CS 420 Spring 2019
Homework 10 Solutions

1. (a) REJECTr); is defined as {{M,w)|M is a Turing machine, and M
rejects w}. Prove that REJFECTr) is Turing recognizable.
Solution: REJECTr ) is recognized by the following Turing ma-
chine V:

V = “ On input (M, w)
1. Run M on w.
2. If M rejects, accept. If M accepts, reject.”
(b) Show that REJECTr)s is undecidable using diagonalization. Your
proof should be similar to, but not the same as, the proof that Ay,
is undecidable.

Solution: We assume that REJECTr) is decidable and obtain a
contradiction. Suppose that the Turing machine H decides REJECTr ;.
This means that

reject if M accepts w
H((M,w)) =< accept if M rejects w
reject if M loops on w

Using H, we define another Turing machine D

D =“On input (M) where M is a Turing machine
1. Run H on (M, (M)).
2. If H accepts, accept. If H rejects, reject.”

We have

reject if M accepts (M)
D((M)) = (¢ accept if M rejects (M)
reject if M loops on (M)

Applying this to M = D, we get

reject if D accepts (D)
D((D)) =< accept if D rejects (D)
reject if D loops on (D)

No matter what D does on (D), we get a contradiction, so D can’t
exist, which means that H can’t exist and REJECTr s is undecid-
able.

(¢) Give a second proof that REJECTr) is undecidable by reducing
Aryr to REJECTr ).
[This will involve some creativity because the technique we used to
reduce Aryr to HALTrp will not work here.

Solution: Suppose that the Turing machine R decides REJECTr ;.
Then we define a Turing machine S that decides Arj; as follows:
S =“On input (M, w)



1. Construct a TM M’ from M by reversing the accept and reject
states.

2. Run R on (M’ w).
3. If R accepts, accept. If R rejects, reject.”

Note that (M, w) € Arys if and only if M accepts w if and only if
M’ rejects w if and only if (M’,w) € REJECTry; if and only if R
accepts (M, w) if and only if S accepts (M, w), so S decides Ary;.
Since A7) is undecidable, no such Turing machine S exists, so R
cannot exist and REJECTr); is undecidable.

2. The proof is the same as the one given in Theorem 5.3, except that in
step 1 of the instructions for Ms, “has the form 0™1™” is replaced by “has
the form 071m2"”. Now if M accepts w, then L(M3) is the context-free
language ¥* and if M does not accept w, then L(Ms) is the non-context-
free language {0"1"2"|n > 0}.

3. Let NONREGULARy)y = {{M)|M is a Turing machine, and L(M)
is not a regular language}. Suppose that you want to reduce Arps to
NONREGULART ) by transforming (M, w) to (Ma). (So if (M, w) is in
ATM7 then <M2> is in NONREGULARTM, and if <]\47 w) is not in ATM;
then (Ms) is not in NONREGULARyr).)

(a) Fill in the blanks in the following two statements in a way that states
what you have to do to make the reduction work. Make your state-
ments as general as possible. (In both cases you will be writing down
something about the behavior of the Turing machine Mo.)

e If M accepts w, then
L(M,) is not regular.

e If M does not accept w, then
L(Ms>) is regular.

(b) Give the definition of the desired Turing machine M, given M and
w.

My = “On input x
1. If x does not have the form a™b™ for some n, reject.
2. If z = a™b"™ for some n > 0, run M on w.
3. If M accepts w, accept. If M rejects w, reject.
If M accepts w, then L(Msy) = {a™b™|n > 0}, so L(Ms) is not regular. If
M does not accept w, then L(Mz) = (), so L(My) is regular.
4. Problem 5.9

We show that T' is undecidable by reducing Arjs to T. Suppose that R
is a TM that decides T. We will give a TM S that decides Arp;. Since



Arpr is not decidable, this will show that no such TM R can exist, so T
is not decidable.

S will have this form:

S = “On input (M, w) where M is a Turing machine and w is an input:

1. Produce the TM M;.
2. Run the TM R that decides T' on (Mj).
3. If R accepts, then accept. If R rejects, then reject.”

To complete the proof, we have to show how, given (M, w), S can produce
the description of a TM M such that if M accepts w, then (M;) € T,
i.e., whenever M; accepts a string w, then it also accepts w’, and if M
does not accept w, then (M) ¢ T, i.e., there is some string w such that
M, accepts w but does not accept w?. Here is a description of M;.

M; = “On input z,

1. If z = 01, then accept x.
2. If x # 01, then run M on input w and accept if M accepts.”

If M accepts w, then M; accepts every string, so (M7) belongs to T. If
M does not accept w, then the only string accepted by M is 01, so (M)
does not belong to T

. Problem 5.14

Let S = {(M,w)|M is a Turing machine, w is an input and at some point
in its computation on w, M moves its head left when it is reading the
leftmost cell}. We show that S is undecidable by reducing Arps to S.

Given a TM M, we define a new TM M; that works as follows. Given
input w, M7 simulates M on w, but M; keeps a special mark on the first
tape cell. When M moves left from the first tape cell, M; instead moves
right and then back to the left, ending up in the same state M would be in.
If M ever accepts w, then M; moves left to the first cell and then moves
left once more. If M rejects w, then M; just rejects without moving left.
Thus M accepts w if and only if M; at some point in its computation on
input w moves left from the leftmost cell. Because a Turing machine can
carry out the construction of My, given M, this is a reduction from Arps
to S and shows that S is undecidable.

More formally, suppose that R is a TM that decides S. Then the following
TM N would decide Arps, which is impossible.

N = “On input (M, w) where M is a Turing machine and w is an input:

1. Produce the TM M.
2. Run the TM R that decides S on (M, w).
3. If R accepts, then accept. If R rejects, then reject.”



6. Problem 5.15

The corresponding language is MOV ELEFTry; = {{(M,w)|M is a Turing
machine and on input w M attempts to move its head left at some point
in the computation}.

A Turing machine to decide MOV ELEFTr); implements the following
algorithm. Given M and w, simulate M on w until either a) M attempts
to move left, b) M halts without ever trying to move left, or ¢) M moves
right beyond the original input and then repeats some state without ever
trying to move left. One of these three things has to happen eventually
because if M never tries to move left and never halts, it will always move
right and eventually move past the original input. Since there are only
finitely many states, eventually a state will be repeated after M has gone
past its original input. If a) happens, then (M, w) € MOV ELEFTry;. If
b) happens, then (M, w) ¢ MOV ELEFTr). If ¢) happens, then we also
have (M, w) ¢ MOV ELEFTr); because if M goes from a configuration
upU to a configuration uvpll without ever moving left, then M’s computa-
tion will continue as uvvpll, uvvopll, ... without ever trying to move left.
Since a Turing machine can implement this algorithm, MOV ELEFTr ),
is decidable.

7. Problem 27

Let EQaprm—pra = {(4, B)|A and B are 2DIM-DFA and L(A) = L(B)}.
We show that EQopra—pra is undecidable.

Let E2DIM_DFA = {<A>|A is a 2DIM-DFA and L(A) = @} EQD]M_DFA
is m-reducible to FQoprr—pra in the same way that Erjs is m-reducible
to EQrar, so if we show that Fopray—pra is undecidable, this will show
that EQapry—pra is undecidable.

To show that Fopry—pra is undecidable, we will m-reduce Arys to
Esprv—pra by a mapping which takes (M, w) to (B). This means that
if M accepts w, then we want L(B) to be non-empty and if M does not
accept w, we want L(B) to be empty. We accomplish this by making L(B)
be the set of accepting computation histories of M on w. A computation
history C1,...,Cy is presented to B as a rectangle with C; in the first
row, Cy in the second row, etc. (Short configurations are padded with
blanks on the right end.) Given an input rectangle, B checks that the
first row is the initial configuration of M on w, that the last row is an
accepting configuration, and that each row follows from the previous row
by the rules of M. (B can’t write, but because the configurations are one
on top of the other, B can still check that one configuration C;;; follows
correctly from C; — the only entries in C;y; that could be different from
the entries in C; are the ones within one cell of where the state is in C;.)
If the rectangle passes all these tests, then B accepts, else B rejects.

If M accepts w, then there is an accepting configuration history of M on
w and L(B) # 0. If M does not accept w, then there is no accepting



computation history of M on w and L(B) = (). Thus, we have m-reduced
Arar to Eopryvi—pra and Esprar—pra is undecidable. It follows that
EQoprvi—pra is undecidable.



