and 

manipulation 
- creates an additional tab 

- creates editing and 

searching buttons  

- creates editing area 

- indicates a word has 

automatically suggested links 

available 

- contextual menu for links 

selection 

- menu for uploading a word 

document 

- rendering search or query 

results   

- page preview 

- annotations insertion 

- online help 

 

AJAX  (PHP, 

JAVASCRIPT, CSS, 

XML DOM,HTML) 

Setup - adds SWEET as an 

extension to MediaWiki 
PHP Business 

Layer 
Data processing - text scanning 

- parsing html contents to 

wikitext 

- search logic in databases 

and ontology 

- result sets sorting and 

ranking 

- upload word documents 

 

PHP 

Database 

Access 
Search engine 

interfaces 
- database APIs knowledge 

- search initiation 
PHP, SOAP 



                SWEET TEAM 
 

DEC.17.2007 19

 

Deliverables 
 

 Documentation: 
 User’s manual 
 SWEET API 

 
 

 Software: 
 Source code package 
 Installer script 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                SWEET TEAM 
 

DEC.17.2007 20

Risk Analysis 
 

1. The possible customers’ data for testing might be classified.  
Solution: Use fake data or sign declaration of secrecy.  

2. The customer changes his mind about the requirement or adds extra 
functionalities.  
Solution: Politely decline him with understandable reason, or try to accommodate the 
extra functionality.  

3. Some functionality is too complex to be fulfilled.  
Solution: Ask customer to accept a possible alternative.  

4. Slow performance of certain team members or frequent absences.  
Solution: Understand the cause and prevent it from reoccurring.  

5. Instable server.  
Solution: Make sure to back up the latest source.  

6. Frequent deadlines miss.  
Solution: Figure out the reason(s) and reschedule.  

7. Team is not able to reach an agreement during a discussion.  
Solution: Consult with the customer and Prof. Bolker or have a team vote.  

8. Lacking testers for our product  
Solution: We could have our classmates as our testers.  

9. Unable to watch testers use our product.  
Solution: Unfortunately, we cannot afford proper testing software to help us record 
their use and we will not be able to watch our users. But we will have the testers submit 
a questionnaire regarding their interaction.  

 
 
 
 



                SWEET TEAM 
 

DEC.17.2007 21

 

Project Schedule 
 

 OCT 2007 

 
Task  Assigned To  Due Date  Status(Y/N) Remarks 

Project Name Brainstorm  Team  OCT.11.2007  Y   

Project Name Draft Brian  OCT.11.2007  Y   

Installing Media Wiki Team OCT.11.2007 Y  

Back Up Project Files in 
Repository 

Michael OCT.13.2007 Y  

Vision Statement Michael OCT.16.2007 Y  

Project Logo Draft FangYan OCT.16.2007 N Under Construction 

Risks Analysis Yuan-Hsun OCT.16.2007 Y  

Preliminary thoughts on 
process 

Brian OCT.16.2007 Y  

Media Wiki Installation on 
computers 

Team OCT.16.2007 Y  

Scenario Drafts Each OCT.18.2007 Y  

Website Layout Draft Brian OCT.21.2007 Y  

Project Logo Draft 1&2 FangYan OCT.23.2007 
Compass & 
Crossed 
Hands 

 

Project Name Finalized Team OCT.23.2007 N 
Waiting for reply 
from client 

Scenario Final Team OCT.25.2007 N 
Waiting for reply 
from client 

Logo Final Yuan-Hsun OCT.30.2007 N 
Waiting for reply 
from client 

Beginner PHP tutorials Team OCT.30.2007 Y  

Presentation Draft Version Brian/FangYan OCT.30.2007 Y Commented by Prof. 



                SWEET TEAM 
 

DEC.17.2007 22

1&2 Bolker 

Presentation Draft Version 
3 

Michael OCT.30.2007 Y  

Merge Presentation Draft 
1,2 and 3 

Yuan-Hsun OCT.30.2007 Y  

 
 

 NOV 2007 

Task  Assigned To  Due Date  Status(Y/N) Remarks 

Presentation Final Version  Team  NOV.01.2007  N  
Stay open to revise 
till NOV.05.2007 

Presentation Rehearsal Team NOV.05.2007 Y  

Project name approval  Team NOV.06.2007 Y  

Project name approval Team NOV.06.2007 Y  

Scenario approval Team NOV.06.2007 Y  

Intermediate PHP tutorials  Team NOV.06.2007 Y 
Michael found a link 
for Creating Tab on 
MediaWiki 

Prensentation to veture 
capitals 

Team NOV.06.2007 Y  

Use Case drafts FangYan NOV.13.2007 Y  

Advanced PHP tutorials Team NOV.13.2007 N 

Rearrage to how to 
parse Target String 
to suggest possible 
links 

Requirements draft Team NOV.13.2007 Y 
Discussed in class; 
Still need to discuss 
with Jeff 

Testing PHP with add-on to 
WikiMedia 

Yuan-Hsun NOV.13.2007 N 

This will be realized 
by "Creating an 
empty Tab" Due 
NOV.20.2007 

Use Cases Team NOV.20.2007 N Waiting for Jeff's 



                SWEET TEAM 
 

DEC.17.2007 23

reply 

List of WikiMedia mark up 
that will be supported by 
SWEET 

Team NOV.20.2007 N 
Waiting for Jeff's 
reply 

List of semantic 
MediaWiki mark up that 
will be supported by 
SWEET 

Team NOV.20.2007 N 
Waiting for Jeff's 
reply 

Creating Tab Yuan-Hsun NOV.20.2007 Y 
Found FCK Editor 
instead 

Draft - use cases and short 
stories 

FangYan NOV.28.2007 Y  

Draft - Schedule, 
Functional requirements 
and Vision Statement 

Brian NOV.28.2007 N  

Draft - users, critique and 
risk analysis 

Yuan-Hsun NOV.28.2007 N  

Draft - Development 
methodology, 
non-functional 
requirements and 
deliverables 

Michael NOV.28.2007 Y  

 

 DEC 2007 

Task  Assigned To  Due Date  Status(Y/N) Remarks 

1st Revision - use cases 
and short stories 

FangYan DEC.5.2007 Y   

1st Revision - Schedule, 
Functional requirements 
and Vision Statement 

Brian DEC.5.2007 Y  

1st Revision - users, 
critique and risk analysis 

Yuan-Hsun DEC.5.2007 N 
critique part is not 
ready 

1st Revision - 
Development 

Michael DEC.5.2007 Y  



                SWEET TEAM 
 

DEC.17.2007 24

methodology, 
non-functional 
requirements and 
deliverables 

2nd Revision - use cases 
and short stories 

FangYan DEC.12.2007 Y   

2nd Revision - Schedule, 
Functional requirements 
and Vision Statement 

Brian DEC.12.2007 Y  

2nd Revision - users, 
critique and risk analysis 

Yuan-Hsun DEC.12.2007 Y  

2nd Revision - 
Development 
methodology, 
non-functional 
requirements and 
deliverables 

Michael DEC.12.2007 Y  

Present Requirements 
Analysis to Jeff 

Brian DEC.13.2007 N  

Present Requirements 
Analysis to Jeff 

Brian DEC.17.2007 Y  

Submit signed 
Requirements Analysis to 
Prof Bolker 

Brian DEC.20.2007   

     

 

 JAN 2008 

Task  Assigned To  Due Date  Status(Y/N) Remarks 

Proof of concept - create 
new tab in MediaWiki 

Brian JAN.29.2007   

Proof of concept - editable 
WYSIWYG in MediaWiki 

Brian JAN.29.2007   

proof of concept - query 
semantic and display 

Michael JAN.29.2007   



                SWEET TEAM 
 

DEC.17.2007 25

results 

proof of concept - query 
Google in PHP and display 
results 

Michael JAN.29.2007   

proof of concept - query 
FAST in PHP and display 
results 

Michael JAN.29.2007   

Proof of concept - parsing 
word docs in PHP 

Yuan-Hsun JAN.29.2007   

proof of concept - create a 
test/example msi 

Yuan-Hsun JAN.29.2007   

proof of concept - create a 
pop-up that displays 
selectable items in PHP 

FangYan JAN.29.2007   

Proof of concept - parsing 
algorithem 

FangYan JAN.29.2007  
Google Search API 
parsing results 
Options [1] 

 

 FEB 2008 

Task  Assigned To  Due Date  Status(Y/N) Remarks 

Phase 1 -  
semantic search of user 
suggested word  
in a new "SWEET" tab  
displaying results in a 
pop-up box  

Michael FEB.12.2007   

Phase 1 - remove known 
bugs 

Michael FEB.19.2007   

Phase 1 - msi Yuan-Hsun FEB.19.2007   

 

 MAR 2008 

Task  Assigned To  Due Date  Status(Y/N) Remarks 

Phase 2 - automatically Fangyan MARCH.4.2007   



                SWEET TEAM 
 

DEC.17.2007 26

suggest links 

Phase 2 - msi Brian March.11.2007   

Phase 2 - remove known 
bugs 

Fangyan March.11.2007   

Phase 3 - add word 
document uploads 

Yuan-Hsun March.25.2007   

 

 APR 2008 

Task  Assigned To  Due Date  Status(Y/N) Remarks 

Phase 3 - msi FangYan APRIL.1.2007   

Phase 3 - remove known 
bugs 

Yuan-Hsun APRIL.1.2007   

Phase 4 - editable 
WYSIWYG  

Brian APRIL.15.2007   

Phase 4 - msi Michael APRIL.22.2007   

Phase 4 - remove known 
bugs 

Brian APRIL.22.2007   

Finish Documentation Yuan-Hsun APRIL.23.2007   

Draft Presentation Brian APRIL.30.2007   

Finish Testing TEAM APRIL.30.2007   

 

 MAY 2008 

Task  Assigned To  Due Date  Status(Y/N) Remarks 

Finalize Presentation Team MAY.07.2007   

Present Project Team MAY.14.2007   

 
 
 
 
 
 



                SWEET TEAM 
 

DEC.17.2007 27

 

Use Cases 
 

 Downloads Installation Package and Documentation 

Description: The administrator wants to download SWEET installation package and 
the documentation.  
Actor: SWEET administrator  
Entry Condition:  

Installed MediaWiki (version 1.11.0)  

Configured Web Server such as Apache or IIS  

Installed PHP version 5.0 or later  

Configured Database Server MySQL (version 4.0 or late)  

Browsed at Sourceforge.net.  

Exit Condition:  

The SWEET administrator has successfully downloaded the SWEET installation 
package and the documentation.  

Used in scenarios:  

• Installation  

 

User Action  System Response  

1. Types the keyword “SWEET” to search for 
the software  

2. Displays a list of software related to 
SWEET  

3. Clicks on the name of the first display 
which is the exact “SWEET”  

4. Displays the big green download 
sign  

5. Clicks on the big green download sign  6. Displays the installation package  



                SWEET TEAM 
 

DEC.17.2007 28

7. Clicks the latest release  8. Display the installer zip file  

9. Clicks on the file name  10. Displays a list of mirrors  

11. Clicks on the nearest mirror  12. Prompts the dialogue box for 
“Open with” or “Save to Disk”  

13. Clicks “Save to Disk” and the “OK” 
button, selects the destination folder of where 
MediaWiki Server is located  

14. Installation package and the 
documentation is downloaded onto 
MediaWiki server.  

 
Alternatives: · If the administrator gives up downloading the package he just returns 
back to the entery point.  
Exceptions: · If the installation package is not there on the Sorceforge.net  
Comments:  

 

 

 

 

 

 



                SWEET TEAM 
 

DEC.17.2007 29

 

 

 

 Installs SWEET 

Description: The administrator wants to install SWEET onto MediaWiki  
Actor: SWEET administrator  
Entry Condition:  

• Downloaded the SWEET installation package and the documentation  

Exit Condition:  

• The SWEET administrator has successfully installed SWEET onto MediaWiki  

Used in scenarios:  

• Installation  

User Action  System Response  

1. Opens up the folder where MediaWiki Server is 
located and finds the SWEET installation files  

2. Displays the installer 
program  

3. Clicks on the SWEET installer program  4. Pops up the installation 
wizard  

5. Follows the wizard to select the appropriate installation 
destination and confirms it  

6. Shows installation 
progress message  



                SWEET TEAM 
 

DEC.17.2007 30

7. Follows the wizard again with confirmation  8. Shows SWEET has 
installed successfully  

 
Alternatives:  

• If the administrator chooses the wrong installation destination before he 
confirms it at step 5, he can reselect the desired installation destination. 
However, if he has already confirmed it and goes to step 6, he has to reinstall 
the program.  

Exceptions:  
Comments:  

 Provides Links to Words by SWEET 

Description: SWEET makes suggestions automatically to the word/words that the user 
types in.  
Actor: SWEET user  
Entry Condition:  

• Under SWEET Editing mode  

Exit Condition:  

• Displays the suggested links automatically and successfully to the word/words 
that the user types in  

Used in scenarios:  

• Editing  
• Editing existing page  
• Upload Word document  

 

User Action  System Response  

1. Types in 
SWEET.  

2. Notices a word/words for which it knows some possible links 
and informs the user.  



                SWEET TEAM 
 

DEC.17.2007 31

 
Alternatives: · If the user does not want to add the link to the word/words, he/she can 
just ignore it.  
Exceptions:  
Comments:  
 
 
 
 
 
 
 

 ProvidesLinksToWordsByHand 

Description: SWEET gives possible suggested links to user selected word/words.  
Actor: SWEET user  
Entry Condition:  

• Under SWEET Editing mode  

Exit Condition:  

• Possible links is displayed to user selected word/words successfully  

Used in scenarios:  

• Editing  
• Editing existing page  
• Upload Word document  

User Action  System Response  

1. Types in SWEET, selects the word/words that 
need to be marked-up and tells SWEET to make 
suggestions  

2. Informs the user with possible links 

 
Alternatives:  
Exceptions:  



                SWEET TEAM 
 

DEC.17.2007 32

Comments:  
 
 
 
 
 
 
 
 
 
 

 Previews Suggested Link 

Description: The user wants to preview the contents of the suggested link  
Actor: SWEET user  
Entry Condition:  

• SWEET has informed the user a list of suggested links for the word/words  

Exit Condition:  

• Previews the contents of the link  

Used in scenarios:  

• Editing  
• Editing existing page  
• Upload Word document  

 

User Action  System Response  

1. Selects the link and decides to preview the 
link  

2. Displays the web contents of that link 

 
Alternatives:  
Exceptions:  
Comments:  



                SWEET TEAM 
 

DEC.17.2007 33

 Selects Link 

Description: The user wants to add the link for the word/words  
Actor: SWEET user  
Entry Condition:  

• User has seen a list of suggested links  

Exit Condition:  

• The link is selected successfully  

Used in scenarios:  

• Editing  
• Editing existing page  
• Upload Word document  

 

User Action  System Response  

1. Tells SWEET to include 
the desired link.  

2. The word/words is marked-up with that link 
successfully.  

 
Alternatives:  
Exceptions:  
Comments: The desired link can be the first link, the second link and etc. The desired 
link can be the link from internal wiki, from Google search and Fast search. It can also 
be the link from the previewed page.  



                SWEET TEAM 
 

DEC.17.2007 34

 Includes Link from Previewed Page 

Description: The user wants to mark-up the word/words with the link that he/she sees 
on the previewed page  
Actor: SWEET user  
Entry Condition:  

• User has previewed the suggested link  

Exit Condition:  

• Link added to the word/words successfully  

Used in scenarios:  

• Editing  
• Editing existing page  
• Upload Word document  

 

User Action  System Response  

1. Sees a good link on the previewed page and 
asks SWEET to include that link.  

2. The word/words is linked to that 
page successfully.  

 
Alternatives:  
Exceptions:  
Comments:  



                SWEET TEAM 
 

DEC.17.2007 35

 Ignores Links 

Description: The user does not want to put links for the word  
Actor: SWEET user  
Entry Condition:  

• Under SWEET Editing mode  

Exit Condition:  

• No links added to the word  

Used in scenarios:  

• Editing  
• Editing existing page  
• Upload Word document  

 

User Action  System Response  

1. Types the word in 
SWEET  

2. The word gets underlined and has a few suggested 
links  

3. Indicates to ignore the 
link  

4. The word has no links added  

 
Alternatives:  
Exceptions:  
Comments:  



                SWEET TEAM 
 

DEC.17.2007 36

 

 Opens Up Exiting Page 

Description: The user wants to open the existing page in SWEET  
Actor: SWEET user  
Entry Condition:  

• MediaWiki is running  

Exit Condition:  

• Opens up the existing page in SWEET successfully  

Used in scenarios:  

• Editing existing page  
• Upload Word document  

 

User Action  System Response  

1. Indicates to open up the 
page in SWEET.  

2. The SWEET editing interface is displayed and various 
words in the page get underlined.  

 
Alternatives:  
Exceptions:  
Comments: This use case opens up an existing page and there should be another use 
case which opens up a blank page.  
 



                SWEET TEAM 
 

DEC.17.2007 37

 Uploads Word Document 

Description: The user wants to upload a Microsoft Word document to the MediaWiki  
Actor: SWEET user  
Entry Condition:  

• MediaWiki is running and under SWEET editing mode  

Exit Condition:  

• Microsoft Word document successfully uploaded to the MediaWiki  

Used in scenarios:  

• Upload word document  

 

User Action  System Response  

1. Indicates SWEET to 
upload the Word document  

2. Displays the dialogue box of where to select the file 
to be uploaded  

3. Finds the right Word 
document and selects the file 
name  

4. Displays the contents of that document to the 
MediaWiki with some words been highlighted and with 
suggested links  

 
Alternatives:  
Exceptions:  

• The Word document does not exist  

Comments:  
 
 
 
 
 
 
 



                SWEET TEAM 
 

DEC.17.2007 38

Critique and Analysis of Work to Date 
 

 CS682 Homework 
 

 Homework 1  
We learned how to make ourselves a personal introductory website, and a 

professional resume to apply for a job. By reading Brooks' The Mythical Man 
Month we have a general idea of what kind of problems we might encounter and 
why they happen and how to deal with them. 

 
 Homework 2  

We learned how to evaluate a project proposal. It is hard to have a clear 
understanding of a project with a short presentation. 

 
 Homework 3  

We learned how to make a decision with limited information. We wrote a 
professional cover letter. We gained experience trying to prove ourselves in an 
interview for a job we are interested in. 

 
 Homework 4  

We learned how to begin a software project. We had to figure out the 
objective of our project. So, we could choose a proper name and render a logo, 
which really took us a long time. For this assignment we had to use our creativity 
for designing a logo and selecting a good name. We also designed a website and 
met our client. So, we had an opportunity to practice these topics, which we barely 
had experienced before. 

 
 Homework 5  

We learned how to write short stories and to imagine how possible users will 
use our software. We have four stories in total. They are Installation, Editing new 
page, Editing existing page, and Upload Word document. It was difficult to 
distinguish the Editing new page and Editing existing page because it's all about 
"Editing".  

 
 
 



                SWEET TEAM 
 

DEC.17.2007 39

 About SWEET Project 
 

 OCT 2007 
We had an important meeting with our client, Jeff on OCT.03.2007. After the 

meeting several parts of the project were still not decided. Fortunately, the day 
after Professor Bolker informed us that he had a conversation with Jeff. They 
decided we would make a MediaWiki extension. The extension would help users 
easily edit the content of the wiki, automatically suggest relevant links for words 
in the article and import a Word document into an article. Once we thought we had 
a good understanding of what our project would do we thought it would be best to 
choose a good name. All the other groups already had a name and we felt a bit 
behind. After several brainstorming sessions as a team we were able to put 
together SWEET. Once we had our name we had to work on our products logo. 
Designing a proper logo was not a natural task for us, as we all have been directing 
our lives towards becoming software engineers. It required a skill set that none of 
us have been developing. After countless doodles we came up with a design that 
we are very proud of. Next we focused on getting a template for our projects 
website that was clean, sophisticated and uniform. While we were developing the 
website we were also working on our short stories. The most difficult aspect of the 
website was (is) keeping it updated. 

 
 NOV 2007 

The first thing was to conceive the Short Stories in order to capture the 
functional requirements of the system from the user’s perspective. The second 
thing was to give a presentation about the project to date to seek venture capital. 
Since the goal of the Software Engineering class is not only to learn software 
development, but also to learn communications with various people in and outside 
of the development team. This is a great opportunity that we had to present our 
project to the “potential investors”. This is a very important part of the real 
business. Without investment and marketing it will be too difficult and 
meaningless to build the software.  

 
 DEC 2007 

We had two important missions within this month. One is to complete the 
Short Stories and the Use Cases which is the detailed description of how the users 
will interact with the system. We are lucky to have Fangyan in our team because 
she had some experience in this field. She sketched the basic outline and revised 
them carefully. The other thing is to write the document for the Requirements 



                SWEET TEAM 
 

DEC.17.2007 40

Analysis. We split the work and assigned several parts to each of the team member. 
Fangyan takes care of the revision and polishing for the Short Stories and the Use 
Cases; Brian arranges the Schedule and completes the Vision Statement and the 
other functional requirements; Michael deals with the project architecture, 
development methodology and the non-functional requirements; YuanHsun takes 
care of the review and possible Risks Analysis and Critique and Analysis of Work 
to Date. We also had team meetings to discuss about the document and helped 
each other to revise possible mistakes. We are very confident that we can get this 
document done successfully and professionally. We are the SWEET team and we 
are enjoying doing our project. 

 
 
 


