PETER F. ASH AND ETHAN D. BOLKER

RECOGNIZING DIRICHLET TESSELLATIONS

L ENTRODUCTION

Let T be a closed convex polyhedroa in Euclidean N-space, (possibly
uniounded, possibly ail of N.space} and let P be a finite set of points in L.
We call the elements of P sources, or centers, We shall study how P carves
L into regions: for each P e P, R, consists of those points of £ as close to P
as to any other source.

There are many applications of the resulting dissection. Ome is to the
construction of voting precincts so that each person votes at the pearest
polling place. Another is to think of the centers as business estabiishments
and the regions as regions of economic influence. Or competing species
might spread from the sources, ultimately to inhabit the Tegions.

These dissections are ofton called Dirichlst tessellations, to honor pio-
neering work of his in 1850 [9]. The regions have been called Dirichiet
regions, Dirichlet domains, and Voronos [36] polygons. In fact, interest in
such regions predates Dirichlet by centitries. The concept appears in a 1644
work of Descartes [#] as & consequence of his theory of gravity, which
asserts that a moving celestia! body like a comet is attracted only by the
planet ot other massive body that it is closest to. Most nineteenth and carly
twentieth century work on Dirichlet tesseflations was motivated by crystal-
lography and thus focused on sources that form a lattice, Nowacki {251
gives a bibliography of this classical material. Grunbaum and Shephard
[%4} discuss more general tessellations (tilings); their paper also contains
further references to Dirichlet tessellations. Recently computational geo-
meters have become interested in Dirichlet tessellations based on finitely
many irregularly placed sources. For algorithms and applications see Groen
and Sibson [12), work by Imai, Iti, Murots, and Ohya [ 1], {17], {261, (271,
and Toussaint et al, [32]-[35]. Miles [23] considers some probabilistic
properties of Dirichlet tesseflations whose sources are chosen at random,
Loeb [20] presents 2 treatment of Dirichlet tessellations in the spirit of this
paper. He found our Theorem 15, although he proves only the necessity of
the condition stated there which is characteristic of Dirichlet tessellations,
We were not aware of his work when we did ours.

The literature on Dirichlet tesseliations is surprisingly sparse given the
impartance of the ideas in both the physical and social sciences. I is also
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scattered in the journals of many disciplines. Our bibliography is not com-
plete; we hope it is representative of the many fields in which Dirichiet
tessellations are vsed.

Formally, for P and Q & P define the half space Hpp as

(L.1) Hpg={X e L |X ~ P{ £ {X —Q|}
and then let

(12)  Rp= () Hpg.

Q=P

Here |-| is the Euclidean norm in N-space. The family of sets
(1.3} R={R,: PeP}

is called the Pirichlet tessellation of T based on P. The following properties
of R are immediate.
{1} Bach R, is a closed convex polyhedron, since it is a finite intersection
of half spaces.
(2) P e R,.
(3) P # Q then Rp n Ry is a face of each of Rpand Ry.
@) %= PUPR,,.

Figure 1 shows an example of a two-dimensional Dirichiet tessellation.
Consider the boundary R n R’ between two of the regions R and R" of a
tessellation. That boundary may be empty. If it is not, we say R and R’ are
neighbors when R n R’ has dimension N — 1 and half-neighbors when it
has smaller dimension.

If R (i =1, ..., n) are regions of a tesseilation R and

14 NR=1¥)

i=1

then the point ¥ is a vertex of the tesseliation (and also a vertex of each o
the R.) ¥ in addition V ¢ R for any other R ¢ R then V' is an n-valen
vertex: the intersection of exactly n regions.

Eventually, we wish to be able to decide whether a given tessellation R i
a Dirichlet tessellation based on some set P. To do so, we must define
*tessellation” in general. For our purposes, a tessellation R of T will be ¢
finite collection of closed convex polyhedra with nonempty interiors cacl
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Fig, L. A plane Dirichien waselation.

pair of which intersects in a face of each {so that gach dihedral angle of each
polyhedror is less than =) and such that

(1.5} JR=Z.
ReR
We shall often redundantly identify tessellations as conpex tesseflations, to
stress that part of the definition. A convex tessellation will be called proper
if it contains at least one vertex. Thus a tessellation consisting of parallel
stabs is improper.

LEMMA 1. When R is a Dirichlez tessellation the boundar y between rogions
Rp and Ry livs on the hyperplane which is the perpendicular bisector of
segment PG

Proof. ¥ the beundary is empty the lemma is obviousty lrue, and usciess.
On the other hand, any X € Ry Ry is equidistant from P and Q. =1

For Dirichlet tessellations, we sometimes abbrevinte the boundary Ry, m Ry,
as (g O AP, ©), The next easy theorem is a partal converse to Lemma 1.
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THEGREM 2. If R is a closed concex polphedron in N-space and P belongs
o the imterior of R then there is a Divichiet tesseliation for which R = R,
Proof. Suppose R has n facels (faces of codimension 1); suppose they He
in the hyperplanes K, ..., K. Let P, be the mirvor image of £ in K;. Then
in the Dirichiet tessellation based on P = {£, P, .. P} we have R = R,
ol

When we try to fit convex polyhedra together and choose sources in each
which mateh when reflected over boundaries the situation is subtler. To
analyze it we first study what happens around cach vertex. And o do that
we must broaden our definition of Dirichlet tessellations to alfow tessella-
tions of the N-sphere as well as of N-space. Suppose P lies on an N-sphere
I in {N + 1)-space. Thea use BEquations (1.1} and {1.2), with |-{ interpreted
as great circle distance on 7, to define the Dirichlet tessellation Ry of I
based on P. If such a tessellation has ar least two vertices then each of its
regions lics in some closed hemisphere, and each Is convex in the sense
wven by Grunbaum [13, p. 30]: cach is the intersecion of T with the
corresponding convex region of the Dirichlet tessellation determined by P
in the ambient (N 4+ 1)-space.

Remark, Lemma | remains true for iesseliations on spheres when we
interpret ‘hyperplane” as “great (N — 1)-sphere’. We shal! sometimes call
such an (N — I)-sphere a hypersphere.

THEOREM 3. Let V be an n-valent vertex of a Divichiet tessellation R in
N-space or on an N-sphere, Let Py, ..., P, be the sources in the regions R,
o Ry of R with Voas vertex. Then the sources Py lie or an (N — T)-sphere
with center V. Moreover, I T is a sphere centered at V' oand small enough so
that 1t meets only the regions Ry, ..., R, of R and P;= VP, AT, then the
regions of the Dirichiet tessellation of T based on P = {P\, . . ., P.} are the
intersections K; m .

Proaf. Tf Py and P, are neighbors at ¥ (rather than just haif-neighbors)
then ¥V & R, n R; and Lemma 1 implies | ¥ — P,] = [V - P,|. Since any
pair of the regions R;, R, at V can be linked by a chain of regions cach of
which is a neighbor of its successor, the » distances | V' — P;| are all equal
to the same constant ¥, and each P, lies on the sphere I" with radivs » and
center V.,

To prove the second part of the theorem, observe that if X < I then the
great cirele distance from X to P is ess than or equal to the corresponding
distance to P if and only i the original distances from X 1o P, and to P,
are so rekated. =
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Let B be a tessellation in N-spuce or on an N-sphere and ¥ a vertox of R
We shall say that R is Dirichier ar V of 1t induces a Dirichlet tessedlation on
any sufficiently small (N — 1)-sphere centered ot V oand {ocelly Dirickies if 1t
15 Drrvichict at each of its vertices. Theorem 3 then savs that a Diriclhlet
tesseliation s locally Dirichlet.

To decide whether a given tesscllation is a Dirichlet tessellation then
roguires two steps: a local argument at each vertex, and o pasting mecha-
msm. Our study of plane teysellations in Sections 3 and 4 therefore beging
with the local study of tessellations of the line aad the circle in Seclion 2. Tn
Section 5, the concluding section, we generalize what we san to tessellations
of N-space.

2. TRSSELLATIONS OF THE LINE AND THE CIRCLE

On the lne consider the Dirichiet tesseliation R based on the # + 1 sourses

(2.2) X = %‘(}9,‘-1 + pi
be the midpoint of segment [p;.. . p73. Then
2.3 Po iy Py R Xy W P,y N, <Py,

and R consists of the # — 1 bounded intervals [x, x. ] (I <ign—1
and the 1wo unhounded intervals {— 0. x,] and Ex,, «)
The following theorem telly us which partitions of the line into intervals

are Dirichiet tessellations.

THEGREM 4. Suppose the fine s subdivided into intervals by the points
Xy & Xp e X, Lt 2ty X, — X be the length of the Interval {x;, x;.0),
i=1,...,n= 1 Then the family of intervals forms u Dirichler tessellation if
el ondy if all odd alternating swms of lengths are positive, that is, if and only

if

(2.4} i(w =0

i-r

fortsr<sgn~1ands —reven
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Proof. Suppose the intervals are the Dirichlet tessellation based on P =
{Pos-.c,pb Thenfori=14, ... n—1

PeElx, X )
and, letting

(2.5) @ =p - X

we have
(2.6) @ = O
and
{2.7) [P T S T
Thus the sum on the left in (2.4} telescopes, and
s
{2.8) Y =a a0
izr
Therefore the inequality in (2.4) is necessary. To prove it iy sufficient we
must determine scalars o, which satisfy {2.7) subject to the constraints
(2.9 0 < <

then we can use (2.5) to define the sources p, . Let

2

(210)  a=min ¥ (~1Y"
k=1
By hypothesis, a > 0. Setting k = | in (210} shows a < r,. het a, = g; then
use equations (2.7} to solve for the remaining a,:
2.11) Aiyy =& by,
or, in closed form
;

(212) @y = 3 (D 4 (- Da

e

To verify (2.9} it suffices to show all the g, are positive, since the second half
of that inequality will then follow from (2.11). When i is odd Equation (2.12)
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and the definition of ¢ a5 a minimum shows a;,, = (. Suppose i is even. Let
k be the index for which the minimum in (2100 is uchieved. Then if
i 2k 1,
213 g, = =1V =0
ek
while il § < 2k — 1
2k-1
240 g = — ¥ (=1 e 0
R
If we now replace u by a — e, where & is small enough, then the inequalities
.y 2 0 for ( odd become strict while the inequalitics g, = 0 for ¢ even
remain Lrue. ]

Remark 1. Note that the set P of sources producing the given Mrichiet
tessellation is not uaique. 1t s 4 one parsmeter family: the choiee of a,
subject to some inequality constraints determines P,

Remark 2. The sssence of the preceding theoremn is that the lengths ¢, of
the intervals canmol vary too widely. For example, the necessary cond
b= bisy F Ipep > O may be rewritten as

(2080 by e n,

which says that a large wterval may not be Ranked by small intervals,
Conversely, i all the intervals are the same length, say ¢, then svery odd
alternating sum also has the valve ¢ and so the family is g Dirichlor tessella-
tiop and a, may be chosen arbitrarily subject to § < a, < 1.

Remark 3. When the sequence {1} is monotone insqualities {2.4) are
ahways troe.

Remark 4, Bach inequality in {2.4) Is independent of the others To see
that, we exhibit a sequence {r;} of arbitrary length in which exactly on
aftornating sam of prescribed odd length is negative. The intervals corre-
sponding 1o that sum can appear ul any desired place in the sequence.
Suppose & = 0 given. Then let {7,} be the soquence

L RS EE LR LA

where there are 2k — | central 3's. It is easy to see that the only odd
aliernating swm which is negative is the one of lepgth 2k + | which begins
and ends with a 1. (Ramark 3 helps in the verification,)
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A similar analysis involving odd alternating sums characterizes Dirichiet
tessellations of the circle I'; this analysis is essentially equivalent 1o the
investigation of the finite Fourigr transform Schoenberg provides in 29,
Chap. 6. Suppose py, ..., p, ar¢ n poinrts on the circle, listed in counter-
clockwise order. For i = 1, ..., n let x; be the midpoint of the circular arc
{ri— 1, p]: here and in what follows read subscripts modulo n. Then the
Dirichlet tessellation R of I determined by the p, consists of the n eircutar
arcs [x;, x;,,]. For convenience let the circle have unit radius and let 8, be
the length of are {x;, x;. 1, so that

216 T 6,=2n
feg

Now we wish to determine when the sequence 64, ..., 8, of arclengths
satisfying (2.16) comes from a Dirichlet {essellation. We start with necessary
conditions.

THEGREM 5. Suppose 8,, ..., 8, are the lengths of arcs in the Dirichlet
tessellation of the unit circle based on p,, ..., p,. Ther odd alternating sums
are positive:

(217 -1 0
=7
when § — r is even, Moreover, if we let
(218Y oy = the length of arc[x, pl =0

and
(2.19) ﬂ;géi(-l)}ﬁiw
i=0

ther if » is odd
(2200 =0,

while if 1 is even
(221 B,=0.

Proof. Since R is a Dirichlet tessellation, arcs [p;, x..; 7 and [X;4 1, Pis 1]
are equal in length. Hence

{222y A=+,
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(compare (2.7)). Thus the sum on the left in £2.17) tclescopes and

Q23 TU— T m (1,

=0

When s — r is cven that is clearly positive. When 5 — r =1 — 1 use the fact
that o, = %, |, to deduce from (2,19} and {2.23) that

(2283 fre=Hl 4 (100 Y,

which is o if 7118 odd and 0 if i is even. [

COROLLARY 6. In a Dirichlet tessellation of the cirele into an odd number
of paves, the sources are unignely determined.

Next we show that for a pariition of the circle jnto an odd sumber of parts
woe can use Equation {2.20) ta locate the sources which make It a Dirichlet
tessellation.

THEGREM 7. Ler n be odd and 0, ..., 8, be positive real numbers whose
s is 2r, Define nionbers =, by

LRI}
(2285 wp=43 (16,
i-0
Then 0. ..., 0} corresponds 10 @ Dirichler ressellation of the unit civcle if
and only if every o, » 0,

Progf. Theorem: 5 cstablishes the necessity of the condition, To prove the
sufficiency let x, be any point on the unit arde and define x;, , inductively
s that are [x, %] has fength 8, Then define p, so that are [x,, p;T has
lengeh o, Next observe that are [pr, %, ] bas length

B—a =0 - — G+ + 8y
225) T S ST S
= Uy 1-

Equation 2.26 has two mportant conscguenees. First, § « o, by hypothgsis,
s0 0« o < #); and bence p; € {X;, X;4 ). Second, x, s the midpoint of the arc
(piw1, p:1. These facts say {[x,, x;.,]} is the Dirichlet tesseliation based on
s 1
Prv o Prye
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Remark. The hypothesis of Theorem 7 is not vacuous. If a circle is parti-
tioned into five parts of lengths

18z 2n 187 n
0 20°20° 20 20
then
2182184 1) =
% = =

We shall encounter this exaraple again later.

The study of tessellations of the circle into an even number of parts is
trickier. For such a tessellation with 2k regtons, Theorem 5 telfs us

2k

T (—1¥8; = 0.

i=1

The arc iengths &; are not determined by the §;. Indeed, we shall see that &,
can be chosen subject only to certain inequality constraints, although the
choice will force the values of the remaining ;. The situation resembles that
we encountered in studying Dirichlet tessellations on the line.

THEOREM 8. Let n be even and 8, ..., 0, be positive real numbers whose
sum is 2m. Then 8, ..., B, correspands 1o a Dirichlet tessellation of the unit
circle if and only if

@27 L= 0 ifs—risevenand 1€r<s<n

i=r

hd =0 fr=lands=n
>

Progof. Theorem 5 shows that the conditions on {8, ..., &} are necess-
ary. To prove the converse, observe first that Theorem 4 implies that the
sequence &, ..., 8, is the sequence of lengths for a Dirichlet tessellation
of the line. Let the poinis p; represent the sources and the points x; the
endpoints of the intervals, as in (2.3). Then 8, = x,,, — x;and

0= i(—l)‘ﬂf

¥

-1
X (- 16, + 6,
i=1

=y — X1} — %, — po_s) + 0.
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Therefore
Oy = — ) +{x, — p,_1)
=Xy Po) b (B = X0

MNow take the intorval Ep, . 5,0 whose Ioength is 2x, and wrap it around the
unit circle, identifving p, and p,. The resuli iy the desired Dirichlet tessella-
Lion. o

3 PLANE TESSELLATIONS WITH 3-VALENT YERTICES

We starl this seetion with a theorem showing that Dirnchlet tesseliations
with vertices of valence 3 are in a sense typical and thus warrant special
study.

THEOREM 9. If the sources ¥ are chosen at random in the plane then alf
the pertices of the resuiting Dirichler tessellarion R will be 3-valemt with
prohabillry 1.

Proof. For four points chosen at random from the plane, the probability
that any one of them is on the circle (ov line) determined by the other three
is (1 Since there are only finitely many quadruples in P, the probability that
any four points from P lic on a cirele is . But if there were an n-valent
vertes with i x> 3 then Theorem 3 would imply that 1 points in P were on a
common cirele, [

Remark. Theorem @ s truc for tesseilations in N.space when ‘N + 17
replaces " 37,

Let ¥ be an n-valent vertex of a plane tesseliation R We study R near ¥
by studying the tesseliation induced by R on a unit circle T centered at ¥
that js, we study the angles made by various rays emanating from ¥, The
following definitions are illustrated for » = 5 in Figure 2. Number the n
regions which contain V as Ry, ..., R,, so that R, and R, are neighbors,
Read subscripts module 2 Wiite 2, for the boundary B, v R, between
R, y and R, let x; be the intersection of T with the ray {rom V along &,
and 8, the length of the are [x,, x,, .. When R is a Dmichlet tessellation let
4; be the ray from ¥ through P, the source in R,. Lot p, be the intersection
of that ray with T, and «; the length of the arc {x;, pj). In that case all of
Theorem 5 is applicable, When R is not known to be a Dirichlet tessellation
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and » is odd, define the angles »; and hence the points p; & I” using Equa-
tion (2.25). That is, let

31 A=AR,

Fig. 2. A S-valent vertex of a Dirichlet tesseliation.

be the ray emanating from ¥ which makes an angle of &, with &, and fet
(3.2) pre=dp o I
We now rewrite the equations in our discussion of tesselfations of the circle
when n == 3.
CORCQLLARY 10, If V is a 3-valent vertex of a proper convex tessellation
then
(3.3} oy mm e By =0 by e
and
B4 O<ux <,

(and similarly for o, and a3). In particular ar a 3-velent veriex a proper
convex tessellation is focally Dirichlet,
Proof. Equation {2.25) says

(35) w0~ Oy 0y

if we subtract the equation 2z = @, + ¢, + @; we obtain the first part of
(3.3) and if we add that equation we obtain the second parl. Siace the
tessellation is proper, #; <% so o, = 0. But &, < n also, so «, =8, +
8y — ) < . 3
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W are now ready 10 look for condirions on & tessellaticn of the plane inio
costves. polygony whick will allew us 1o degide whethse it i A ¥richiel
Leswellation. Dur aext 1wo theorems show that not everything is possible.

Let R be a plute Dirichlar tessellaiian: vuppose the buandary <y of v
nerghlioring regiury Joms e Sevalent cortives B citd B3 Lot B e rhe sl at
v which does not Rune Sy s a honding ray. and o the carrespending angle
ar W, Then

LESUE

Peonf. Coruliary 1 Euplies ehat the amude at ¥ in triangis ¥ PW
whtile the angle at 1 i 2 - 4. Sinee these angles must sum Lo less tan =
the theoren follows. {See Figure 31

Fig. ¥ Mot part of a tnchlel sensetfation

The nest theorene can B¢ regarded as 4 generalization of inege (215w
Nespace.
FHEOREM 11, Suppose ¥ and W are certices of @ rveyton K. Len S be
anotlir region with rertex ¥V and T be anothar region with vertex W Then
by W] diamuSh o+ dbam( T
Progl. Let 410 denete the souzee in region X Then
Ve W om E - IR W CERY
s 11 C18)1 AW GO
= thham( 5+ diami T it

Chur next task is 10 use Theqems 3 oand T o prodocs necessary and suifi-
cient conditions which wh whather & givent tesselintion of the plane B a
Drrichier wssellation, The erex of the arguient is the observalian et the
ray MR, defined in (3.1} must contain the hypothetical soutee Fin R
The inegoalities < @, = By, which we shalt always tequire, say el
AR,. ¥ty the 8100y of K. The next lemma draws a global conse
quence of that fiet
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LEMMA 12, Let R be a praper convex plane tessellation and R a vegion of
R all of whose vertices Tave odd volence, Suppose thae for each such vertex V,
AR, VY o inU(R} is sot empty (that will abways be true for the 3-valent ver-
tices, by Corollary 10), and

Pe M AR )
¥oaveriex of R
Then P e int{R).

Progf. Let H be & minmal set of open half-planes whose intersection is
the interior of R. Suppose H @ H; we must show PP e H. The minimality of
H implies that the closure of F contains some vertex ¥ of R. Since the ray
AR, V) which starts at ¥ meets the imertor of K, it meets H, and thus
MR, ¥) — {¥} s entirely contained in H. Hence P £ H. =

The next lemima, the last before the main theorem on tessellations with
valent vertices, shows that we need look only at neighboring regions to
decide when a tessellation is a Dirichlet tesseilation,

LEMMA 13, Let R be a convex tessellation and suppose that for each
ReR we have ¢ P o R Let P be the set of those poins P, and R’ the
Birichiet ressellation based on P. If, whenever R and § are neighbors in R,
witk P € R and Q € § the corresponding points, the boundary R o § lies on
the perpendicular bisector of segment PQ, then R = R

Proof. Let R be a region of R and F the point chosen in R. For each
neighbor 8§ of R {et R m 57 be the closed half-space determined by R n §
which contains R, Then since K is convex.

RASY

5 & nelghbar of R
=} {Hpg: @ € § a neighbor of R}
2V {Hpp Q#P. Qe P}
= RpeR.

i

36 R

But the interiors of the regions R € R are disjoint open sets, and | Jp,.» Rp
15 all of L. Consequently, R = R, |

THEOREM 14. Let R be a proper convex plane tessellation all of whose
vertices are 3-valent. Then R is a Dirichlet tessellation if and only If for each
vegion R the vays AR, V') have a point in common. If there is exactly one such
point it is the source in R.
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Progf, When R i3 2 Dirichlet tesscllation, Theorem 3 pssures that
iRy, V) passes through the source P, Thus P serves ¢s a point which the
rays 4fp. ¥y share.

Conversely, SUppose {hat for cach tegion R the rays ARV} sharc &
poml, We wish ta chese a sourdt

an  pe {1 MRV

¥ o venis of £

for the region R.

Note that whenever P catisfies (3.7} Lemma 13 implies P belongs ta the
ipterior of R. Let K and R he neighboring regions. 3 we can chonse the
sources Y@ R and P'e R' so that the boundsty R~ R is part of Lhe
perpendiculay isector of segrment o then Lemma 14 will guaranics that
R is the Dirichiet tessetiation pased on P

{0y tisually the intersection on the rightin (3.7 witt contain just one pomnt
and we shall have no choice for P. That elearly happens when the region R
js twa vortces: if ¥ oand W are vertices joined by 3 fine segrmert on the
poondary of R the 7ays MR, V) and AR, Wi cannot he parailel. Sine they
meet. they meet in single point. ko such o case let R be the region in R for
which R m R = VIV

Coroltary 10 and Theorem 7 imply that the rays i, and 7, cmanaung
from any vertex of R form a Dirichlet tesseliation of a circle centered al that
vertex, Thus the angles Wi and WVP at ¥ oare cyual, and the corre-
sponding angles at W oare also equal. Since the triangles share side VI,
they ate congruenk Hence VW i3 part of the perpendicular wisector of PP,
a5 desired. {See Figure 4.

Fig. 4 Mastrating case (@), Theorem, 14
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Next consider two regions R, R” whose boundary R r R’ is a ray with a
single vertex V. Let R” be the third region with ¥ as a vertex. We finish the
proof by considering the three cases in which both, one or neither of the
boundaries R” n R and R” » R’ contains a vertex of R” other than V.
Note that for a region with only one vertex the intersection condition in the
hypothesis is trivially true.

{1} Suppose R" ~ R contains a second vertex W % V, and R” ~ R’ con-
tains a second vertex W', (See Figure 3(a)) Then the argument in case (0}
shows that sources P, P, and P" in R, R, and R” respectively are all
uniquely  determined,  that |{P—V]=|P -V} and  that
[P — V] =P~ V|. Hence P and P are equidistant from V. Since
Pe MR Viand P g AR, V), R n R is part of the perpendicular bisector
of PP,

la)

{bl

{cl.
Fig. 5. Mustrasing Theovem 14.
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{2} Buppose enly R v R contains & second vertex B (Ses f‘lgure
5(b1) Then the argument in case (0) determines P on AR, {/J and P q
AR V) equidisiant from ¥ Since the rays leaving I forms a Dmchiet
tessellation of the circle, the mirror images of P in R ~ R and £ in
R* o R cach Jic on AR, V) Since those poinls are squidistant from V,
they cvincide, and the resulting point elearly seeves as s source for R,

£3] None of the three boundaries meeting at V cantains o vortex other
than ', Then V' s the only vertex of the entire tessellation. which is then
complitely pictured in Figure 5. In that case choose & circle of arhitrary
eadives contered at Voand [ot , P, and P be the inwersections of that girele
with AR, V], MR V), and AR", ¥ Then invoke again the fact that the
rays at Voare & Dirichler tesscllation of the circle to show thar the originat
tesucllation is the Dirichlet tessellation bused on [P, £, £ ]

COROLLARY 15, {f a tessellarion sorigfying the conditions of Theorem 15
has move thai one certex, the sources P are uniguely detormined.

Rewarle 1. We Tuve excluded improper convex wsseliations: those with
no vertices, Tn the planc such a tessellation consists of paraiel strips. In any
dimension, recognizing when sach w tessellation is a Dirichlet tosseliation
roduces to the one-dimensional case: it [5 necossry and sufficient that the
thicknesses £ of the strips satisfy inequalitiss (24) Theorem 4 can then be
used to choose the sources on a line perpendicular to the hyperplanes
bounding the strips.

Remark 2. Theorem 13 gives another way of looking at Theorem 11 and
Figure 3. In that vonfiguration AR, V) makes an angle of »— # with
segment W, while AR, W) makes an angle of # — ¢. Lnless 8 4 ¢ > 5,
the rays AR, ¥} oand AR, W) will be disioint and the hypothesis of
“Fheorem 13 will not be satisfied.

Remarl 3. Thore is a surprising conpection batween Dirichle: tewseila-
tions and the statics of siressed plane frameworks. A plane fesseation i
st have o reciprocal figiee When it is possible 1o cheose sources P, one
for euch region, suck that B B is perpendicular to PP whenever 8 and &
are neighbors. Thus a Dirfehlet tessellation has a reciprocal figure, though
not conversely. Maxwell {227 showed that a bar and joint framework in the
planc has a reciproval figure just when it stupports a nontrivial stress. It
follows that the boendary of a Dirichier wssellation can be renfized as an
equiiibrium sizte of 4 spider web (though nol conversely), Tt is eaty to see
that Figure 3, which is not a Dirichlet 1essellation, hos & reciproval figure,
and gasy (o sec how with appropriste stresses on the odges it will be in
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anical cquilibrivm, It would be interesting to know what special
mechanical properties sre enjoyed by Dirichlet tessellations. In a forth-
coming paper we shall show how to churacterize the fesseilations with
reciprocal figores a5 sections of three-dimensional Dirichlet tessettations.

Magwelt showed, too, thal the projection of the boundary of a convex
F-potytoge has o reciprocal figuee. Crapo [5] and Whiteley [37] have care-
fully proved the converse, In spite of the mention of right angles in the
definition of the reciprocal figare, the existence of such a figure depends
only on projective properties of the original tesseffation. That is not so of
the exigtence of sources which make a given tessellation a Dicichlet tessella-
o, (There are projections of Figure 3 which are Dirichle tesseffations.)
Nevertheless, the projective vonditions whick must be satisfied fa order for
a tesseliation 1o have a recdiproal figure can aid in the recognition of
Dirichlet tessellations. We give two such prajective conditions.

-
Cras /

¥ig. 6. Hays entering a triangle

The condition in Theorem 15 which requires that for sack region R the
constructed rays R, P} concur is necessary but somewhat ardficial. We
can sobstantialy improve it for triangular regioss. We stary with gome
femvmas on (riankles. Let ABC by 3 triangle; write 4, B, € oo for the angles
a1 Phose vertices. Let A, g, v be rays emanating from A, B, € making angles
x, B, 3 with sides A8, BC, CA vespeetively. (See Figuse 6.3 Lot 4 divide the
side BC opposite 4 inte segments B4, A4'C with {directad) lengths x, o — x.
Simifarly define v and

LEMMA 16, Rays &, g, and v comenr if and exiy if
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Proof. Ceva's theerem [ 7, p. 220] says that 2, g, und v concur if and only

[

x AL
sinx  sin B
and
a-x |44
singd — ) sin &
50
xsin B {a -~ xjsin <
sinx | sintd —a)
and
x sine  sin C

a4 — \.‘msm(.‘iw ¥y sn B

Cyclic permutation of 4. B, and C then shows that the product on the jeft
in{3.9)is
sin 2 sin sin 3
sintAd — ) SiniB -~ ) sl - 31

The iemma [ollows. ]

LEMMA 17 Let i g, and v be the reflections of A, g, and v in the angle
hisectors of angles A, B, and € respectively. Then A p. and v concur i and
anty if 27 poand v da,

Proof. Exchanging cach ray with its primed counterpart exchanges and
A fand B~ f.yand € — . thas inverting the ratio in (38) o

Remark. Lemmna 17 defines a curious map from the interior of triangle
ABC to itsel. For P in that wiangle. let 2= AP, g = BP. v = CP. reflect
over ungle biscotors, and let f(P) be the intersection of the resulting rays.
This map will help us discover when triangles are part of Dirichlet tessella-
tions. We shall generalize it ip Section 3, when we sce how to resognive
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Iirichlet tesseltations in higher dimensions. Even in the plane the map f has
interesting geometric properties which warrant further study. It has one
fixed point, the intersection of the angle bisectors. As P approaches any
point on BC, f(P) approaches A, Moreover, Lemma 17 defines feven on the
exterior of ABC. One can think of f{A) as the whole line determined by B
and .

THEQREM 18, Three 3-salent vertices forming o triangle ave part of a
Divichler tessetlation if and only If the rays exterior to the triangle concur
when extended. The point of concurrence fs it the interior of the triangle.
Proof. Call the triangular region R and its vertices U, V, and W. Call the
three boundary lines exterior to the triangle at U, V, and W, &, &, and
iy respectively. (See Figure 7.) Then by Theorem 15 the construction is part
of a Dinchict tessellation if and only o the rays AR, 1), AR, ¥), and
JR, W) concur. But by Lemma 18, that happens just when their reflections
in the angle biscctors concur. And by CoroBiary 10, these reflections are
precisely the extensions of &, @y, and &y . Since the reflcction map f
preserves the interior of R, the point of concurrence is in R. =]

Fig. 7. A tangelar candidate.

Remark. The implication in one direction could have been proved by
simply letting P, (i = 1, 2, 3) be the sources in the regions exlerior to R and
observing that 2, , &y, and &y arc portions of the perpendicuiar bisectors of
the sides of triangle PP, P, and are therefore concurrent. However,
proving the converse - thal concurrence implies a Dirichlet tessetlation
sgems to reguire the machinery we have developed.

It is sometimes usefs} to think of the configuration in Figure 7 as the
result of cresting a new seurce P and hence a new region R which covers
the intersection T which, before the addition of P, was the vertex at which
R,, R, and R, met. {I* must e interior to the circle I' containing Py, P,
and Py; if it were on T the vertex T would become 4-valent instead of
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disappearing} Adding a second new sonrce and obliterating snother vertex
creates 2 quadrangular vegion with 3-valent vertices and leads 1o the follow-
ing theorem.

THEOREM 18. Suppess ABCD is a convex guadrilateral with 3-valent ver-
tees. Let 8o, Gy, oo and 25 be the boundery ravs at 4, R O, and B
respectively thar are exterior to ABCD. Let X be the interssction of &, and 0y
and lot ¥ be the intersection af &, ond & whes the rays are extended. If this
configurazion is pore of a Divichler resseflation, then the lines through AD, BC,
and XY concur in the sense of prajective geomelry, e4. if AD is parallel to BC
then xo must XY be, if 8, is parallel 1o 8y then XY is the line through ¥
parallel 1o &, . (See Figure 8.)

Fig. 8. A quadrangular candidata,

Proof. Call the interior of ABCH region R, and label the regrons sur-
rounding R by R,, Ry, Ry, Ry as in the figure. Let P, be the source in R;
and let P be the source in R. Then X is on the perpendicular bisectors of
PP, and of P P, and therefore on the perpendicular bisector of ¥, P,.
Similarly, ¥ i3 or the perpendicular bisectors of P, Py and Py P, and
therefore on the perpendicular bisector of P, Py Now AD is on the perpen-
dicular bisector of PP, and BC is on the perpendicular bisector of 2P, s
that the intersection of AD and BC, which we call Z, is on the perpendicu-
lar bisector of £, #,. But X and Y are also on the perpendicular bisector
of P, Py, Therefore the lings 4D, BC, and X' ¥ concur at Z. Note that if AD
and BC are paraliel the triangte PP, P, degenerates 1o a straight line. and
the point of concurrence of the lines 1s 4 point at infinity. i

Remark. The converse of the theorem is false. The projective conditions
in the hypothesis suffice 10 prove the existence of a reciprocal figure. or
equivalently, that Figure 8 is the projection of a convex polvhedron, bot, as
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we have seen, that does not guarantee thal we started with a Drichiet
tesselfation. If in this exampie the sum of the angle formed by 2, and 4D
and the angle formed by 2, and BC does not exceed  then Theorem 1}
says the configuzation can not be part of a Dirichlet tesseitation.

4 PLANE TESSELIATIONS WITH VERTICES OF BIGH VALENGE
We next generalize Theorem 15 to tessellations with vertices of odd valence,

THEOREM 20 Ler R be o proper comeex plane tessellation all of whose
wvertices have odd valence. Suppose that

(1) R is a Dirichlet tessetlation at each seriex ¥ ;

(2) if any boundary ray from a vertex ¥ is unbounded, then all such
unbaunded rays are adjocent, in the sense thar It i3 possible 1o traverse
smafl circle around Vomeeting first ol the bounded vaps (if any} and
ther alt the unbounded ores.

Then R is a Divickles ressellotion ¥ and only if for eack region R the rays
MR, VY eoncur.

Remarks. Theorem 3 shows that (1) i satisfied by Dirichler tessellations.
Cotollary 10 shows that (1) s always {rue for 3-valent vertices. Note too
that (2) is teivially true for 3-valemt veriices, We shall investigate the
meaning of {2) further after we preve the theotem.

Froof. The proofl of Theorem 21 i3 modelled on that of Theorem 15, H R is
a Dirichlet tessellation then when R = R, the discussion preceding Corol-
lary 10 shows that AR, ¥} passes through the source P, which thus les on
the intersection

Y AR V)L
¥ uvertex af R
Hence that interscetion is nonempty.

Conversely, suppose that for each R that intersection is nonempty.
Lemma 13 guarantecs that whenover P lies in that intersection, P e intRy;
note that we have included the hypotheses for Lemma 13 in assumption (1)
about R. Thus, as before, it suffices to choose the sources Pe R, P & R so
that for neighboring regions, R m R’ is a part of the perpendicular bisector
ol PP,

{0) When R R’ contains 1wo vertices the argument is identical to that
in Theorem 15; the sources P and P are uniquely dotermined.

(1) Next consider two regions R, R’ whose boundary B ~» R’ is a ray
with a single vertex V. 1 none of the boondary rays emanating from ¥ is
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bounded jthat is, if none containg & vertex other than ¥} then the argument
proceeds as in case (3} of Theorem 15; R i easily seen to be a Dirichlet
tesseliation,

{2} Thus we may suppose there are & > 0 bounded rays emanating from
¥. Since they are adjscent, they determine k + i regions R,, ..., R, for
which the argument in (0) applics and the source is determined. Repeated
application of the argument in case {1) of Theorem 15 shows that the
sources Py, ..., Py are equidistant from V. Then reflecting P, successively
across the unhounded rays determines the rest of the sources (if anyi and
the fact that the tessellation is a Dirichlet tessellztion at the vertex V' shows
that the unbounded rays are the perpeadiodar Bsectors of the required
segments, Finally, the arguwment in case (2} of Theorem 15 shows that the
last reflection just gives the source Pq. [

Remark. The following example shows that in Theorem 21 some condi-
ticn like (2} is necessary, It shows why the regions around ¥ in which the
sources are determined must be adjacent. In Figure 9 (¥ = 2,
[PE| =1, ali angles €, abour V' measure 2a/3 and the angks P VW,
P WV, P, UV, and P, VU are each »/5. Thus triangles P VW and P, UV
are similar apd | VP = 21V P;|. Since | VP;] £ {¥VP,], this cannot be
Dirichiet tessellation, Note that the boundury lnes R, ~ R Ry n R, and
R; n R, are parallzl. as are the pairs R, m Ry and By, m R, and R, n R
and R; m Ry, Thus there are no hidden vertices. A slight perturbation of
this counterexample gives one without parallel iines.

7

Fig. 9. Anexample with opbouoded rays.

Another madification of this example shows that condition (2) itself need
not always be satisfied by a Dirichlet tegsellation: choose five sources at the
vertices of a regular pentagon and two more as in Figure 10, In the
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resulitng Dirichlet tessellation the unbounded rays at ¥ are rot adjacent in
the sense of (2).

Frg 3 & Dsichlel tessellution,

If a plane tessellation has vertices of even valence there are additional
problems we have not yet solved. OF course, we assume that the tessellation
is a Dirichiet tesseflation at such vertices I too. But Theorem 8 tells us that
the angles 2;, and hence the rays AR, V), are not uniguely determined, so a
condition like that given in Theorem 15 cannot be hoped for. When there
are not oo many even vertices there are enough rays AR, V) to determine
the positions of the sources, which must be consistent with some ad hoc
conditions at cach even vertex. But we do not see what the general theorem
is.

But one case in which all the vertices are 4-valent is casy Lo handle.
Consider a tessellation formed by m vertical lines and » horizoutal lines
(r, m = 2). Since the lines cross at right angles, the tessellation is locally
Dririchlet, At each vertex one angle, a,, say, is arbitrary subject to an
inequality vonstraint. If the tessellation is & Dinchlet tessellation, once we
know the source in any one rectangular region we can locate all the sourcss
by a sequence of reflections over the horizontal and vertical boundaries.
Thus, the Dirichlet tessellation is a Cartesian product of two one-
dimensional Dirichlet tessellations. (See Figure 110 Thercfore, it is the
spacing of the paraliel lines which determines whether a tessellation of this
type is a DIdrichlet tesseliation; that is, such & tessellation is a Dirichiet
tessollation if
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and.
¢ .
=1k »0 (¢ —reven I rsi<n,
Fuer

where h; is the distance between the ith and i + 1)st vertical lines and ks
the distance between the jth and (7 + st horizontal line.

1
ot

Fig. it. The product of two one-dimensional tesselfations.

5. HiGHER DIMENSIONAL TESSELLATIONS

In this section we indicate how to generalize several of the theorems we
have proved for plane tesseliations, Since much of the argument depends on
localizing at vertices, the cxposilion 13 streamlined by cowsidering only
tessellations on Nospheres. That Hemitation also rgles oot the bizarre behay-
ior of unbouaded rays we took such care with in the previous twa sections.
Mareover. we shall restrict attzntion to fessellations of the N-sphere alt of
whose vertices have valance ¥ + L. The remark following Theorem 9 shows
that behavior is typical. An interested reader may work out for herself what
our theorems say when properly generalized 1o the customary rectilinear
tessellations of N-space.

A tessellation B of ap N-sphere I mduces 2 tessellation R* of the
ambient N 4 l-space: if R ¢ R et B* be the cone over R with vertex the
center of I, Recall that, following Grunbaum {13, p. 30] we shall say R is
eemeex when B* is. R is proper if each region containg at Jeast one pair of
nonantipodal vertices.

We now generalize Theorem 15 in two stages. We begin by stating,
without proof, 4 lemma about geometry on the N-sphere which generalizes
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Enclid’s angle-side-angle criterien for the congruence of triangles. Let the
base of the nondegenerate N-simplex [P, ¥, ..., ¥} on an N-sphere be the
N — L-simplex {V,, ..., ¥} and the base angles the angles between the
circular rays P¥ and the hypersphere containing the base.

LEMMA 21. Two simplices with congruent bases and equal base angles are
congrient. Hence two simplices with the same hase and equal base angles are
either identical or are mireor images with respect teo the hypersphere comtain-
ing the base.

Now suppose R is a proper convex tessellation of an N-sphere F and V is
a vertex at which R is Jocally Dirichier. Let 'y be a small (N ~ {)-sphere
centered at V. Then for each region R = R which contains V we can find a
source pe R n Iy, Let AR, V) be the great circular ray which starts at ¥
and proceeds through p.

THEOREM 22. Let R be a praper convex tessellatian of an N-sphere. Then
R is Dirichiet tesselfation if and only if

(3} it is locally Divichlar, and

(2} for each region R, the rays 4R, V) have a peint in R in common.

Progt. We copy the proof of Theorem 15, When R is a Dirichiet tessella-
tion, Theorem 3 assures that AR, V) passes through the source P, Thas P
serves as a point which the rays MR, V) share.

Conversely, suppose that for each region R the rays (R, V) share a point
in R, Since R contains at least one pair of nonantipodal vertices, those rays
have a unique intersection in R

(5.1 P = 1 MR, V)m R

VoA verex of B
We shall show that P can serve as the source in ihe region R,

Let R and R be neighboring regions and P & R and P e R’ the corre-
sponding hypothetical souress. Since the N-dimensional spherical analopue
of Lemma 14 is true, once we show that the boundary R ~ R is part of the
perpendicalar bisector of segment PP’ we can conclude that R is the Dirich.
let tessellation based on P

Since R n R is (M — 1)-dimensional, we can find a nondegenerate
(N — 1)-simplex o = {¥,, ..., ¥y} of vertices shared by R and R'. Since R is
Dyirichles at each ¥, the rays MR, V) and AR, V) make equal anples at ¥
with the hypersphere H containing o, and lie on opposite sides of H. Then
Lemma 21, applied te the N-simplices P, ¢ and P, 7, shows that £ is the
reflection in H of P

O
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The second stage of our development is to eliminate hypothesis (1) from
Theorem 22 when all the vertices are (N + 1)-valent by proving that such
vertices are always Dirichlet. To do so we must generalize Theorem 18. And
that we accomplish by following Andrew (Gleasons suggestion that the
heart of that theorem was the inversion of barycentric coordinates.

Let o = {¥;, ..., ¥y} be a nondegenerate simplex in N-space. When we
come to use such simplices later they will lic on the N-sphere, but now we
wish to study rectilinear, not spherical geometry. Each point P in the hyper-
plane H which is the affine span of ¢ can be uniquely expressed in the form

P boVy 4+ o+ bWy
if we demand that

bod - by= 1.
We call the sequence

B(P) = (bg, ..., b

the barycentric coordinates of P, P is in the interior of ¢ just when all its
barycentric coordinates are positive. Suppose P is such a point, Let #{P) be
the point in o whose barycentric coordinates are the scalars 1/b;, normal-
ized to sum to 1.

Remark I. When N =1, o is a line segment ¥V, and r(P) is just the
reflection of P in the midpoint of the segment.

Next we study what happens when we project P and r(P) onto each facet
of o. Let o; be the (N ~ 1)-simplex spanned by all the vertices of o except
V;, and P! the intersection of line V, P with ;. For j=0, ..., N call the
barycentric coordinates of P/ the jth local barycentric coordinates of P in o.
They are the scalars

B(PYy = (BAPY, 4],
normalized to sum of 1,

Remark 2, The local barycentric coordinates of H{P) are the inverses of
the local barycentric coordinates of P:

br(P) = b(r(PY).

Suppose now that we are given P/ e o), j=0,..., N. Then the N + 1 lines
¥, P/ will concur in a point in ¢ if and only if the barycentric coordinates
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b PY) satisfy a set C,, of consistency conditions. Whea N = 2 Ceva's theorem
asserts that €, contains the single condition

ByP2) ba(PY) By(P7)

by(P) by{PY by(PY)

A precise statement of the contents of C,, woukd constitute a gencralization
of Ceva’s theorem. We do not need that much precision. The foilowing
remark suffices,

Remark 3. If a set of focal baryeentric coordinates, one sequence for ¢ach
facet, satisfy the identitics in Cy then so do the inverted Jocal coordinates.

The proof is straightforward. Since the orniginal local coordinates satisfy
Cy, they correspond to a peint £ in 6. Then Remark 2 shows the inverted
local coordinates correspond to r(P), and hence satisfy Cy .

Let & be a spherical N-simplex on the N-sphere T centered at €. Define
baryeentric coordinates and the map r on ¢ by identifying each point Pin ¢
on T with the intersection P of the radius CP and the hyperplane in
{N + 1)space spanned by the vertices of 7. Thus () is the point Qe
such that @ = 1P},

When N = 1, o is a circular arc V¥, ard n(P) is just the reflection of P in
the midpoint of that arc.

The map r on siriplices is related to but not identical with the curious
map [ discussed in Section 3. That map depended on symmetry about angle
bisectors while this one is based on symmetry about midpoints. In Section 3
we connecied the two with the law of sines. Here we shall use a duality
argument on the N-sphere.

Each simplex ¢ on the N-sphere has a polar simplex ¢¥ whose vertices V¥
are poles corresponding to the hyperspheres containing the facets o; and
whese facets o7 lie on the hypersphetes for which the original vertices ¥, are
the poics. Points on of correspond to great circular rays emanating from
V., andd vice versa. Moreover, when N = 2, so that each facet is a ciroular
arc, reflection of rays over angle bisectors at a vertex corresponds te reflec-
tion about the midpoint of the corresponding are in the polar triangle.

Now we are ready to generalize Lemma 17 and Theorem 18. Let V be an
{N + L)-valent vertex of a tessellation R of the N-sphere. For each region R
of R containing ¥ there is exzctly one ray at ¥ which is not a bounding ray
of R. Let t{R, ¥') be the extension of that ray through V. Since R is proper
R, V) meets the interior of R.
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THEOREM 23. An (N + 1)-valent vertex of a proper convex tessellation R
aof the N-sphere is a Dirichlet vertex, and for each region R containing V,

(5.2} MR, V)= re(R, V)

Progf. In Section 3 we proved the theorem in the plane. The proof on the
2-sphere is essentially the same, so we can now proceed by induction. Let I
be a small (N ~ 1)-sphere centered at ¥, and examine the tessellation R,
which R induces on I'. It has N + 1 vertices ¥,, ..., ¥y and N + 1 simpli-
cial regions, each of which has vertices of valence N. Figure 12 illustrates
the case N = 3. We show first that Ry is a Dirichlet tesseHation, thus
showing that R is Dirichlet at V.

Fig. 12. A tessellation of the 2-sphere induced by a d-valent vertex of a three-dimensional
tesseliation,

Leto = {¥, ..., ¥;} be one of the regions of R, The ray tio, ¥)) entering
o from vertex ¥} is the extension of arc Vo¥; and hence lies on a great circle
through V. The N great circles so constructed meet again at the point W
antipodal to ¥4, so the N arcs (g, V) concur. Since, by induction,

Mo, V) = ria(o, V)

it follows from Remark 3 and the definition of the map r that the T2YS
M, V;) concur at 4 point P in ¢. Theorem 22 then implies Ry is a Dirichlet
tessellation, so the original tessellation R is Dirichlet at ¥.

To finish the proof we must verify (5.2). To do so, suppose that R is a
region of R with ¥ as a vertex and that R ~ I is the simplex ¢ labelled as
above. Then t(R, V) lies on the great circle joining V, to ¥ in the original
tesseflation. That great circle is a diameter of I', and hence passes through
W. (Figure 13 illustrates the case N = 3)
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Fig. 13, Mustrating Theorem 23.

Since, inductively, P = W), and AR, V') passes through P while (R, V}
passes through W, it follows that AR, ¥) = rz(R, ¥)). O

Thus, coupling Fheorems 22 and 23, we have proved

THEOREM 24, On an N-iphere a proper convex tessellation all of whose
vertices have valence N + 1 is a Dirichiet tessellation if and only if for each
region R the rays

MR, Vi=rHdR, V) (V avertex of R)

concur gt a point in R. For simplicial regions that is equivalent to the concur-
rence of the rays (R, V).
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