
11/13/2002 CS 241 Fall 2002 1

CS 241
Computer Architecture and

Organization

Professor Richard Eckhouse
Office: W-2-013

Phone: 617-287-5776
email: eckhouse@cs.umb.edu

11/13/2002 CS 241 Fall 2002 2

Introduction

Particulars
Information sheet
Syllabus
Textbooks and reference books
Laboratories
Machine problems
Examinations

What this course is about
Distinction between computer architecture, organization, and
implementation
Experience with standard PCs both in the laboratory and
remotely

11/13/2002 CS 241 Fall 2002 3

Course Objectives

Provide hands-on experience with assembly
language programming
Understand the concepts of instruction sets
architecture, interrupts, serial/parallel ports,
digital logic, and memory/cache designs
Gain some insight into how microcomputers work -
the good, the bad, and the ugly - with the usual
associated trade-offs

Note: the textbook serves as a reference to fill in the
lectures -- may not be covered in detail, but you are
responsible for the material

11/13/2002 CS 241 Fall 2002 4

Getting Started

Lab:
Currently room 142 (has push-button lock)
Lab instructors: John Lentz (jlentz@cs.umb.edu) and Andrew Davis
(adavis@cs.umb.edu)

Modules:
Adding a new module in .cshrc

» “module load standard ulab”
Defines environment variables
Makes it possible to compile and run programs, fetch examples, get
necessary files

First assignment:
Get mp1.txt from course directory along with *.c and *.h files
Printout and read $pcex/pc.handout and $pcex/test.c

11/13/2002 CS 241 Fall 2002 5

The “Big” Picture

Sun Blade

emacs
mtip

ulab

u5-u9

Dial-up or PPP service
or Broadband

IBM Compatible

IBM Compatible

IBM Compatible

IBM Compatible

11/13/2002 CS 241 Fall 2002 6

Example

Want to compile and run test.c (bad name for a
program) on Unix and the SAPC (“stand alone
PC”)

Use Makefile
Produce both Sun and PC objects (.lnx extension)

» ex. gcc -o utest test.c
Uploading to the SAPC
Running
Exiting

Getting help, type: “help mtip”
How about running it in the lab?

11/13/2002 CS 241 Fall 2002 7

Basic PC Hardware

CPU, memory, cache, bus slots on motherboard
Serial and parallel ports, floppy and hard disk
controllers on I/O board
Video card
Keyboard and mouse
Variations do not change the architecture

11/13/2002 CS 241 Fall 2002 8

PC Software

16-bit “real mode” and 64K segments
BIOS - Basic Input/Output Services
DOS - Disk Operating System
Various EMS (Expanded Memory Systems) extensions
Windows

» Using extended memory

Modern operating systems using protected mode
OS/2
Linux
Windows 95, 98, ME, NT, 2000, and XP

11/13/2002 CS 241 Fall 2002 9

C Programming Environment

What do we know about C, makefiles, and Unix?
Understanding SAPCs on Unix

Portability - limited if we directly access the hardware
Operating Systems - separate users from hardware; a great advantage!
Program test.c (again, a bad choice of names)

» Why is it portable?
» What do we do to run it under Unix?
» Use the -v switch (i.e., gcc -v) to see the preprocessor, compile,

assemble, and link stages
How do you find out about such things?

» Use the -E switch to run only the C preprocessor
» Other switches: -S and -c

11/13/2002 CS 241 Fall 2002 10

C Programming Environment (Cont’d)

Cross-compiling
Replace gcc with i386-gcc
Whether Unix or SAPCs, process is the same!

How is our program loaded into memory under Unix?
SAPC?

reserved

code

data

stack

0

∞

2000
reserved

code

data

stack

0

400000

100100

11/13/2002 CS 241 Fall 2002 11

Differences Between Unix and SAPC

No kernel on SAPC
Use Tutor
No files

C compiler for SAPC
No malloc
No predefined string arrays
Can gain access to hardware

11/13/2002 CS 241 Fall 2002 12

Machine Project 1

Need to make mp1 subdirectory under cs241
Examine cmds.c and makefile
Modify cmds.c to add commands
Compile, download, execute

Remember to use scriptfiles

Have a Tutor to use in testing
Important differences in md on Tutor and tutor

Is your code portable?
Can it run on both the Unix machines and the SAPCs?

11/13/2002 CS 241 Fall 2002 13

Machine Project 1 (Cont’d)

Key to understand the problem is the typedef:
typedef struct {

char *cmdtoken; /* md or whatever--char string to invoke cmd */

int (*cmdfn)(); /* function to call when you see this cmd */

char *help; /* helpstring for cmd */

} cmd;

which defines the commands in the command table:
cmd cmds[] = {{"md", mem_display, “Memory display: MD <addr>”},

{”x", xit, “Exit” },

{NULL, NULL, NULL}}; /* null cmd to flag end of table */

and a parsed ‘md’ command calls:
mem_display(cmd *cp, char *arguments)

11/13/2002 CS 241 Fall 2002 14

Machine Project 1 (Cont’d)

so your job entails
converting the character string to an integer
using the binary number as an address
finding the contents of the address
displaying those contents

plus
adding other commands ‘ms’ and ‘h’ to the command table
writing code to make it all work!

Are your commands case sensitive?

11/13/2002 CS 241 Fall 2002 15

Accessing Hardware

Can’t do it under Unix
Why not?

Have the SAPCs to allow us to learn about hardware from
“hands-on” experience
Must start with some PC basics (486 machines)

Have eight 32-bit registers (note the missing “general purpose”)
Example:

Same is true for ebx, ecx, and edx (esp is always 32-bits) plus:
» A program counter (PC) known as eip
» And a status register (SR) known as eflags
» Some segment registers fixed at boot time

alaheax:

ax

11/13/2002 CS 241 Fall 2002 16

Accessing Hardware (Cont’d)

Can we examine the contents of these registers?
Yes, use Tutor with rd command; use ‘all’ to see more than base
set

What is the instruction set like
Familiar ‘mov’, ‘add’, ‘inc’, ‘jmp’, …

I/O instructions using a ‘port’
‘in’ and ‘out’ format for 64K different devices (but total is less
because some devices use many ports)
Works even if nothing is connected to the port!
Form is:

inb %dx,%al

16-bit port number
where to place 8-bit data

11/13/2002 CS 241 Fall 2002 17

Accessing Hardware (Cont’d)

More I/O information
Format for output is: outb %al, %dx
Could also use ‘pd’ in Tutor, ex. Tutor> pd 200
And ‘ps’, ex. Tutor> ps 378 FF
» Which sets all the data pins on that port to a logic 1
» What does ‘ps 378 0’ do?

A real port is the parallel port, LPT1, which we
will examine in Lab 3

11/13/2002 CS 241 Fall 2002 18

Parallel Port

Visually is a DB25 connector on back of computer

Data appears on pins 2-9, control/status on pins 1 & 10-17; pins 18-25
are ground
“TTL” signals

» v ≈ 0-1volts is considered low and a logic 0
» v ≈ 3-5volts is considered high and a logic 1

IBM defines up to three parallel port addresses but we will use 378h as
base address (see S&S, page 628)

» base used to send data to printer
» base+1 used to get status
» base+2 used for control

13 1

1425

11/13/2002 CS 241 Fall 2002 19

Parallel Port (Cont’d)

Can test PP by using ‘ps’ command of Tutor
ps 378 FF to set to all ones
ps 378 0 to set to all zeros

Very simple interface
Provides access to backplane bus
No transformation of data; simple protocol to use
Can be accessed from C

Port access
Could use those built into libraries specific to the PC
We have our own (cpu.h)

11/13/2002 CS 241 Fall 2002 20

Accessing the Parallel Port

All the necessary information is in cpu.h
void outpt(int port, unsigned char outbyte);
unsigned char inpt(int port);

port < 64K and outbyte is the 8-bit character
Example: outpt(0x378, 0xFF);

Don’t want wired in numbers so look at lp.h
#define LPT1_BASE 0x378

#define LPT2_BASE 0x278

#define LP_DATA 0 /* out, in: 8 bits of data */

#define LP_STATUS 1 /* in: status bits */

#define LP_CNTRL 2 /* in, out: control bits */

Examine testlp.c

11/13/2002 CS 241 Fall 2002 21

Accessing the Parallel Port (Cont’d)

Note that status is a read only port
Some examples

pd 378

0378 00 7F E0 . . .

ps 378 55

pd 378

0378 55 7F E0 . . .

ps 379 66

pd 378

0378 55 7F E0 . . . {no effect}

1110 0000

LP_PINTEN ≡ 0 {inits to off}

11/13/2002 CS 241 Fall 2002 22

Parallel Port Printing

“Handshaking” protocol
Data byte sent to parallel data port

All bits sent at once (i.e., parallel transfer)
No parity bits
Printer “strobed” through control port to say data byte is ready
Printer “acks” or acknowledges data received or gives an error
indication on status port

Data

Control

Status

Strobe

Ack

8-bits 8-bits

time

11/13/2002 CS 241 Fall 2002 23

Serial Ports (COM Ports)

Single wire for data out and single wire for data in
plus return path (i.e., ground)
Bits are passed one at a time in sequence

Internally, the data is passed in parallel from the CPU over the
bus to the serial port interface
When the sequence starts and stops has to be specified
How the bits are serialized has to be specified

8-bitsCPU UART
Bits sent in time,

not in space

11/13/2002 CS 241 Fall 2002 24

Serial Ports (Cont’d)

Signal levels for serial ports come from RS232 specification
and are not 0 to 5 volts

RS232 signal levels are -15 to 15 volts, nominally

PC specification allows up to four serial ports
COM1: base address is 3F8
COM2: base address is 2F8
Both have up to eight port addresses

» Base: receiver buffer on read / transmit buffer on write
» Base+1 and Base+2: interrupts and FIFO buffer
» Base+3: line control set up by Tutor
» Base+4: modem control
» Base+5: line status

11/13/2002 CS 241 Fall 2002 25

Serial Ports (Cont’d)

Examples:
ps 2F8 41 will send an ‘A’ out on com2, the online console

and you will see ATutor>
pd 2F8 will produce 02F8 0d . . .

Many examples on-line
Take a look at serial.h
Find things in $pcinc and $pcex
Use echo.c to read a character by polling until data is ready

Next homework on assembler but will look at this

11/13/2002 CS 241 Fall 2002 26

Strings

How are strings stored?
Assume string ‘hello’ is stored in memory starting at location 0x200000
Since memory is “byte addressable” each character (i.e., byte) has an
address

But numbers are stored a 32-bit integers

So how is the register stored in memory with a movl?

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ 0

0x200001

0x200000

MSB LSB
31 0

4 bytes

11/13/2002 CS 241 Fall 2002 27

Copying Bytes

Little-endian used with the PC
Example: 0x12345678 stored in memory

So what is big-endian? Motorola and IBM use it.
What happens when you move from a register to memory?

» Same thing; MSB goes to highest addressed byte

N
N +1
N + 2
N +3

78 56 34 12
N N +1 . . .

78
56
34
12

11/13/2002 CS 241 Fall 2002 28

The Assembler for the PC

Need to read “chap2.txt” found in $pcbook
We use the Gnu assembler which has a different syntax
Gas Intel syntax
movw $8, %ax mov ax, 8

addw $3, %ax add ax, 3

movl %eax, 0x200 mov [200], eax

Normally use full 32 bits for numbers and refer to the 32-bit
registers like %eax
In Gas we have source on the left and destination on the right

More convenient to let C do as much work as
possible

Will thus make our Gas routines callable from C

11/13/2002 CS 241 Fall 2002 29

Sum Two Numbers

Assembly code with supporting C syntax
#sum2.s -- Sum of two numbers
.text
.globl _sum2
_sum2: movl $8, %eax

addl $3, %eax
ret #number in eax

C “driver” code to execute sum2.s is called sum2c.c
extern int sum2(void)
void main(void) {
printf(“Sum2 returned %d\n”, sum2());

}

11/13/2002 CS 241 Fall 2002 30

Assembly and Driver Pair

The makefile in $pcbook expects a ‘matched pair”
The assembler file is xxx.s and the C driver file is xxxc.c
The form of the make is:

make A=myprog
Pick up the makefile from $pcbook

Always read the makefile that goes with the
program

11/13/2002 CS 241 Fall 2002 31

Some Initial Conventions

We will only use %eax, %ecx, and %edx to keep
good relations with our “C caller” routine
General syntactic construction for assembly code
is:

.globl _mycode

.text

_mycode:

. . .

ret

.data

mydata: .long 17

11/13/2002 CS 241 Fall 2002 32

Forms of Addressing

Have used % for registers and $ for immediate
addressing using Gas

Intel does not use the $
But what is an immediate address?

Direct addressing
Intel uses [] pair while Gas does not use anything
But what is a direct address?
Example: movl %eax, total

movl total, %edx

. . .

total: .long 0

11/13/2002 CS 241 Fall 2002 33

Forms of Addressing (Cont’d)

Direct addressing
Why can’t we write something like:

movl first, second

Symbolic addressing
Of the form ‘SYMBOL = value’
Example: NCASES = 8

movl $NCASES, %eax

Add instruction with immediate and direct
addressing

addl $2, %eax
addl item, %eax
addl %edx, sum

11/13/2002 CS 241 Fall 2002 34

Assembly Language Programming

Strategy
Move quantities into registers, compute, and move results back
to memory
Registers like a scratchpad
Registers are local memory
Registers are part of the memory hierarchy

» What else is in the hierarchy?

Why use registers rather than memory?
What else are registers good for but holding
intermediate results?

11/13/2002 CS 241 Fall 2002 35

mp2 – Passing Arguments

How are you going to pass arguments, if you pass
them at all?
Option 1

Could write:
cnt = counta(“aabbccabcabc”);

The called routine would receive a constant pointer to a string
that is pushed on the stack
To remove the pointer from the stack the code would be:
movl 4(%esp),%edx

Why the offset of 4? Why place the results in %edx

11/13/2002 CS 241 Fall 2002 36

Passing Arguments (Cont’d)

Option 2
Value stored in counta subroutine:
string: .asciz “aabbccabcabc”

Still need to fetch the string using the %edx register
movl $string,%edx

11/13/2002 CS 241 Fall 2002 37

Lewis Carroll, Through the Looking Glass
"The name of the song is called 'Haddocks' Eyes.’”
"Oh, that's the name of the song, is it?" Alice said trying to feel interested.

"No, you don't understand," the Knight said, looking a little vexed. "That's
what the name is called. The name really is 'The Aged Aged Man.'"
"Then I ought to have said 'That's what the song is called'?" Alice corrected
herself.

"No, you oughtn't: that's quite another thing! The song is called 'Ways and
Means': but that's only what it's called, you know!"
"Well, what is the song, then?" said Alice, who was by this time completely
bewildered.

"I was coming to that," the Knight said. "The song really is ‘A-sitting On A
Gate': and the tune's my own invention.“

11/13/2002 CS 241 Fall 2002 38

Loops - The Heart of Programming?

Many problems require repetitious operations
How do you break out of a loop?

Use conditional branches (or jumps)
» Simplest loop instructions are: jne and jnz
» These instructions jump to another location in our code

based on the z bit in the eflags register
Other conditional branches include jge, jle, je, jl, and jg
These are called “signed” conditional branches

» Are there “unsigned” conditional branches
What is the difference between signed and unsigned conditional
branches?

11/13/2002 CS 241 Fall 2002 39

Countdown Loop

Sum up first ten integers
_sum10: movl $10, %ecx # set up count

movl $0, %eax # initialize sum

addint: addl %ecx, %eax # add next value

decl %ecx # decr and set z flag

jnz addint # loop on z flag

movl %eax, sum # if not a function

ret # returning a value

Loop instruction combines decrement, test, and
branch conditional, so decl/jnz pair replaced by

loop addint # decr and loop

11/13/2002 CS 241 Fall 2002 40

Mixed Language Support

Use most appropriate code to get the job done
Want to go back and forth between C and assembler
Can use printf to help debugging in assembler
Already have some rules to follow

» Use only %eax, %ecx, and %edx as “scratch” registers
» Assume C functions “clobber” the contents of these

registers
» Assume the caller knows that the contents of these registers

are clobbered
» If the values are to be preserved, then we need a

save/restore mechanism to get through the call
» Most modern machines have a stack to support such a

save/restore mechanism -- built into the x86 architecture

11/13/2002 CS 241 Fall 2002 41

Push and Pop

The pushl operation decrements %esp by 4 while
the popl operation increments it by 4
Also have pushw with corresponding pops
Examples:

pushl $7

pushl %eax

pushl x

popl %edx

popl x

popl $7 # this won’t work

11/13/2002 CS 241 Fall 2002 42

Preserving Registers

Want to save the contents of a register when we
make a call to a C function

pushl %eax
call a_C_routine #clobbers eax
popl %eax

What’s missing here? Most C function/library
calls take arguments

printf(“%d”, x);

So how do we call printf from our assembler code?

a 32-bit integera string pointer
or, two 32-bit arguments

11/13/2002 CS 241 Fall 2002 43

Calling a C Function

Want to use something like printf inside some
assembly code:

pushl x # x is a 32-bit integer

pushl $format # pointer to format string

call _printf # the C printf routine

addl $8, %esp

. . .

.data

x: .long 0x341256

format: .asciz “%d”

Have to watch out for %ecx -- it too may get
clobbered as the next example shows

11/13/2002 CS 241 Fall 2002 44

Printing From Assembler

Assembly code to print Hello twice within a loop:
.globl _dhello

.text

_dhello: movl $2, %ecx # set up count

doline: pushl %ecx # save count

pushl $hellostr # the string constant

call _printf # clobbers eax, ecx, edx

addl $4, %esp # restore stack

popl %ecx # restore count

loop doline # decr, test, and branch

ret

.data

hellostr: .asciz “Hello\n”

11/13/2002 CS 241 Fall 2002 45

Printing From Assembler (Cont’d)

The C calling routine (call it dhelloc.c according to
our convention) to get things going is:

extern void dhello(void);

void main()

{

dhello();

}

11/13/2002 CS 241 Fall 2002 46

Call/Return Use of Stack

Suppose the assembler code wants to be equivalent
to the C code:

printf(“%d”, x);

the actual assembler code would look like:
pushl x
pushl $format
call _printf

Then the stack would look like:
Which way is the stack growing?
Where was the %esp pointing to before
the first pushl?

?

?

old %eip

format

x

?

%esp

11/13/2002 CS 241 Fall 2002 47

Call/Return Use of Stack (Cont’d)

In general, when you reach a function
The “old” %eip (i.e., the return address) is at the “top of the
stack” and %esp holds its address
The first argument is next in memory at the address
corresponding to the contents of %esp+4

» We would write this as 4(%esp)
The next argument is ….

Note that this last form of addressing is called
“indirect”

It uses the contents of the register as an address and not data
We use the contents of the register to reach into memory for an
operand
Examples: movl $1,%edx versus movl $1,(%edx)

11/13/2002 CS 241 Fall 2002 48

More Examples

z = add2(x, y) where both x and y are
integers

The caller pushs y and then x on the stack
Then add2 is called
The stack looks like
But why is y pushed first?

What does add2 look like?
_add2: movl 4(%esp), %eax # get x

addl 8(%esp), %eax # add in y

ret

x
y

(%esp)
4(%esp)
8(%esp)

11/13/2002 CS 241 Fall 2002 49

More Examples (Cont’d)

This time we pass an address when we call using
add3(x, y, &z)

The code looks like:
_add3: movl 4(%esp), %eax

addl 8(%esp), %eax

movl 12(%esp), %edx

movl %eax, (%edx)

ret

Note the use of the pointer in the last two move instructions
This is the dereferencing we speak about in C

x
y

(%esp)
4(%esp)
8(%esp)
12(%esp) z

11/13/2002 CS 241 Fall 2002 50

Scanning Pointer Problem

Want to sum up the elements in an array of N
elements

.data

iarray: .long 1, 4, 9, 16, …

The code might look like:
_sumarray: movl $0, %eax # initial sum

movl $N, %ecx # initial count

movl $iarray,%edx # initial pointer value

add1: addl (%edx), %eax # add in next element

addl $4,%edx # bump pointer

loop add1 # test and loop

ret

11/13/2002 CS 241 Fall 2002 51

Loose Ends

What if we want to use a “non-scratch” register such as
%ebx?
Recall our “hello” example now modified;
_dhello1: pushl %ebx # save register contents

movl $2, %ebx # put something into %ebx

printit: pushl $hellostr # string pointer

call _printf # go print it

addl $4, %esp # restore stack

decl %ebx # count down

cmpl $0, %ebx # at end?

jnz printit # if not, loop

popl %ebx # restore %ebx

ret

Matched pair

11/13/2002 CS 241 Fall 2002 52

Stack Management

How do you pass information to functions
In registers
In memory -- statically or in the heap (not on the SAPC since no
malloc)
On the stack

The stack is used to hold:
Return addresses
Parameters
Automatic data

Since functions call other functions, there is a
nesting of stack information called stack frames

11/13/2002 CS 241 Fall 2002 53

Assembly Language I/O

Have the instruction: inb
which is used as follows: inb %dx, %al
Also have: outb
which is used as follows: outb %al, %dx
When called from C, such as:

outpt(port, byte);

how do we get the arguments?
We use the stack:

movw 4(%esp),%dx # port into dx

movb 8(%esp),%al # byte into al

11/13/2002 CS 241 Fall 2002 54

portio.s
.globl _outpt, _inpt

.text

output byte to port

call from C: outpt(port, byte)

_outpt: movw 4(%esp),%dx # port into dx

movb 8(%esp),%al # byte into al

outb %al, %dx # OUT instruction

ret

input byte from port

call from C: byte = inpt(port)

_inpt: xorl %eax,%eax # clear eax

movw 4(%esp),%dx # port into dx

inb %dx,%al # IN instruction: byte into al

ret # return with byte in al

11/13/2002 CS 241 Fall 2002 55

Condition Codes or Flags

Find in text on page 88
ZF or zero flag is set when an arithmetic or logical
operation produces a result of zero

Examples would be adding -1 and +1, or decrementing a variable
Note that moves, I/O, and push/pop instructions do not set this flag
(unlike other machines)
Example:

cmpb $’0’,%al # test if al holds a ‘0’

SF or sign flag is set if an arithmetic or logical operation
generates a result where the MSB is a 1

Examples would be decrementing a variable from 0 to -1, or adding a
large negative number to a smaller positive number

11/13/2002 CS 241 Fall 2002 56

Carry Flag - Addition

CF or carry flag is set if an arithmetic operation produces a
result that exceeds the capacity of a register

Set by a carry out of or a borrow into the high order bit
Examples (unsigned):

0xB0 1011 00002 17610

0x60 0110 00002 9610

1 0x10 1 0001 00002 27210

The carry flag is set if there is a carry out of the MSB of the
arithmetic result (what is overflow?)
Question, what would this mean if the numbers were signed?

Carry bit

11/13/2002 CS 241 Fall 2002 57

More on the Carry Flag

Consider the following
movb $0xB0,%al

addb $0x60,%al

What result is produced in %eax?
» First instruction produces: %eax = 000000b0
» Second instruction produces: %eax = 00000010

plus the carry flag is set

This is out of bounds for unsigned numbers
What happens for signed numbers
Now we have to handle overflow

11/13/2002 CS 241 Fall 2002 58

Overflow -- Addition

Suppose we want to add 0x60 to itself?
0110 0000 0x60
0110 0000 0x60
1100 0000 0xC0

If the arithmetic is unsigned, this is okay; but if it is
signed, then the result is incorrect due to the carry
into the MSB
Overflow occurs whenever both operands are of
the same sign and the result generated is of the
opposite sign

In the example above for signed numbers, the overflow bit
would be set and the carry bit would not be set

11/13/2002 CS 241 Fall 2002 59

Compare Sets Flag Register

Normally, unsigned compare is defined as:
compare == if ZF =1
(subtract) < if ZF = 0 && CF =1

> if ZF = 0 && CF = 0

Graphically, we can represent signed and unsigned
numbers as:

−∞ +∞
0

-128 +128 +255

unsigned

signed

CF = 1 (borrow) CF = 1 (carry)CF = 0

OV = 0
SF = 1

OV = 0
SF = 0

OV = 1
SF = 1

OV = 1
SF = 0

11/13/2002 CS 241 Fall 2002 60

Compare Sets Flag Register (Cont’d)

So we can now say for a signed compare:
compare == if ZF =1
(subtract) < if ZF = 0 && OV !=SF

> if SF = OV
An important point to remember:

Unsigned comparisons use ABOVE and BELOW
Signed comparison use GREATER and LESS

11/13/2002 CS 241 Fall 2002 61

Using Conditional Jumps

Use the flags register but what actually happens
depends on whether the operands are unsigned or
signed

Examples:
cmpl op2,op1 # op1 - op2 > 0

jg label # test if greater than

tests ZF + (SF + OF) = 0

How about if Temp > 100?
cmpl $100,temp # note restriction on operands

jg hitemp

11/13/2002 CS 241 Fall 2002 62

More Conditional Jumps

Want to bracket a value
if 10 ≤ X ≤ 20 then do_it
Let’s assume that X is in %eax; the code would look like:

cmpl $10,%eax # check lower bounds

jl skip # skip if < 10

cmpl $20,%eax # check upper bounds

jg skip # skip if > 20

do_it: # do it

…

skip: # do not do it

Examine Table 3-6 in S&S

11/13/2002 CS 241 Fall 2002 63

Addressing Modes

Displacement
While Intel specifies it as: mov 4[ebx],al
We use gnu and it becomes: movb %al,4(%ebx)

Very useful for indexing through a range of values and is commonly
found on RISC and CISC machines

Scaled
Again, Intel specifies as: mov array[4*edx],eax
We use gnu and it becomes: movl %eax, array(,%edx,4)

Summarizing, we have:
Register Register indirect
Immediate Register indirect with displacement
Direct Scaled index

11/13/2002 CS 241 Fall 2002 64

Using C Structs

How do we access a C structure such as:
#define NAMELEN 20

struct teststruct {

int x, y;

char name[NAMELEN];

};

struct teststruct t;

t.x = 2; t.y = 5;

strcpy(t.name, “eckhouse”);

trystruct(&t); /* param passed to asm
via pointer */

11/13/2002 CS 241 Fall 2002 65

Using C Structs (Cont’d)

Assembly code would look like:
movl 4(%esp),%edx # ptr to t

movl (%edx),%eax # x itself

. . .

movl 4(%edx),%eax # y itself

If we want the string pointer we
need to:

movl 8(%edx),%edx # ptr to named string

movb (%edx),%al # first char in string

Other fancier modes but we can live without
them

ret EIP
4(%esp) x

y

string

11/13/2002 CS 241 Fall 2002 66

Serial Communications (RS232)

Allows us access to more of the “real” hardware
Able to detect and measure what is happening
Regardless of 9- or 25-pin connectors (DB9 or DB25) have 8 pins
carrying information

» Two data pins for sending and receiving
» One ground pin
» Five control pins

See page 647 of S&S for the 8 data, status, and
control ports

Notice that some ports provide a dual function depending on a
read or write operation
See serial.h for the C definitions of the ports and offsets

11/13/2002 CS 241 Fall 2002 67

COM1 Port

The first port is addressed at 3F8, but we can use
COM1_BASE+UART_RX (or ...UART_TX)

Must be able to determine if a character is available
Use UART_LSR to access status bits:

UART_LSR_DR for data ready bit

UART_LSR_THRE for transmit-hold-register-ready
bit

See serial.h for all the other bits

11/13/2002 CS 241 Fall 2002 68

Polling the COM Port

Can be done in C

and assembly language as well
But in Gas we use inb and outb

#include <serial.h>

void pollputc(unsigned char ch) {
while ((inpt(COM1_BASE + UART_LSR) & UART_LSR_THRE) == 0)

; /* polling loop, waiting for THRE bit to go on */
outpt(COM1_BASE + UART_TX, ch);

}

11/13/2002 CS 241 Fall 2002 69

Serial Communication Signal

Nominally TTL is 5 volt logic; this is true inside the
PC and includes the UART
RS232 is not 5 volt logic; it nominally ranges from
-15 volts to +15 volts

Besides the data lines there are the modem control
lines called RTS, CTS, DSR, DTE, and CD

UART Interface
Chip

RS232
Connector

TTL level signals

Bus
& CPU

RS232 level signals

0 +3-3-12-15 +12 +15

Typical - Positive or SpaceTypical - Negative or Mark

11/13/2002 CS 241 Fall 2002 70

Defining the Serial Interface

-12v = Mark = 1

One character

7 data bits
Parity bit Stop bit

+12v = Space = 0

Need to also describe the RS232 physical layer
protocol

Data communications equipment (DCE)
Data terminal equipment (DTE)

Start bit

11/13/2002 CS 241 Fall 2002 71

The RS232C Physical Layer

Originally created as a standard between computer
equipment and modems
Specifies the plug/socket connections, the
transmission path, and the signals (control and
data)
Modem is the DCE (Data Communications
Equipment)
Digital equipment connected to modem is DTE
(Data Terminal Equipment)

DTE DCE DCE DTEPSTN

11/13/2002 CS 241 Fall 2002 72

RS232C Control Lines

DTE

DTE

DCE

DCE

2 2

7 7

2
3
7

2
3
7

Half Duplex

Full Duplex

11/13/2002 CS 241 Fall 2002 73

Connecting RS232C Devices

Can you connect two DTEs together?
Can you connect two DCEs together?
Control and data signals for the 25-pin DTE:

Protective ground (pin 1)
Transmitted data (pin 2 - outgoing)
Received data (pin 3 - incoming)
Request to send (pin 4 - outgoing)
Clear to send (pin 5 - incoming)
Data set ready (pin 6 - incoming)
Signal ground (pin 7)
Carrier detect (pin 8 -incoming)
Data terminal ready (pin 20 - outgoing)

11/13/2002 CS 241 Fall 2002 74

Flow Control

Both hardware and software flow control
SW uses X-ON and X-OFF
HW uses DTR/DSR and RTS/CTS but that only works between
electrically connected systems; DCD needed over PSTNs

How do you decide who is the transmitter?
Check for a voltage more negative than -3v on pins 2 and 3 since
transmitter sends a marking signal when idle

How do you decide who is the originating modem
and who is the answering modem?

Example from old Bell 103A
» Originator uses: Space at 1070 cps, Mark at 1270 cps
» Receiver uses: Space at 2025 cps, Mark at 2225 cps

11/13/2002 CS 241 Fall 2002 75

For a two input, one output gate, how many
possibilities are there?

Assume a basic understanding of AND, OR, NOT,
XOR and the negated forms: NAND and NOR

Basic Logic Gates

x y z

0 0 0 0 0 0 0 0 0 0 ... 1
0 1 0 0 0 0 1 1 1 1 ... 1
1 0 0 0 1 1 0 0 1 1 ... 1
1 1 0 1 0 1 0 1 0 1 ... 1

?x
y z

11/13/2002 CS 241 Fall 2002 76

Basic Logic Gates

Are there any limits to the number of inputs?
What about limits on outputs?
Can you input pulse trains rather than constant
inputs?

???

11/13/2002 CS 241 Fall 2002 77

What About Combinations?

What is the output of this circuit?

Can you make the truth table for this circuit?

A

N

O

NAND

a

b

c

?

11/13/2002 CS 241 Fall 2002 78

Timing Considerations

Things don’t happen instantaneously
Signals arrive at some time
The logic takes some time to react
The output appears some time after the inputs

Example, an AND gate

A
B

Y

Y

A

B

11/13/2002 CS 241 Fall 2002 79

Combining the Basic Logic Gates

Decoders
Encoders
Selectors - Multiplexers
ALUs
Control Units
Buses
Simple computers

11/13/2002 CS 241 Fall 2002 80

Binary Decoder

Black box with n input lines and 2n output lines
Only one output is a 1 for any given input

Binary
Decoder

n
inputs 2n outputs

11/13/2002 CS 241 Fall 2002 81

Building a Binary Decoder

Start with a 2-bit decoder:

AND

AND

AND

AND

X1

X0

Y0

Y1

Y2

Y3

Enable

11/13/2002 CS 241 Fall 2002 82

Then Add Two to Make Three...

2-bit
Decoder

Y0
Y1
Y2
Y3

2-bit
Decoder

Y4
Y5
Y6
Y7

NOT

X0

X1

X2

11/13/2002 CS 241 Fall 2002 83

Developing an Encoder
If we can decode, then we need to encode
Want to encode from 1 out of n into a binary weighted form
A keyboard encoder does this

OR

OR

OR

Y0

Y1

Y2

X1

X2X3

X4...
X7

X0 NC

11/13/2002 CS 241 Fall 2002 84

Like a switch; also called a multiplexer or MUX

Again, built it up from a simple base element

Next Comes a Selector

MUX
or

Selector

a
b
c
d

y

S1 S2

11/13/2002 CS 241 Fall 2002 85

A 1-bit Selector

Decoder

AND

AND

AND

AND

O
R

a

y
b

c

d

S1 S2

11/13/2002 CS 241 Fall 2002 86

A 4-bit Selector

a0b0c0d0

S0 S1

Y0

a3b3c3d3

Y3

MUX

A
B
C
D

S

Y

MUX

A
B
C
D

Y

S

4
4
4
4

2

4

11/13/2002 CS 241 Fall 2002 87

Logical and arithmetic operations
Variations in

Base
» Binary
» Decimal
» BCD

Implementation
» Serial
» Parallel
» Pipelined

The ALU Is Next

ALUControl Signals CCs

A B

f(A,B)

11/13/2002 CS 241 Fall 2002 88

Other ALU Design Issues

Operand interpretation
Integer
Multiple precision
Floating-point

Operand representation
Sign-magnitude
Complement
Bias exponent

Mathematical consistency
Under/over-flow
Exceptional values
Anomalies

11/13/2002 CS 241 Fall 2002 89

Simple Example - Serial by Bit Adder

Develop a half-adder (HA)
Use HA to build a full-adder (FA)
Of course, this is not all there is to it

11/13/2002 CS 241 Fall 2002 90

The Half-Adder

HA

a b Sum Carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

a
b

Sum
cout

AND

OR AND

a
b cout

Sum

ba
babababa

•=
+•+=•+•=

Carry
)()()()(Sum

11/13/2002 CS 241 Fall 2002 91

From HA to FA

Full
Adder

a b cin Sum Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

a
b
cin

Sum

cout

Half
Adder

Half
Adder

OR

a

b

cin
Sum

Cout

11/13/2002 CS 241 Fall 2002 92

Practical Logic Gates

Transistor-Transistor-Logic (TTL) is generally in
14- (or 16-pin) package with Vcc on pin 14 (or pin
16) and GND on pin 7 (or 8) BUT NOT ALWAYS
Can build combinational or sequential circuits, with
sequential being a combinational circuit with
memory

Combinational

Memory

input output

11/13/2002 CS 241 Fall 2002 93

Simple Memories (Flip-Flops)

Many different circuits; simplest is R-S
Note the complemented inputs
Can buy a standard TTL R-S flip-flop (279)

S R Q Q

0 1 1 0
1 0 0 1
1 1 no change
0 0 prohibited

S
R

Q
Q

S

R Q

Q

11/13/2002 CS 241 Fall 2002 94

Programmable Interval Timer (PIT)

Basic idea is to count down from some preset value
(see Sec. 7-5 in S&S)
Sixteen bit count at a rate of 1.193 MHz.
(approximately every microsecond)
Full downcount = 64K/1.193 x 106 = 1/18.2 sec or
55 milliseconds
Can use this downcount to time to 55 millisecond
accuracy by reading downcount value
Examine Intel 8254 datasheet: find three channels
on the chip so three timer/counter circuits
(http://www.intel.com/design/periphrl/datashts/231
244.htm)

11/13/2002 CS 241 Fall 2002 95

PIT Characteristics

PIT chip has four I/O ports assigned to it:
A1 A0

Timer 0 assigned port 40 = 0100 0000
Timer 1 assigned port 41 = 0100 0001
Timer 2 assigned port 42 = 0100 0010
Control assigned port 43 = 0100 0011
Chip selected by “chip select” and A1-A0

Other signals include read, write, and data

11/13/2002 CS 241 Fall 2002 96

Control Word Format

Actually only a byte:

SC1-SC0 select which counter to write/read
RW1-RW0 to latch value or select which byte of
count value
M2-M0 determines which operating mode
BCD specifies whether binary or BCD count
Command formats found in datasheet

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

11/13/2002 CS 241 Fall 2002 97

Using the PIT in C

Refer to timer.h
#define TIMER0_COUNT_PORT 0X40
#define TIMER_CNTRL_PORT 0X43
/* bits 6-7: */
#define TIMER0 (O<<6)
#define TIMER1 (1<<6)

/* Bits 4-5 */
#define TIMER_LATCH (0<<4)
#define TIMER_SET_ALL (3<<4)

/* Bits 1-3 */
#define TIMER_MODE_RATEGEN (2<<1)

/* Bit 0 */
#define TIMER_BINARY_COUNTER 0

11/13/2002 CS 241 Fall 2002 98

Programming the PIT

Bits to initialize
TIMER0 | TIMER_SET_ALL | TIMER_RATEGEN
|TIMER_BINARY_COUNTER

Output to the timer I/O port
outpt(TIMER_CNTRL_PORT, …);

Then load the downcount
outpt(TIMER0_COUNT_PORT, count & 0xFF); //
LSByte

outpt(TIMER0_COUNT_PORT, count >> 8); //
MSByte

11/13/2002 CS 241 Fall 2002 99

What Are the PIT Modes?

Mode 0: Count value loaded and countdown occurs
on every clock signal; Out from counter remains
low until count reaches 0 when it goes high

Mode 2: Counts down from loaded value; when
count has decremented to 1, OUT goes low for one
clock pulse and then goes high again; count is
reloaded and process repeats

Count = 1 Count = 0

11/13/2002 CS 241 Fall 2002 100

What Are the PIT Modes? (Cont’d)

Mode 3: Functions as a divide by n square wave
generator, where n is the count value; OUT starts
high and alternates between low and high.

11/13/2002 CS 241 Fall 2002 101

Reading the Count Values

Want to read the count value without disturbing
the count in progress
Have to consider that the counter is changing while
we are attempting to read it
Best way to read the count is to use the counter
latch command to temporarily latch the count
outpt(TIMER_CNTRL_PORT, TIMER0 | TIMER_LATCH);

count = inpt(TIMER0_COUNT_PORT);

count |= (inpt(TIMER0_COUNT_PORT) << 8);

Note that reading the count lets the latch again
follow the count

11/13/2002 CS 241 Fall 2002 102

Converting Counts to Real Time

Can count from 1 to 64K, that is from
approximately one microsecond to 55 milliseconds
What if we want something longer than that?

Have to perform repeated counts
» Example: 200 milliseconds = 3 * 55 +35
» Would need three full counts (called ticks) plus a partial

count (called downcounts)
But how do you know when a tick has occurred?

» Could poll the device
» Better to use an interrupt

If interrupt occurs on every tick, which is counted, then the
elapsed time in microseconds is approximately:

» [#ticks * 65536 + (startcount - stopcount)]/1.193

11/13/2002 CS 241 Fall 2002 103

Measuring the Time Interval

Given:
Event A happened 30000 downcounts after tick 200
Event B happened 22000 downcounts after tick 202

how much time has elapsed?
Graphically

Tick 200 Tick 201 Tick 202

Event A

30,000 downcounts

Event B

22,000 downcounts

Elapsed time = 202 ticks + 22000 downcounts - (200 ticks +
30000 downcounts)
And tick = 64*1024 downcounts

11/13/2002 CS 241 Fall 2002 104

Interrupts for PCs in Protected Mode

What is an interrupt?
What does an interrupt do to the “flow of control”
Priority levels
Vectoring of interrupts

None
Vectored

Interrupts used to overlap computation & I/O
Examples would be console I/O, printer output, and disk accesses

Normally handled by the OS so under UNIX and NT, rarely
coded by ordinary programmers

In embedded systems and real-time systems, part of the normal
programming work

11/13/2002 CS 241 Fall 2002 105

Interrupts (Cont’d)

Why interrupts over polling? Because polling
Limits the CPU to one activity
Uses cycles that could be used more effectively
Code can’t be any faster than the tightest polling loop

Bottom line: an interrupt is an asynchronous
subroutine call (triggered by a hardware event)
that saves both the return address and the system
status

11/13/2002 CS 241 Fall 2002 106

When an Interrupt Occurs

Finish the current instruction
Save minimal state information on stack
Transfer to the interrupt handler, also known as
the interrupt service routine (ISR)
But there is more to it than this...

How do we know which device interrupted?

And what happens if two (or more) devices request
an interrupt at the same time?

11/13/2002 CS 241 Fall 2002 107

Interrupts

Complex hardware setup
Needed for multitasking/multiprogramming OS

Devices use IRQs to signal interrupt controller

Device
A

Device
B

Interrupt
Controller CPUIRQ

IRQ
interrupt

enable bit

Bus

11/13/2002 CS 241 Fall 2002 108

Interrupt Controller

On the PC known as the PIC which stands for
“Programmable Interrupt Controller”
Programmable means it has multiple possible
behaviors selectable by software (via its own I/O
ports)
Devices send IRQ signals to interrupt controller
Interrupt controller prioritizes signals, sending
highest to CPU

11/13/2002 CS 241 Fall 2002 109

CPU Interrupt Handling

Enabling/disabling interrupts in the CPU
sti and cli instructions set and clear IF in EFLAGS

CPU checks for interrupts between instructions if
interrupts enabled (IF = 1)

Must save CPU state
Get ID (“nn”) of interrupting device from interrupt controller
Uses nn to look up address of interrupt handler (ISR)
CPU enters kernel mode with IF=0

ISR services the interrupt, including resetting the
interrupt controller; ends with a special instruction
“iret” on x86 to restore previously saved state and
resume from point of interrupt

11/13/2002 CS 241 Fall 2002 110

Interrupt Controller Details

Each device has an IRQ number based on its
wiring to the PIC

Ex. COM2 uses IRQ3, timer 0 uses IRQ0

PIC: the 8259A chip
Supports eight interrupt request (IRQ) lines
Two chips used in PC, called “master” and “slave”
Priority: highest to lowest order is IRQ0-1, IRQ8-15, IRQ3-7
Asserts INTR to CPU, responds to resulting INTA# with an 8-
bit interrupt type code (“nn”) on the data bus

11/13/2002 CS 241 Fall 2002 111

Interrupt Controller Programming

PIC is accessible at port addresses 0x20 and 0x21
(for master), using “initialization command words”
(ICWs) and “operational command words”
(OCWs)
ICWs used to set such things as:

How much to add to the IRQ to produce nn (8 used for DOS,
0x20 for Linux, 0x50 for Windows)
We trust the (Linux) bootup code to handle this setup

OCWs used for:
EOI command: Reset interrupt in PIC after accepted by ISR
(outb of 0x20 to port 0x20, for master)
Get/Set Interrupt Mask Register (port 0x21 for master)

» Ex: 0111 1110 = 0x7e enables IRQs 0 and 7, disables 2-6

11/13/2002 CS 241 Fall 2002 112

Interrupt Process

Requesting device generates a signal on IRQn
PIC checks its interrupt mask before putting out a
logic high on INTR line
Between instructions, and if IF=1, the CPU sees
INTR and initiates its interrupt cycle
The interrupt handler (ISR) executes
Requesting device is usually accessed in the ISR
and is thus notified of the completion of the event

Ex: UART receiver detects inb for received char

11/13/2002 CS 241 Fall 2002 113

CPU’s Interrupt Cycle

CPU detects INTR between instructions with IF=1
CPU sends back a low on INTA#
PIC responds by setting INTR low and puts out 8-
bit interrupt code, nn, on data lines
CPU reads nn and executes int nn instruction:

Machine state saved on stack (cs:eip and eflags)
IF set to zero
Accesses IDT[nn] to obtain ISR address
ISR address loaded in eip

» Change in eip causes the interrupt handler to execute next

11/13/2002 CS 241 Fall 2002 114

Interrupt Handler Details

ISR must:
Save all registers used
Issue EOI command (end-of-interrupt) to PIC
Service the device, i.e., do whatever processing is needed for the
event the device was signaling

» Ex. Read the received character, for UART receiver int’s
Restore registers
Finish with iret instruction

11/13/2002 CS 241 Fall 2002 115

PIT Device (Timer 0)

Simplest device: always is interrupting, every time
it down counts to zero
Can’t disable interrupts in this device! Can mask
them off in the PIC
We can control how often it interrupts
Timer doesn’t keep track of interrupts in
progress—just keeps sending them in
So we don’t need to interact with it in the ISR (but
we do need to send an EOI to the PIC)

11/13/2002 CS 241 Fall 2002 116

Timer Interrupt Software

Initialization
Disallow interrupts in CPU (cli)

» Unmask IRQ0 in the PIC by ensuring bit 0 is 0 in the
Interrupt Mask Register accessible via port 0x21

» Set up interrupt gate descriptor in IDT, using irq0inthand
» Set up timer downcount to determine tick interval

Allow interrupts (sti)

Shutdown
Disallow interrupts (cli)

» Disallow timer interrupts by masking IRQ0 in the PIC by
making bit 0 be 1 in the Mask Register (port 0x21)

Allow interrupts (sti)

11/13/2002 CS 241 Fall 2002 117

Timer Interrupts:
Two Parts to the Interrupt Handler

irq0inthand – the outer assembly language
interrupt handler

Save registers
Calls C function irq0inthandc
Restore registers
Iret

irq0inthandc - the C interrupt handler
Issues EOI
Increase the tick count, or whatever is wanted

11/13/2002 CS 241 Fall 2002 118

UART Interrupts

The UART is a real I/O device, more typical of
interrupt sources than timer 0
The UART has four ways to interrupt; we’ll study
just receiver interrupts
No interrupts are enabled until we command the
UART to enable them, via register 1, the IER (i.e.,
port 0x3f8 + 1 or port 0x2f8 + 1)

11/13/2002 CS 241 Fall 2002 119

UART Receiver Interrupts

The receiver interrupts each time it receives a char,
and remembers the interrupt-in-progress
COM1 is connected to pin IR4 on the PIC, so its
IRQ is 4 Similarly COM2’s is 3
The nn code generated by the PIC for COM1 is
0x24, so its interrupt gate descriptor is IDT[0x24]
The ISR must read in the received char to satisfy
the UART, even if no one wants the char. It also
must send an EOI command to the PIC
The receiver detects the inb for the char, and this
completes the interrupt-in-progress

11/13/2002 CS 241 Fall 2002 120

UART Interrupts (COM1)

Initialization
Disallow interrupts in CPU (cli)

» Enable interrupts in the UART (outb to port 0x3f9, IER)
» Unmask IRQ4 in the PIC by ensuring bit 4 is 0 in the Interrupt

Mask Register accessible via port 0x21
» Set up interrupt gate descriptor in IDT, using irq4inthand

Allow interrupts (sti)

Shutdown
Disallow interrupts (cli)

» Disable interrupts in the UART
» Disallow COM1 interrupts by masking IRQ4 in the PIC by making

bit 4 be 1 in the Mask Register (port 0x21)
Allow interrupts (sti)

11/13/2002 CS 241 Fall 2002 121

UART (COM1) Interrupts:
Two Parts of the Interrupt Handler

irq4inthand – the outer assembly language
interrupt handler

Save registers
Call C function irq4inthandc
Restore registers
Iret

irq4inthandc - the C interrupt handler
Issue the EOI command to the PIC
Input the char, and whatever else is wanted

11/13/2002 CS 241 Fall 2002 122

Something Called Exceptions

Deviation from the normal condition
While interrupts are asynchronous events initiated
by the hardware ...

exceptions are synchronous and initiated by
both hardware and software
If initiated by software they are also known as
software interrupts
Either way, both are detected by the computer
hardware

11/13/2002 CS 241 Fall 2002 123

What Causes An Exception?

Certain types of instructions cause exceptions:
As the result of an abnormal condition

» Overflow, underflow, page fault, ...
As a result of executing a specific exception causing instruction
(e.g., trace, trap, and emulator)

» Single stepping through a program is possible by setting the
trap flag bit in the flags register

» Emulator trap for unimplemented instructions or auxiliary
processing (e.g., Vector or FP ops)

» Traps for system calls that result in a change of the
machine state

11/13/2002 CS 241 Fall 2002 124

Addressing on the PC

Without memory management in place, the x86
uses 16-bit addresses (referencing all of 64K!)
To access the full 20-bit address, a segment register
is used (notation is segment:offset)

16-bit address0000

16-bit segment 0000

Adder

20-bit address

Example:
address = 0x1234
seg reg = 0x5678

0x01234
+0x56780

20-bit result = 0x579B4

11/13/2002 CS 241 Fall 2002 125

DMA Controller

Need based on moving data from one place to
another (e.g., I/O and memory) without tying up
CPU
Specialized microcontroller that takes over CPU’s
bus (control, address, and data lines)

Without DMA
» As used in:

in %dx,%al and movl %al, mem

With DMA
» DMA supplies from/to address and data

So DMA cuts down the number of bus cycles needed to transfer
data between devices

PC has seven DMA channels

11/13/2002 CS 241 Fall 2002 126

Using DMA

Programming described on page 409 in S&S
One limitation is the size of the DMA address space
(16-bit value)
Must use DMA page registers to access memory up
to 16MB
Performance:

Limited by bus speed to less than 4MB/sec.!
Can increase using block mode data transfers

» But this interferes with DRAM refresh
Faster CPUs (486 & Pentium) use string move instructions

11/13/2002 CS 241 Fall 2002 127

Some Register Terminology

Registers and latches
Level-triggered versus edge triggered
Use of a clock to make the circuit synchronous

NAND
R-S

Flip Flop

NAND

R

Clock

S Q

Q

11/13/2002 CS 241 Fall 2002 128

Waveform or Timing Diagram

Clock

S

R

Q

Waveform diagram for clocked RS Flip-flop

Risiing
edge

Falling
edge

Cycle time

11/13/2002 CS 241 Fall 2002 129

The D-Type Flip-Flop

Single data input and a clock
Also called a “delay” flip-flop
Internally uses master/slave form and becomes an
“edge-triggered” flip-flop

D

Clk

Q

Q

TRUTH TABLE

D Clock Q

0 0

1 1

11/13/2002 CS 241 Fall 2002 130

Actual D-Type Flip-Flop

Has preset (PR) and clear (CLR) inputs which can
be set asynchronously (but not both at one time)
Nomenclature use > for an edge-triggered input

D

Clk

Q

Q

PR

CLR

11/13/2002 CS 241 Fall 2002 131

Timing Diagrams for D Flip-Flop

11/13/2002 CS 241 Fall 2002 132

The J-K or Universal Flip-Flop

Can build other FFs from it
Three synchronous inputs (plus preset and clear)
Can be edge- or level-triggered

J

K

Q

Q

PR

CLR

>Clk

TRUTH TABLE

J K Clock Q
0 0 Stays same
0 1 0
1 0 1
1 1 Toggles

11/13/2002 CS 241 Fall 2002 133

Using Flip-Flops

Primary use is for storage and counting
Example: Mod-16 counter also known as a ripple
counter

>
J

K

Q

X0

>
J

K

Q

X1

>
J

K

Q

X2

>
J

K

Q

X3

X3 X2 X1 X0 counts 0 ... 15 (Decimal) sequentially

Vcc

11/13/2002 CS 241 Fall 2002 134

Timing diagram for Mod-16 Counter

Note that the counter actually serves to divide down!

11/13/2002 CS 241 Fall 2002 135

A Synchronous or Parallel Counter

1) What does this count to?
2) Can we we make it count to something

different?
Ans. Yes, using an AND gate:

A CLR
B
C

11/13/2002 CS 241 Fall 2002 136

What Kind of Chips Are Available?

J-K flip-flop is a 7473
Synchronous BCD up/down counter is a 74192

11/13/2002 CS 241 Fall 2002 137

Shift Registers

Many Combinations:
Serial in, serial out
Serial in, parallel out
Parallel in, serial out
Parallel in, parallel out

11/13/2002 CS 241 Fall 2002 138

Parallel Load, Recirculating

Look up the universal shift register -- 74194 (Fig. 9-8)

11/13/2002 CS 241 Fall 2002 139

Tri-State Logic

The problem with connecting element together is that each
has to be in one logic state (0) or the other (1)
This represents a conflict and we resolve it with tri-state logic

+5v

0v

output

Logically

A A

enable

Electrically Truth Table

enable A Output
0 0 X
0 1 X
1 0 1
1 1 0

11/13/2002 CS 241 Fall 2002 140

Tri-State Logic and Buses

Often the logical element has an output enable pin
to go from a floating output to the actual output of
the circuit
Inverters and buffers are used as bus drivers or
buffers

Two such drivers or buffers are used to make the connection bi-
directional
The gates also provide more “drive” onto the bus so that the bus
signals are stronger and the bus can be longer

enableout

enablein

Device Bus

11/13/2002 CS 241 Fall 2002 141

Some Notes on Machine Problem 4

Two parts:
Chip tester
Digital oscilloscope

Both use the parallel port as a means of
performing digital I/O

Digital oscilloscope uses the serial port as the source of bits

Most of the code is written so the number of new
lines of code is small

But effort to understand other’s code is substantial

11/13/2002 CS 241 Fall 2002 142

Chip Tester

Chip data structures central to the testing code

Number of high pins

Number of low pins

Number of input pins

Number of output pins

Chip:
Name of chip

Chip description

Array of high pin numbers

Array of low pin numbers

Array of input pin numbers

Array of output pin numbers

Truth table function

11/13/2002 CS 241 Fall 2002 143

Chip Tester Configuration

SAPC boards 5 & 6 have the parallel port wired to
test an LS00 (quad NAND gate chip)
SAPC boards 7 & 8 have the parallel port wired to
test an LS138 (3-to-8 decoder chip)
The given code makes a correspondence between:

Data register bits for the parallel port (0:7)
The DB25 connector (pins 2-9 and 10-13, 15)
The chip pins (1-14 or 1-16)
The direction of the chip pins (input or output)

Note that the LS00 is symmetric in that the pins on
the left side of the chip are functionally equivalent
to the pins on the right side

11/13/2002 CS 241 Fall 2002 144

ls00_softchip

The truth table holds the testing information:
/* truth table: in pin 5 4 2 1 out pin 6 3 */

static int TT[] = {

0x03, /* 0 0 0 0 1 1 */

0x03, /* 0 0 0 1 1 1 */

0x03, /* 0 0 1 0 1 1 */

0x02, /* 0 0 1 1 1 0 */

0x03, /* 0 1 0 0 1 1 */

0x03, /* 0 1 0 1 1 1 */

0x03, /* 0 1 1 0 1 1 */

0x02, /* 0 1 1 1 1 0 */

0x03, /* 1 0 0 0 1 1 */

0x03, /* 1 0 0 1 1 1 */

0x03, /* 1 0 1 0 1 1 */

0x02, /* 1 0 1 1 1 0 */

0x01, /* 1 1 0 0 0 1 */

0x01, /* 1 1 0 1 0 1 */

0x01, /* 1 1 1 0 0 1 */

0x00, /* 1 1 1 1 0 0 */

};

11/13/2002 CS 241 Fall 2002 145

ls138_softchip

Have three bits of input data (A0, A1, and A2)
Have three bits of enable (*E1, *E2, and E3)

Where * means enabled low

Can support only five bits of output data (*O0, *O1,
…*O7)
Since softchip function has two arguments, the
input data and the output results one solution
would be a 32 entry table – but there are other
ways of doing this

11/13/2002 CS 241 Fall 2002 146

Changes to chiptest.c

1. Add new entry for LS138 into chip table
2. Print out the description of the chip pins
3. Generate the possible output bit patterns
4. Compare output bit patterns to softchip results to

see if chip is functioning correctly

11/13/2002 CS 241 Fall 2002 147

Digital Oscilloscope

Hook back the COM1 port to LPT1 but use a level
converter (called a line receiver) to make sure
voltage conversion is done
Project description explains that sampling rate is
about 100 times faster than bit times (at 9600
baud)
Using | for high and _ for low, plus ||nn|| or __nn__
for a sequence of highs and lows, the displayed
results might be: ||88||__67__|__||___||82||

or “88 highs”, “67 lows”, “1 high”, “2 lows”, “2 highs”, “3
lows”, and “82 highs”

11/13/2002 CS 241 Fall 2002 148

From bps to Baud

What’s the difference between baud and bits per
second?

Baud - the number of discrete conditions or signal events per
second
bps - the number of bits transmitted per second
Baud is the same as bps only if each signal event represents
exactly one bit; so in general: Baud ≤ bps

Distinction a result of using modems
POTS can’t transmit computer signals
Instead a modulated sine wave is transmitted in the range of 1-2
KHz; the sine wave is the carrier
Modulation takes many forms: amplitude, frequency, and phase
modulation

11/13/2002 CS 241 Fall 2002 149

Transmission of 010001011000100

11/13/2002 CS 241 Fall 2002 150

Signal Constellation for 16-pt QAM

Telephone bandwidth 300-
3300 Hz (or 3000 baud)
QAM offers 4 bits per baud
using 12 possible phase
shifts and 3 possible
amplitudes
V.32 uses baud rate of 2400
and QAM to yield 9600 bps
Adding in additional
encoding and compression
yields today’s V.90 modems

11/13/2002 CS 241 Fall 2002 151

Baudrate Generator

Characters are sent/received asynchronously
Clocks of receiver and transmitter are independent and only
nominally the same
Furthermore, the relative phases of the clocks are completely
arbitrary

Receiver strategy:
Synch on initial rising edge then sample bits
Sample 16 times the baud rate, starting with the eighth clock
period after leading edge of start bit

On SAPC, clock comes from 1.8432 MHz crystal
1.8432/16 = max baud rate = 115,200 bps
Rate set on SAPC by value in divisor latch

11/13/2002 CS 241 Fall 2002 152

Baudrate Generator (Cont’d)

Set DLAB bit in “Line Control” UART register to
use UART registers 0 and 1 for 16-bit divisor value
outpt(baseport + UART_LCR, (inpt(baseport + UART_LCR)) | UART_LCR_DLAB);

Then put out two bytes containing divisor
9600 bps => divisor of 12
19,000 bps => divisor of 6

11/13/2002 CS 241 Fall 2002 153

Connecting Serial Devices

Standard was to connect a DTE to a DCE
But we don’t always have the luxury, so …

Transmitted data (pin 2 - outgoing) connected to received data
(pin 3 - incoming)
Request to send (pin 4 - outgoing) connected to clear to send
(pin 5 - incoming)
Data terminal ready (pin 20 - outgoing) connected to data set
ready (pin 6 - incoming)
Signal grounds (pin 7) connected to each other
Carrier detect (pin 8 -incoming) depends on whether or not
modem control is required

11/13/2002 CS 241 Fall 2002 154

Setting the Baud Rate

UART over samples incoming bit
Minimum is 16X
UART clocked at 1. 843200 MHz
Must set up UART divisor so that it is:
UART_BAUD_CLOCKHZ/(baudrate * 16)

Look at serial.h where UART baud rate is set through the
Line Control Register (LCR)

» Must turn on Divisor latch access (UART_LCR_DLAB)
» Must set word length to 8 bits (UART_LCR_WLEN8)
» Then load LSB followed by MSB
» Finally, turn off DLAB

11/13/2002 CS 241 Fall 2002 155

Remaining Steps in scope.c

After setting up baud rate
Output a character to the serial port (COM1 but could be
COM2)
Collect the data
» collect.c inputs from the LP_STATUS bit and saves into

an array of data points up to a MAXDATA times
» You are asked to re-implement collect.c as an assembly

language routine ascollect.s
Code is similar to collect.c in that it loops MAXDATA times moving
the LP_STATUS bit into the data array

Display the results
» This code is written for you

11/13/2002 CS 241 Fall 2002 156

Buses

Concept is to link together multiple functional
units over a common data highway at a lower cost
than connecting them directly

A

B

D

E

C

P bus

Q bus

A

B

D

E

C

OR

11/13/2002 CS 241 Fall 2002 157

Bus - Essential Part of Any Computer

CPU Primary
Memory

Secondary
Memory

I/O

Data

Address

Control

11/13/2002 CS 241 Fall 2002 158

Bus Arbitration

Needed for intelligent peripherals (e.g., DMA),
multiple CPU, and dynamic memory refresh
Protocol implements some form of a bus request,
bus grant, and bus acknowledge

11/13/2002 CS 241 Fall 2002 159

Logic Summary

Combinational circuits:
Made from gates without feedback
Outputs depend only on current inputs
Fully defined by truth table
Have no internal states
Does not use a clock; states constantly changing with inputs

Sequential circuits:
Have feedback among the gates
Can have internal states
Outputs depend on inputs and past inputs (via internal states)
Often uses a clocked input
Not completely described by pure truth table on inputs

11/13/2002 CS 241 Fall 2002 160

Describing Sequential Circuits

In general,
Next state = f(inputs, last state)
Outputs = f(inputs, last state)

Example:

State diagram:

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

State = (Q1, Q2) [2 bits]
4 states: (0,0), (0,1), (1,0), (1,1)

Clock

A X

Truth Table

A Q1 Q2 XQ1 Q2

Next
State

Last
State

0

1

0

0

1

0 0

0 0

0 1

1 1

1 1

0 1

1 0

0 0

0 1

1 1

0

0

0

1

1

.

.

.

.

.

.

.

.

.

.

.

.
(0,0)

(0,1)

(1,0)

(1,1)

A=0

A=1

A=0 A=0

11/13/2002 CS 241 Fall 2002 161

Instruction Execution Cycle

Instruction fetch
Read instruction from memory

Instruction decode
Inside CU; no memory access

Address generation
Inside CU; may or may not access memory

Instruction execution
Needed data may require memory access, then ALU operation
performed

Write
Processor state modified and results may be written to memory

See S&S, page 347

11/13/2002 CS 241 Fall 2002 162

Enhancing Performance

“Pipelining is an implementation technique in
which multiple instructions are overlapped in
execution”, (Patterson and Hennessey, “Computer Organization and
Design”, p. 436)

It improves instruction throughput rather than individual
instruction execution time
It exploits parallelism among the instruction in a sequential
instruction stream
Under ideal conditions the speedup from pipelining equals the
number of pipe stages
But there is some overhead associated with pipelining so SU is
not ideal
No stage may be faster than the slowest stage of the pipe, or to
put it another way, the slowest instruction determines the total
time for the pipe

11/13/2002 CS 241 Fall 2002 163

Pipeline Example

From H&P, have seven single-cycle instructions with various
timings in a five-stage pipe

Sequential execution:

Instruction type
Instruction
Memory

Register
Read

ALU
operation

Data
Memory

Register
Write Total time

Load word 2 ns 1 ns 2 ns 2 ns 1 ns 8 ns
Store word 2 ns 1 ns 2 ns 2 ns 7 ns
ADD, SUB,
AND, Or. SLT 2 ns 1 ns 2 ns 1 ns 6 ns
Branch 2 ns 1ns 2 ns 5 ns

Reg
Read

ALU
Operation

Instruction
Fetch

Data
Memory

Reg
WriteLoad Word

8 ns Reg
Read

ALU
Operation

Instruction
Fetch

Data
Memory

Reg
Write

8 ns Reg
Read

Instruction
Fetch

Load Word

Load Word

11/13/2002 CS 241 Fall 2002 164

Pipeline Example (Cont’d)

Using a 2 nsec clock cycle with pipelining

Recall that pipelining improves performance by
increasing instruction throughput as opposed to
decreasing the execution time of an individual
instruction
Notice the idle time in the pipe at certain times

Reg
Read

ALU
Operation

Instruction
Fetch

Data
Access

Reg
WriteLoad Word

2 ns Reg
Read

ALU
Operation

Instruction
Fetch

Data
Memory

Reg
Write

Reg
Read

Instruction
Fetch

Load Word

Load Word ALU
Operation

Data
Memory

Reg
Write2 ns

2 ns

11/13/2002 CS 241 Fall 2002 165

Pipeline Performance

Ideal speedup is number of stages in the pipeline. Do we
achieve this?
Throughput ≡ # task completed / unit time
Given k tasks and an n-stage pipeline where each stage takes
the same unit of time to process and task arrive at the same
unit time intervals:

It takes n time units to fill pipeline and process first task
Thereafter, pipeline processes 1 task every unit of time

Tp(k,n) = n + (k-1)

Throughput = k
n + (k - 1)

11/13/2002 CS 241 Fall 2002 166

For a non-pipelined machine

So the speed-up (SU) is

Pipeline Performance (Cont’d)

Tnp(k,n) = nk

SU =
Tnp(k,n)
Tp(k,n) = nk

n + (k - 1) ≈ n for k >> n

11/13/2002 CS 241 Fall 2002 167

Superscalar Processors

IF OF EX OS

IF OF EX OS

IF OF EX OS

IF OF EX OS

IF OF EX OS

IF OF EX OS

IF OF EX OS

IF OF EX OS

IF OF EX OS

IF OF EX OS

0 1 2 3 4 5 6 7 8 9 Time in Base Cycles

Degree m = 3

11/13/2002 CS 241 Fall 2002 168

Memory Access

In timing an instruction we need to account for the
number of bytes for memory I/O:

To hold the instruction
For operands fetched
To store results in

The SAPC accesses memory as:
Caches instructions and saves unused parts
64-bit units regardless of actual data size

Instruction timing
Minimum of one cycle (2.5 nsec. for the 400 MHz 486)
Plus time to read/write memory, if not cached

11/13/2002 CS 241 Fall 2002 169

Memory Access (Cont’d)

Cache
Between CPU and main memory
Speeds up access to frequently used memory locations
May be write-back or write-through

Calculating read/write cycles
movl %eax, %edx reg/reg instruction (2 bytes)

.25R
movl %eax, total reg/mem instruction* (5 bytes)

0.625R+1W
movl %edx, total reg/mem instruction (6 bytes)

0.75R+1W
*accumulator is special

11/13/2002 CS 241 Fall 2002 170

Makefiles

General form:
target: dependencies

<tab> commands
<tab> commands
<blank line>

In the mp3 makefile we find:
$(C)_dbg.opc: $(C).c $(PC_INC)/cpu.h …

$(PC_CC) $(PC_CFLAGS_DBG) -c -o $(C)_dbg.opc $(C).c

We we invoke the makefile with C=itimes we get:
PC_INC = /groups/ulab/pcdev/include
PC_CC = i386-gcc

“rule”

11/13/2002 CS 241 Fall 2002 171

Makefiles (Cont’d)

The character (macro) substitution then generates:
itimes_dbg.opc: itimes.c /groups/ulab/pcdev/include/cpu.h …

~i386-gcc -Wall … -g -c -o itimes_dbg.opc itimes.c

We needed to change this to build optimized (-O2
flag) and put the new command form in “all”

If anything is newer than .opc then the rule is invoked

11/13/2002 CS 241 Fall 2002 172

Big Picture (486)

CPU

Local bus or CPU bus: fast (33 MHz, 32 bits) [30 nsec./cycle]

Memory Cache Video
Adapter Disk

Expansion
Bus

Controller

RTC

ISA bus: slow (8 MHz, 8/16 bits) [125 nsec./cycle]

Keyboard Serial
Port

Parallel
Port

Floppy
Disk

System
ROM

11/13/2002 CS 241 Fall 2002 173

The Big Picture (Pentium)
Pentium

CPU

CPU bus: fast (100 MHz, 64 bits) [10 nsec./cycle]

MemoryCache

Video
Adapter

System
ROM

Expansion
Bus

Controller

RTC

ISA bus: slow (8 MHz, 8/16 bits) [125 nsec./cycle]

Keyboard Serial
Port

Parallel
Port

Floppy
Disk

PCI
Controller

PCI bus: fast (33 MHz, 32/64 bits) [30 nsec./cycle]

Disk

11/13/2002 CS 241 Fall 2002 174

CPU

Pentium processor (400 MHz AMD-K2)
Small and compact

» 1/2 inch square
» 3.3 million gates
» 10 watts

Fast
» Pipelining and superscalar
» 64-bit-wide data path
» Independent bus unit
» 32-byte prefetch buffers

Complex
» Branch target buffer
» Separate FPU

11/13/2002 CS 241 Fall 2002 175

Pentium CPU Block Diagram

11/13/2002 CS 241 Fall 2002 176

CPU (Cont’d)

CPU bus
168 signals divided into 10 groups
Address lines and each byte of the data lines have parity
System management signals used to implement power
management

Address lines (total of 37)
A31 - A3
BE7# - BE0# (called byte-enable lines)

Data lines (total of 64)
D63-D0
8 bytes accessed at a time
On the bus, memory accesses are aligned on a quadword

11/13/2002 CS 241 Fall 2002 177

Pentium CPU Signals

Intel
Pentium

Processor

CLK

RESET

D63-D0

BE7# -BE0#

A31-A3

ADS#

D/C#

M/IO#

W/R#

LOCK#

BRDY#

Address lines

Data lines

Bus control lines

INTR

NMI

HOLD

HLDA

A20M#

Processor
control

lines

11/13/2002 CS 241 Fall 2002 178

Pentium CPU Signals (Cont’d)

CLK Clock
RESET Reset
A31-A3 Address lines

BE7#-BE0# Byte enable lines
D63-D0 Data lines
ADS# Address status line (starts new bus cycle)
D/C# Data or code
M/IO# Memory or IO port address
W/R# Write or read

LOCK# Create read-modify-write sequence
BRDY# Burst ready (from external device)
INTR Interrupt
NMI Non-maskable interrupt

HOLD Device request CPU to relinquish bus
HLDA CPU acknowledges new bus master
A20M# Address line 20 mask

11/13/2002 CS 241 Fall 2002 179

Pentium Reset & Control Lines

Reset
Starts off processor in “real mode”
Forces cs = 0f000h and ip = 0fff0h where ROM bootstrap
resides
Soft reset possible

Control lines
M/IO# D/C# W/R# Type of Bus Cycle

0 0 0 interrupt acknowledge
0 0 1 special cycle
0 1 0 I/O port read
0 1 1 I/O port write
1 0 0 memory code read
1 0 1 reserved
1 1 0 memory data read
1 1 1 memory data write

11/13/2002 CS 241 Fall 2002 180

Timing Diagram

11/13/2002 CS 241 Fall 2002 181

Memory Reads/Writes

CPU caches actually read/write in 32-byte units
Size of one cache line
Same as four 64-bit read/writes (i.e., four quadwords)
Uses burst-read cycles

» Uses four consecutive T2 cycles

Wait states
Synchronize data flow between the processor and various slower
devices
Generally takes 3 clocks to transfer first quadword and 2 more
for each remaining quadword
Referred to as 3-2-2-2 memory access

11/13/2002 CS 241 Fall 2002 182

Expansion Bus Controller

Expansion
Bus

Control

M/IO#

D/C#

W/R#

AEN#

A31-A3

BE7# - BE0#

CLK

MEMR#

MEMW#

IOR#

IOW#

INTA#

A23-A0

BRDY#

11/13/2002 CS 241 Fall 2002 183

Simple 8-bit Output Port

Latch

Address
Decoder

D0-D7

A0-A15

AEN

16

8

EQUAL#

CLK
IOW#

STROBE#

D0 - D7

11/13/2002 CS 241 Fall 2002 184

Raw and Cooked Keyboard I/O

What do we mean by “raw” and “cooked”
Example code (abortable puchar):
#include <serial.h>

#define CNTRL_C 3

int abortable_putchar(unsigned char ch) {
while (1) {

/* if COM2's THRE is on, output char */
if (inpt(COM2_BASE+UART_LSR)&UART_LSR_THRE) {

outpt(COM2_BASE+UART_TX, ch);
return 0; }

/* if a char is available on COM1 and it's a control-C, abort */
if ((inpt(COM1_BASE+UART_LSR)&UART_LSR_DR) &&

(inpt(COM1_BASE+UART_RX) == CNTRL_C))
return -1;

}
}

11/13/2002 CS 241 Fall 2002 185

Static RAM (SRAM)

Random access memory
Simple interface and fast (10-20 nsec) but more
costly (2-4X)

How is the chip organized?

RAM
Chip

A0 - A14

CS#
R/W#
OE#

D0 - D7

11/13/2002 CS 241 Fall 2002 186

Read Only Memory (ROM)

PC uses it to hold BIOS both for system and I/O
adapters
Slow (100-200 nanoseconds)
BIOS often copied into DRAM (called shadow
RAM)
Various forms:

PROM
EPROM
EEPROM
Flash memory

11/13/2002 CS 241 Fall 2002 187

Dynamic RAM (DRAM)

Square array of bit cells

Reading is destructive
Charge leaks away in milliseconds

Word
Line

Column

Bit Line

Row

11/13/2002 CS 241 Fall 2002 188

DRAM (Cont’d)

For both reasons must perform a memory refresh
Reading/writing on a row and column basis
Advantages are:

Cells are simple
Uses less power

Disadvantage:
Slower (20 - 30 nsec access time)
Total cycle time is 2X due to refresh

Bottom line
2-4X less chip area and 2-4X less power
Interleaving and access in column or page mode

11/13/2002 CS 241 Fall 2002 189

Using Commodity Parts

You don’t buy memory in 8M word chunks!
What you do buy are identical parts that must be
addressed correctly to fill the memory space
What we use is the chip select (CS) to be a function
of address and byte lines
Sometimes other address decoding strategies are
called for:

Full
Partial
Block

11/13/2002 CS 241 Fall 2002 190

Full Address Decoding

Each addressable location within a memory
component responds to only a single, unique
address
Need to use all the address lines
May choose to not fill the address space with
memory
Can mix types of memory (RAM and ROM)

11/13/2002 CS 241 Fall 2002 191

Addressing Memory Components

CPU

M1
2K x 16

M2
2K x 16D00-D15 R/W#

A23

A12

A01

A02

A11

.

.

D00-D15 D00-D15R/W# R/W#

CS1# CS2#

11/13/2002 CS 241 Fall 2002 192

Memory Map

M2
M1

No
Physical
Memory

00 0000

00 0FFE

FF FFFE

00 1000

00 1FFE

CS2#

CS1#
A12

A23

A22

A13

.

.

.

11/13/2002 CS 241 Fall 2002 193

Assigning Addresses

Suppose we are given:
10K words of ROM as one 2K block (called ROM1)

8K block (called ROM2)
2K words of RAM (called RAM)
2 words for peripheral 1 (called PERI1)
2 words for peripheral 2 (called PERI2)

but arranged as:
00 0000 - 00 0FFF ROM1
00 1000 - 00 1FFF RAM
00 4000 - 00 7FFF ROM2
00 8000 - 00 8003 PERI1
00 8004 - 00 8007 PERI2

11/13/2002 CS 241 Fall 2002 194

Assigning Addresses (Cont’d)

Note the hole from 00 2000 - 00 3FFF
This is due to putting an 8K block of ROM on an
8K word boundary

ADDRESS LINE

Device 23 22 21 20 ... 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
ROM1 0 0 0 0 ... 0 0 0 0 x x x x x x x x x x x
RAM 0 0 0 0 ... 0 0 0 1 x x x x x x x x x x x
ROM2 0 0 0 0 ... 0 1 x x x x x x x x x x x x x
PERI1 0 0 0 0 ... 1 0 0 0 0 0 0 0 0 0 0 0 0 0 x
PERI2 0 0 0 0 ... 1 0 0 0 0 0 0 0 0 0 0 0 0 1 x

11/13/2002 CS 241 Fall 2002 195

Full Address Decoding Network

11/13/2002 CS 241 Fall 2002 196

Partial Address Decoding

Simple and inexpensive
Not all the address lines take part in the decoding
process
The problem is that many sets of physical
addresses map to the same physical memory
Consider earlier example for full address decoding
but this time using only the MSB of the address bus

11/13/2002 CS 241 Fall 2002 197

Partial Address Decoding

CPU

M1
2K x 16

M2
2K x 16D00-D15 R/W*

A23

A12

A01

A02

A11

.

.

D00-D15 D00-D15R/W# R/W#
CS1# CS2#

11/13/2002 CS 241 Fall 2002 198

Memory Map for Partial Decoding

M1
00 1000

00 1FFE

FF FFFE

00 0000

00 0FFE

7F FFFE
80 0000

M1 is repeated 2,048 times in the
memory space 00 0000 to 7F FFFE

M2 is repeated 2,048 times in the
memory space 80 0000 to FF FFFE

M1

M1
M2
M2

M2

11/13/2002 CS 241 Fall 2002 199

Address Table

ADDRESS LINE

Device 23 22 21 20 ... 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
ROM1 0 0 0 ... x x x x x x x x x x x
RAM 0 0 1 ... x x x x x x x x x x x
ROM2 0 1 ... x x x x x x x x x x x x x
PERI1 1 0 ... x
PERI2 1 1 ... x

For this table, no further memory devices can be added
the existing memory devices fill the entire 8M words of
memory space. But suppose we assign A23 = 0 and use
A22 to A20 to decode addresses; what then?

11/13/2002 CS 241 Fall 2002 200

Implementing Partial Address Decoding

A23 A22 A21

CS_ROM1#

CS_RAM#

CS_ROM2#

CS_PERI1#

CS_PERI2#

11/13/2002 CS 241 Fall 2002 201

Block Address Decoding

Compromise between partial and full address
decoding
Divide the memory space into a number of fully
decoded blocks, generally of equal size
Method then uses high-order bits of address to
select the block and the low-order bits to select the
sub-block

11/13/2002 CS 241 Fall 2002 202

Discussion of mp5

Adding new code to cmds.c but the concepts are
ones already known
Timing command are now in seconds, not
microseconds, so have much longer intervals to
time
When timing interval elapsed, a “callback” routine
will be initiated
Serial interrupts added but no callback; rather
want to loop COM1 characters to COM2
Must create test routine for COM line

11/13/2002 CS 241 Fall 2002 203

Overview of New Timing Commands

What is to be done?
The timer interrupt every <interval> seconds
Display the number of such interrupts since timeon
Using a “callback” function, prints out, every now and then,
based on the interval, the string (1) … (2) ...

New functions in cmds.c:
timeon(CMD *cp, char *arguments)

Initializes a counter
Calls an initialization routine with callback routine

timeoff(CMD *cp, char *arguments)

Shuts down tick counter

11/13/2002 CS 241 Fall 2002 204

What’s in tickpack.c

init_ticks has to:
Save (statically) the interval value
Turn off interrupts
Set the interrupt gate
Enable the PIC for the timer IRQ
Set up the timer down count
Restore interrupts

irq0inthandc has to:
Acknowledge the PIC interrupt
Check for end of interval and if reached, execute the callback
function

11/13/2002 CS 241 Fall 2002 205

What’s in tickpack.c (Cont’d)

shutdown_ticks has to:
Turn off interrupts
Disable the timer interrupt
Restore interrupts

Most of this has already been done in mp3;
look carefully at timepack_sapc.c

11/13/2002 CS 241 Fall 2002 206

Overview of Serial Port Command

spi <dev> <on|off>

spi <dev> on enables interrupts on input from <dev>
Echoes the character received from that serial port back to the

other serial port when interrupt occurs
spi <dev> off disables those interrupt

What code is needed?
Within cmds.c must keep track of whether serial port
interrupts are on or off

» Might be helpful to print the mask register (0x21) and the
eflags register using get_eflags() function

Have to write interrupt handlers for at least IRQ4 (COM1)

11/13/2002 CS 241 Fall 2002 207

What’s In Serial Port ISR?

As an example, irq4inthandc
Acknowledge the PIC interrupt
Input the character
If you want an escape character to shut down the interrupts (say
a ‘#’), then need to call shutdown_comints if received
Otherwise, need to output the character received on COM1 to
the COM2 device

11/13/2002 CS 241 Fall 2002 208

What’s in COM Port Interrupt Package?

Initialize the COM port
Turn off interrupts
First, check for any characters already received so as to clear
the UART buffer
Set the interrupt gate
Enable interrupts in the UART’s interrupt enable register
Enable the PIC for the COM IRQ
Restore interrupts

Shut down the COM port
Disable the PIC for the COM IRQ
Disable interrupts in the UART’s IER

11/13/2002 CS 241 Fall 2002 209

COM Port Interrupt Package (Cont’d)

Last routine gets the COM status
Test the COM IER to see if it is set
Return the status

11/13/2002 CS 241 Fall 2002 210

Interrupts and Real-Time Processing

Modern operating systems seek to improve performance
through concurrent (but not simultaneous) processing
Use interrupts to support multitasking and multiprocessing
Kernel routines include:

Creation, suspension, termination, communication, and execution of
processes
Scheduling
Allocation of main and secondary memory resources
Connection between peripheral devices and tasks/processes
Various system services

11/13/2002 CS 241 Fall 2002 211

Requirements for Implementing a
Multi-User Operating System

Hardware:
Two or more modes of operation (kernel, executive, system, and
user)
Interrupt/exception handling
Memory management

Software:
File management
IOCS
Utilities

11/13/2002 CS 241 Fall 2002 212

Hardware Protection

Dual-Mode Operation
I/O Protection
Memory Protection
CPU Protection

Silberschatz and Galvin © 1998

11/13/2002 CS 241 Fall 2002 213

Dual Mode Operation

Sharing system resources requires operating
system to ensure that an incorrect program cannot
cause other programs to execute incorrectly
Provide hardware support to differentiate between
at least two modes of operation

User mode – execution done on behalf of a user
Monitor mode (also supervisor mode or system mode) – execution
done on behalf of operating system

Have to have a mode bit
Privileged instructions can only be issued only in
monitor mode

Silberschatz and Galvin © 1998

11/13/2002 CS 241 Fall 2002 214

Memory Protection

Must provide memory protection at least for the
interrupt vector and the interrupt service routines
But also need to make sure that memory outside
the defined range for a particular user is protected
While many methods possible, the most popular is
demand paging
This subject is covered in a course on operating
systems

Silberschatz and Galvin © 1998

11/13/2002 CS 241 Fall 2002 215

CPU Protection

Timer – interrupts computer after specified period
to ensure operating system maintains control

Timer is decremented every clock tick
When timer reaches the value 0, an interrupt occurs

Timer commonly used to implement time sharing
Timer also used to compute the current time
Load-timer is a privileged instruction

Silberschatz and Galvin © 1998

11/13/2002 CS 241 Fall 2002 216

General-System Architecture

Given that I/O instructions are privileged, how
does the user program perform I/O?
System call – the method used by a process to
request action by the operating system

Usually takes the form of a trap to a specific location in the
interrupt vector.
Control passes through the interrupt vector to a service routine
in the OS, and the mode bit is set to monitor mode
The monitor verifies that the parameters are correct and legal,
executes the request, and returns control to the instruction
following the system call

Silberschatz and Galvin © 1998

11/13/2002 CS 241 Fall 2002 217

Protection System

Protection refers to a mechanism for controlling
access by programs, processes, or users to both
system and user resources
The protection mechanism must:

Distinguish between authorized and unauthorized usage
Specify the controls to be imposed
Provide a means of enforcement

Silberschatz and Galvin © 1998

11/13/2002 CS 241 Fall 2002 218

Operating System Services

Program execution – system capability to load a program into
memory and to run it
I/O operations –the operating system must provide some
means to perform I/O
File-system manipulation – program capability to read, write,
create, and delete files
Communications – exchange of information between
processes executing either on the same computer or on
different systems tied together by a network
Error detection – detecting errors in the CPU and memory
hardware, in I/O devices, or in user programs

Silberschatz and Galvin © 1998

11/13/2002 CS 241 Fall 2002 219

System Calls

Can consider this as the way a process invokes the
services of an operating system
We write programs and programs include system
calls (read/write, get time, exit a program, ...)
Sometimes we make special requests (spawn or
fork a new process, get more main memory, wait
on external event, ...)
Can categorize system calls based on intent

11/13/2002 CS 241 Fall 2002 220

Silberschatz and Galvin © 1998

System Programs

System programs - convenient environment for
program development and execution and include:

File manipulation
Status information
File modification
Programming-language support
Program loading and execution
Communications
Application programs

Most users’ view of the operation system is defined
by system programs, not the actual system calls

11/13/2002 CS 241 Fall 2002 221

Silberschatz and Galvin © 1998

Simple Approach

MS-DOS – written to provide the most
functionality in the least space

Not divided into modules
Although MS-DOS has some structure, its interfaces and levels
of functionality are not well separated

UNIX – limited by hardware functionality and
original OS had limited structuring consisting of
two separable parts:

Systems programs
The kernel

» Consisted of everything below the system-call interface and
above the physical hardware

» Provided all operating-system functions; a large number of
functions for one level.

