
Object/Relational Mapping 2008:
Hibernate and the Entity Data Model (EDM)

Elizabeth (Betty) O’Neil
Dept. of Computer Science

University of Massachusetts Boston
Boston, MA 02125

eoneil@cs.umb.edu

ABSTRACT
Object/Relational Mapping (ORM) provides a methodology and
mechanism for object-oriented systems to hold their long-term
data safely in a database, with transactional control over it, yet
have it expressed when needed in program objects. Instead of
bundles of special code for this, ORM encourages models and use
of constraints for the application, which then runs in a context set
up by the ORM. Today’s web applications are particularly well-
suited to this approach, as they are necessarily multithreaded and
thus are prone to race conditions unless the interaction with the
database is very carefully implemented. The ORM approach was
first realized in Hibernate, an open source project for Java
systems started in 2002, and this year is joined by Microsoft’s
Entity Data Model for .NET systems. Both are described here.

Categories and Subject Descriptors
H.2 [Database Management]: H.2.1 Logical Design Data
models, Normal forms, Schema and subschema H.2.3 Languages
Database (persistent) programming languages H.2.8 Database
Applications, D.2[Software Engineering] D.2.2 Design Tools
and Techniques Object-Oriented Design methods D.2.11 Software
Architectures Data abstraction

General Terms
Design, Languages, Algorithms

Keywords
Object-relational mapping, impedance mismatch, data model,
persistence, schema mapping, web application, Hibernate, Entity
Data Model

1. INTRODUCTION
Programmers strongly prefer to work with persistent data held
(for the moment, anyway) in program objects, rather than use
SQL directly for data access, even though this means working
around the famous “impedance mismatch” between tabular data
and object state. Object/Relational mapping systems bridge this
mismatch, by whisking data to and from a relational database to
appropriate objects, based on O/R mappings. O/R mappings map
object schemas (class diagrams, etc.) to database schemas, part of
the technology of last year’s SIGMOD keynote talk [5] by Phil

Bernstein on Schema Mapping. As Phil mentioned, there is a
recently developed schema language in Microsoft’s ADO.NET
called the Entity Data Model [10] (for release in 2008); this will
be described more fully in the current talk. A comparable model
and system was developed by the open-source Hibernate project,
founded and led by Gavin King starting in 2002, after his
frustration as a software developer with the “heavy-weight”
Entity Java Beans (EJB) of the older Java Enterprise platform.
King describes the Hibernate system in an excellent book on the
subject [3]. The current EJB specification, EJB 3.0, uses the direct
descendent of Hibernate 3.0, known as Java Persistence
Architecture (JPA).

Figure 1. ORM in use in one of many apps using the database.

I will call the common ideas of Microsoft's Entity Data Model
and the Hibernate model (and JPA) simply the “Entity Model”,
since the entities correspond to the objects, making them the
centers of attention. The Entity Model is a refinement of the
entity-relationship (E-R) model of Chen [6], and the extended E-
R model (EER) that incorporates inheritance/generalization
hierarchies. The Entity Model sits between the object world of
applications and the underlying database(s) where all persistent
data is stored, as shown in Figure 1. Typically, other applications
access the database as well, as the database represents shared
enterprise data.

Both Hibernate and EDM provide a full object/relational mapping
system, and have GUI tools to help with development. For
simplicity, I’ll be covering Hibernate and EDM, and ignoring
JPA, since it is so close to Hibernate and largely derives from it.
As the standardized offering, JPA is advancing in adoption by all
the major Java enterprise application server products. Hibernate
and its JPA implementation is part of JBoss [7], the first

Copyright is held by the author/owner(s).
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

application server with this capability. OpenJPA, originally from
BEA’s Kodo product, is now an open-source project at Apache,
and is available for BEA’s WebLogic Server [4] and IBM’s
WebSphere [8]. Oracle’s TopLink 11g supports JPA [11].

With the Entity Model, the mapping from application objects to
tables is made in two hops, with the Entity Model in the middle,
apparently a more complex task than a single mapping. Why
would this be a good idea? The answer is that this Entity Model is
useful to the practitioners for designing and implementing real
systems. It abstracts away some of the nitty-gritty details of
database table setup and pastes over some of the deficiencies of
relational tables, such as the difficulty of expressing a
generalization/inheritance hierarchy. It provides guidance towards
workable database schemas.

With these O/R mapping systems and their Entity Models, a
programmer is encouraged to think in terms of entities and their
relationships. The system takes over all the details of handling
relationships at runtime, delivering object graphs for complex
objects, for example, ready for programmatic use. The system
automatically tracks updates made to the objects, and performs
the necessary SQL insert, update, and delete statements at commit
time. Thus the business logic programming can be done in the
comfort of object-oriented languages, usually Java or C#, with
transactions delineating the discrete actions of the application at
the object level. The objects we are discussing here are a subset of
all the objects in the application, the ones (temporarily)
representing persistent data. They are often called persistent
objects, but this name causes some confusion with object
serialization (the Java/C# object persistence mechanism), so I will
use another common name, domain object.

Of course there are differences between the Hibernate and EDM
systems, but the main thrust of what I present is their common
features, a convergence of technology relevant to the database
community. In fact, the EDM system so far is available only in
beta release (free), so it is still a work in progress and lacks some
needed features.

For simplicity, a single database server is considered, although
both systems can handle distributed transactions with the help of
JTA/DTC. The Hibernate platform is in use for systems involving
up to hundreds of entities and tens of thousands of users, that is, it
is scalable up to the point that the database(s) involved is/are
overloaded. This approach is relevant to most dynamic Internet
sites, all but the very largest, plus most non-web database
applications with significant user interaction.

2. THE ENTITY MODEL
An entity has attributes as in E-R, called properties in the Entity
Model, and a unique identifier, often a “surrogate” key, meaning
one whose value is not important to the application aside from its
use as an identifier. For example, in this approach a SSN would
not be used as an id but rather as a property. We will assume this
in what follows, for simplicity. Natural keys can also be used. See
Ambler [2] for discussion of key choices. The unique identifier is
persistent, like its corresponding database primary key.

Relationships boil down to the binary N-1, 1-1 and N-N cases. A
ternary relationship is not directly supported by the Entity Model,
but can be expressed by promoting its links to entity instances.

As is well known, databases are bad at modeling inheritance
hierarchies. There are several ways to do it, none completely
satisfactory. The Entity Model abstracts the concept, and then
provides alternative implementations, selected by configuration.
Today, the programmer needs to craft specific directions in XML
or provide code annotations to get a class inheritance hierarchy
properly mapped to the chosen database solution. Both Hibernate
and EDM can follow the most common alternatives, known as
table-per-hierarchy (one table for all variants) and table-per-type
(one table for base plus one table per subclass)

3. THE PIZZA SHOP EXAMPLE
This example is available at www.cs.umb.edu/~eoneil/orm. This
website contains side-by-side implementations, using Hibernate
and Microsoft EDM, of a simple system with four database
entities related by an N-N relationship and an N-1 relationship
(one entity has no relationship to the others and is ignored in the
figures). See Figure 2. It is a system for ordering free pizza to be
delivered to a specified room number in a dormitory. The
"student" user has choices of pizza size and toppings, so each
order has one size and a set of toppings. The "admin" can add and
delete topping choices and sizes, mark pizza orders as ready,
finish off a day and start another, etc. Although the system is
simple, it is implemented with the layered architecture of larger
applications, with a transactional service layer called by the
presentation layer, which contains all the user interface code.

Figure 2. E-R Diagram for Pizza Shop Database

Figure 3 shows the database schema for the system. The N-1
relationship is simply represented by the sizeid foreign key in the
pizza_order table. The N-N relationship needs a “link table” with
foreign keys to the two related tables, pizza_order and topping.

The corresponding entity model is shown in Figure 4. The
relationships are now reduced to annotated lines between the
entities, as is also commonly done in UML [12] for object
models. The link table is considered an implementation detail and
suppressed from the top-level diagram. Its existence can be
surmised from the cardinality markings “1..*” and “0..* having
stars at both ends of the relationship line. These markings denote
(1,N) and (0,N) multiplicity, respectively. PizzaSize has the
default multiplicity of (1,1) in its relationship and thus has no
marking on its end for the N-1 relationship.

http://www.cs.umb.edu/%7Eeoneil/orm

Figure 3. Database schema with link table order_topping

Figure 4. Entity Model

During execution, a pizza order is a small object graph of domain
objects: the main PizzaOrder object referencing a PizzaSize
object and a collection of Topping objects. Here is a quick
example of application code working with the domain objects. To
find the size name for a PizzaOrder order, just “dot” through
the to-1 relationship:

order.getSize().getSizeName() // Hibernate/Java
order.Size.SizeName // EDM/C#

We will also look at an example of iterating through the toppings.
To get orders from the database, we use the Hibernate Session or
EDM ObjectContext “context” object to create a query that can
return PizzaOrder objects, as follows:

Query orders = //Hibernate
 context.createQuery("select o from
 PizzaOrder o " +
 "where o.roomNumber = " + roomNumber
 + "and o.day = " + day);

ObjectQuery<PizzaOrder> orders = //EDM
 new ObjectQuery<PizzaOrder>(
 "select value o from
 PizzaEntities.PizzaOrder as o " +
 "where o.RoomNumber = " + roomNumber
 + "and o.Day = " + day, context);

We see that we are not really giving up SQL query power by
using O/R Mapping. SQL itself is mapped into the object world,
allowing joins (inner and outer), ordering, group by,

polymorphism (across subclasses), and prepared statements. The
query results can consist of domain objects or other program
objects. If the object query language is still too restrictive, the
underlying connection to the database can be used for direct SQL.
Such direct SQL is commonly used for batch updates and
database reloads.

4. THE PRESENTATION, SERVICE, AND
DATA ACCESS OBJECT (DAO) LAYERS
In serious applications, the code is organized into three layers, the
presentation, service, and DAO (data access object) layers. See
Figure 5. The presentation layer code calls the service layer
methods, and the service layer code calls the DAO layer methods.
Domain objects are passed as arguments and return values of
these calls; they are used in all the layers. Domain objects carry
data around but don’t have to be “dumb” data carriers, that is,
they can have specialized methods to help with the needed work.
Presentation-layer code implements the user interface (UI). It
calls the service layer for all actions related to persistent data. The
presentation layer for the pizza project is provided in two versions
for each O/R mapping framework, a line-oriented UI and a web
application with server-side scripting in JSP 2.0/ASP.NET.

Figure 5. A Layered Database Application

Service-layer code implements the basic transactional actions by
calling the DAO layer to get domain objects, working with them,
and then possibly updating them with the help of the DAO. This
layer is also called the business layer, because it implements the
business model actions. Here we see methods makeOrder,
getOrderStatus, allToppings, allPizzaSizes, addTopping, etc.,
together constituting the “service API” (applications
programming interface) called by the presentation layer. These
names are capitalized for C# (MakeOrder, etc.) to follow coding
conventions. The service-layer code starts up a transaction around
the needed actions and ultimately commits or aborts it.

Figure 6. Calls down the layers in Pizza Shop

DAO code inherits an ongoing transaction from its service-layer
caller, and works with the O/R framework to get and update
domain objects. DAOs use object queries (as shown in the code
above) or primary-key lookups to read data, or less commonly,
direct SQL. Figure 6 indicates some of the calls involved in
making a new pizza order. First, in a previous time (and
transaction) to what is shown here, the presentation layer calls the
service layer to get Topping and PizzaSize objects to show the
user the possible pizzas to order. After the user decides, the
presentation layer calls makeOrder(), and the service layer runs a
transaction. During the transaction, the service layer calls the
DAO layer, and the new pizza order object graph is persisted. In
particular, a new row is added to pizza_order and one row for
each topping is added to order_topping. If the topping has
meanwhile disappeared, the DAO access fails and the service
layer aborts the transaction.

5. THE ENTITY CONTEXT
The execution environment provided by the O/R Mapping
platforms is delivered by the Hibernate Session and the EDM
ObjectContext, seen as the “context” object earlier in DAO code.
Let us call this common idea the entity context. The entity context
provides a private cache of objects for the application execution
in one unit of work (thread), with at most one object instance for
each entity id. See Figure 7. The entity context manages the
loading and saving of database objects under the general control
of the configuration and entity context API. Usually, database
updates are deferred until synchronization between the object
cache and database is needed. When an object is accessed, the
entity context provides the needed data out of the object cache, or
if it is not found, the database is read. Thus rereads of database
data by one thread are prevented (unless explicitly requested
through the entity context API), preventing some repeated-read
anomalies.

The database maintains a buffer cache of recently accessed rows,
so the access to popular rows is very fast. This buffer sits
logically in front of the disk data as is shared among all the apps,
not just the ones using ORM. It is of course essential to provide

enough memory in the database buffering system. This often
requires changing the database configuration from the defaults of
its installation. Database indexing is just as important as ever.

The entity context can handle a new id created on insert of a row
for a new entity, even though id generation on insert is not
available in standard SQL. Each database product has a way to do
this, by an auto-incrementing datatype or “sequence”. This useful
SQL extension is made portable and attractive.

Figure 7. Entity contexts and corresponding database data

6. THE DOMAIN OBJECT LIFE CYCLE
When you create a new domain object, it has no connection to the
entity context. Thus you must explicitly introduce it to the entity
context with a Hibernate save or EDM AddObject operation. In
EDM, every domain class is a subclass of EntityObject, a system
class. In Hibernate, there is no such system superclass. On noting
the system superclass for domain classes in EDM, you
immediately worry about testability and code reuse, the bane of
frameworks based on subclassing. However, the situation is not as
bad as it might sound. C# provides “partial classes”, so that all the
system-provided code can be in one .cs file and all the
application-provided code can be in another. The application-side
partial class can be compiled by itself, wholly apart from the
system classes, as part of a test program, for example.

In both systems, the data in the domain objects, obtained during
the entity context lifetime, is still there after the entity context is
closed down. In the typical application, the objects are filled out
in the service layer and returned for display in the presentation
layer after the entity context is closed down. After use in the
presentation layer, the domain objects are discarded, having done
their job delivering persistent data.

7. TRANSACTIONS
When the entity context actually interacts with the database, the
database will start up a transaction if one is not yet running, and
commit it after the current statement, a process known as auto-
commit. To extend a transaction lifetime to contain multiple
database accesses, an application needs to start up and commit a

transaction itself. These calls to start and finish a transaction are
part of the entity context API. In a layered application, these calls
are in the service layer, to allow the core business code to run the
show. The commit of the transaction triggers a synchronization of
the entity context to the database (in the simple use of the entity
API).

There are three isolation levels to choose from: read committed
(RC), read committed with versioning, or Serializable (SR). RC
without versioning allows update anomalies without notification,
and thus is not recommended. RC with versioning provides (very
nearly) ANSI repeatable read (SR except allowing predicate
anomalies) because of the rereads from the object cache. In
versioning, the framework checks versions before writing and
aborts the transaction if the database data has changed, as in
snapshot isolation. However, note that full snapshot isolation
stabilizes predicates where this does not. With the serializable
level, versioning is redundant, accessed data is locked up, and
deadlocks can occur, causing aborts. As usual, no free lunch.

7.1 Transactions vs. Entity Context Lifetimes:
Are Contexts for Conversations a Good Idea?
Each transaction lives within a certain entity context. The
simplest setup, used in the pizza project, has one transaction in
each entity context lifetime. However, in general, an entity
context can contain a sequence of transactions, possibly with
large delays between the transactions, usually caused by UI
actions. This multi-transaction scenario in an entity context is
called a “conversation”. In this case, in the times between
transactions, the objects in entity context may stray from their
“official” database values, as other activities change things. To
help avoid such problems, the entity context can be refreshed
from the database by explicit call(s) to the entity context API, or
the entity context can be dropped and recreated, the simple way.
Dropping and recreating an entity context is probably not much
more expensive than a full refresh. In the case of web apps, the
possibilities of extremely long waits between user requests argue
for the simple context-per-transaction approach, to avoid wasting
memory on idle conversations.

8. THEORY
The development of Hibernate has been entirely in the realm of
practicing software engineers, and has gone remarkably unnoticed
in the academic world. Because of the best software architects’
strong belief in “clean” solutions, the results hang together as a
beautiful system. The development of EDM has had input from
the model-mapping community led by Phil Bernstein, and they
have published papers [1, 9] explaining how the relationship
between the entities and tables can be seen as views, and their
updates as view maintenance. Clearly this analysis should be
applied to the Hibernate system to bolster its foundations and
check it out for related potential problems. Schema evolution is
also relevant of course.

The Hibernate community often uses a simplified UML class
diagram to express the entity model. EDM also has such a
diagram. It would be interesting to examine how the entity model
restricts the general UML class diagram. One of the troublesome
cases is (in E-R terms) an N-N relationship with attributes.

9. SCALING UP
At the small-scale level, all the software can run on one system,
which is very convenient for development. For production use, we
are considering the case that one database server with plenty of
resources can handle the transactional load of the applications
using it. To offload the database server, the web application itself
can run on application servers on the same fast local network as
the database server. Similarly, to offload the application servers,
the web servers can run on dedicated servers also on the local
network, usually separated by a firewall switch. The switch
ensures that static content’s network traffic is localized to the
outer network. Further, if there is a lot of static data (images,
etc.), a content delivery network can be used to offload the web
servers. Thus the upper end of the relevant range of applicability
of this scenario involves many servers and can handle many
simultaneous users.

Consider the case that each request that reaches the application
server gets its own entity context. Then the database server’s
cache is providing the memory cache for all the domain data used
by the application servers. The application servers themselves do
not need to cache domain data except in the entity contexts
themselves, and that is only for the current request cycle, each of
which should last for less than one second. Although popular
domain data is retrieved over and over from the database to the
app servers, the retrieval is much faster than disk retrieval, since
popular data stays in the database cache, and network transfer on
a local network has latency in microseconds, compared to
multiple milliseconds for disk access. Further, the total data
transfer rate from database to app servers is easily seen to be
trivial for today’s fast local networks, as long as the domain
objects themselves are not huge.

Figure 8 shows two concurrent requests being handled in one
application server, each with its own entity context (object cache)
getting data from the common database cache, or occasionally
from the disk.

Figure 8. Data Access in a Web Application, where the

database & application server reside on a fast local network.
If the application outgrows this simple one-database-server
solution, it means the website is quite successful and should be
able to afford investment in reengineering. If most of the domain
data can be classified as application-specific slow-changing non-

critical data, a second-level cache can be provided in the
application servers to offload the database for this kind of data,
leaving the database to directly handle the core application-shared
and/or money-related data. Above this size, we are considering
truly large-scale sites, another topic.

10. THE FUTURE
The basic systems are in place for very useful designs, but it’s
still too hard to build them from scratch, or even from an existing
database schema, except in the simplest cases. A programmer’s
workbench can and will be built, to suggest possible refactorings
and help with incremental additions to a model, working from the
Entity Model side or the object side. The competition between the
Java community and the C#/Microsoft community will at least be
interesting and may bring us more useful tools and other
innovations.

About the presenter: Elizabeth (Betty) O'Neil is a Professor of
Computer Science at the University of Massachusetts at Boston.
She has worked with her husband, Patrick O’Neil, on research in
database performance, indexing, and on authoring a database
textbook. She has worked as a database system software
developer for Sybase IQ, Microsoft, and Amdahl, and has
developed and taught courses in database-backed web
applications as well as database systems.

11. REFERENCES

[1] Adya, A, Blakely, J, Melnik, S, Meralidhar, S., and the

ADO.NET Team, 2007, Anatomy of the ADO.NET Entity
Framework, In Proceedings of SIGMOD 2007, ACM
Press, New York, NY.

[2] Ambler, S., 2003. Agile Database Techniques, Wiley

[3] Bauer, C, King, G 2006 Java Persistence with Hibernate,
Manning

[4] BEA 2006, Kodo Developer’s Guide for JPA/JDO http://e-
docs.bea.com/kodo/docs41/full/html/index.html

[5] Bernstein, P.A., Melnik, S. 2007 Model Management 2.0—
Manipulating Richer Mappings. In Proceedings of SIGMOD
2007, ACM Press, New York, NY, 1-12.

[6] Chen, P. 1976 The Entity-Relationship Model—Toward a
Unified View of Data, ACM Trans. on Database Systems, 1,
1, (March 1976), 9 – 36

[7] Hibernate, http://www.hibernate.org
[8] IBM, 2007 Feature Pack for EJB 3.0 for WebSphere

Application Server V6.1http://www-
1.ibm.com/support/docview.wss?rs=177&uid=swg21287579

[9] Melnik, S., Adya, A., Bernstein, P., 2007 Compiling
Mappings to Bridge Applications and Databases, In
Proceedings of SIGMOD 2007, ACM Press, New York,
NY.

[10] MSDN Library, 2006 The ADO.NET Entity Framework
Overview, http://msdn2.microsoft.com/en-
us/library/aa697427(VS.80).aspx

[11] Oracle, 2008, Oracle TopLink 11g Preview,
http://www.oracle.com/technology/products/ias/toplink/previ
ew/index.html

[12] Unified Modeling Language. http://www.uml.org/

http://www.hibernate.org/
http://msdn2.microsoft.com/en-us/library/aa697427(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/aa697427(VS.80).aspx
http://www.oracle.com/technology/products/ias/toplink/preview/index.html
http://www.oracle.com/technology/products/ias/toplink/preview/index.html

	1. INTRODUCTION
	2. THE ENTITY MODEL
	3. THE PIZZA SHOP EXAMPLE
	4. THE PRESENTATION, SERVICE, AND DATA ACCESS OBJECT (DAO) LAYERS
	5. THE ENTITY CONTEXT
	6. THE DOMAIN OBJECT LIFE CYCLE
	7. TRANSACTIONS
	7.1 Transactions vs. Entity Context Lifetimes: Are Contexts for Conversations a Good Idea?

	8. THEORY
	9. SCALING UP
	10. THE FUTURE
	11. REFERENCES

