
CS 420 Spring 2019
Homework 10 Solutions

1. (a) REJECTTM is defined as {〈M,w〉|M is a Turing machine, and M
rejects w}. Prove that REJECTTM is Turing recognizable.

Solution: REJECTTM is recognized by the following Turing ma-
chine V :

V = “ On input 〈M,w〉
1. Run M on w.

2. If M rejects, accept. If M accepts, reject.”

(b) Show that REJECTTM is undecidable using diagonalization. Your
proof should be similar to, but not the same as, the proof that ATM

is undecidable.

Solution: We assume that REJECTTM is decidable and obtain a
contradiction. Suppose that the Turing machine H decides REJECTTM .
This means that

H(〈M,w〉) =

 reject if M accepts w
accept if M rejects w
reject if M loops on w

Using H, we define another Turing machine D

D =“On input 〈M〉 where M is a Turing machine

1. Run H on 〈M, 〈M〉〉.
2. If H accepts, accept. If H rejects, reject.”

We have

D(〈M〉) =

 reject if M accepts 〈M〉
accept if M rejects 〈M〉
reject if M loops on 〈M〉

Applying this to M = D, we get

D(〈D〉) =

 reject if D accepts 〈D〉
accept if D rejects 〈D〉
reject if D loops on 〈D〉

No matter what D does on 〈D〉, we get a contradiction, so D can’t
exist, which means that H can’t exist and REJECTTM is undecid-
able.

(c) Give a second proof that REJECTTM is undecidable by reducing
ATM to REJECTTM .
[This will involve some creativity because the technique we used to
reduce ATM to HALTTM will not work here.]

Solution: Suppose that the Turing machine R decides REJECTTM .
Then we define a Turing machine S that decides ATM as follows:

S =“On input 〈M,w〉

1



1. Construct a TM M ′ from M by reversing the accept and reject
states.

2. Run R on 〈M ′, w〉.
3. If R accepts, accept. If R rejects, reject.”

Note that 〈M,w〉 ∈ ATM if and only if M accepts w if and only if
M ′ rejects w if and only if 〈M ′, w〉 ∈ REJECTTM if and only if R
accepts 〈M,w〉 if and only if S accepts 〈M,w〉, so S decides ATM .
Since ATM is undecidable, no such Turing machine S exists, so R
cannot exist and REJECTTM is undecidable.

2. The proof is the same as the one given in Theorem 5.3, except that in
step 1 of the instructions for M2, “has the form 0n1n” is replaced by “has
the form 0n1n2n”. Now if M accepts w, then L(M2) is the context-free
language Σ∗ and if M does not accept w, then L(M2) is the non-context-
free language {0n1n2n|n ≥ 0}.

3. Let NONREGULARTM = {〈M〉|M is a Turing machine, and L(M)
is not a regular language}. Suppose that you want to reduce ATM to
NONREGULARTM by transforming 〈M,w〉 to 〈M2〉. (So if 〈M,w〉 is in
ATM , then 〈M2〉 is in NONREGULARTM , and if 〈M,w〉 is not in ATM ,
then 〈M2〉 is not in NONREGULARTM .)

(a) Fill in the blanks in the following two statements in a way that states
what you have to do to make the reduction work. Make your state-
ments as general as possible. (In both cases you will be writing down
something about the behavior of the Turing machine M2.)

• If M accepts w, then
L(M2) is not regular.

• If M does not accept w, then
L(M2) is regular.

(b) Give the definition of the desired Turing machine M2, given M and
w.

M2 = “On input x

1. If x does not have the form anbn for some n, reject.

2. If x = anbn for some n ≥ 0, run M on w.

3. If M accepts w, accept. If M rejects w, reject.

If M accepts w, then L(M2) = {anbn|n ≥ 0}, so L(M2) is not regular. If
M does not accept w, then L(M2) = ∅, so L(M2) is regular.

4. Problem 5.9

We show that T is undecidable by reducing ATM to T . Suppose that R
is a TM that decides T . We will give a TM S that decides ATM . Since

2



ATM is not decidable, this will show that no such TM R can exist, so T
is not decidable.

S will have this form:

S = “On input 〈M,w〉 where M is a Turing machine and w is an input:

1. Produce the TM M1.

2. Run the TM R that decides T on 〈M1〉.
3. If R accepts, then accept. If R rejects, then reject.”

To complete the proof, we have to show how, given 〈M,w〉, S can produce
the description of a TM M1 such that if M accepts w, then 〈M1〉 ∈ T ,
i.e., whenever M1 accepts a string w, then it also accepts wR, and if M
does not accept w, then 〈M1〉 6∈ T , i.e., there is some string w such that
M1 accepts w but does not accept wR. Here is a description of M1.

M1 = “On input x,

1. If x = 01, then accept x.

2. If x 6= 01, then run M on input w and accept if M accepts.”

If M accepts w, then M1 accepts every string, so 〈M1〉 belongs to T . If
M does not accept w, then the only string accepted by M1 is 01, so 〈M1〉
does not belong to T .

5. Problem 5.14

Let S = {〈M,w〉|M is a Turing machine, w is an input and at some point
in its computation on w, M moves its head left when it is reading the
leftmost cell}. We show that S is undecidable by reducing ATM to S.

Given a TM M , we define a new TM M1 that works as follows. Given
input w, M1 simulates M on w, but M1 keeps a special mark on the first
tape cell. When M moves left from the first tape cell, M1 instead moves
right and then back to the left, ending up in the same state M would be in.
If M ever accepts w, then M1 moves left to the first cell and then moves
left once more. If M rejects w, then M1 just rejects without moving left.
Thus M accepts w if and only if M1 at some point in its computation on
input w moves left from the leftmost cell. Because a Turing machine can
carry out the construction of M1, given M , this is a reduction from ATM

to S and shows that S is undecidable.

More formally, suppose that R is a TM that decides S. Then the following
TM N would decide ATM , which is impossible.

N = “On input 〈M,w〉 where M is a Turing machine and w is an input:

1. Produce the TM M1.

2. Run the TM R that decides S on 〈M1, w〉.
3. If R accepts, then accept. If R rejects, then reject.”

3



6. Problem 5.15

The corresponding language is MOV ELEFTTM = {〈M,w〉|M is a Turing
machine and on input w M attempts to move its head left at some point
in the computation}.
A Turing machine to decide MOV ELEFTTM implements the following
algorithm. Given M and w, simulate M on w until either a) M attempts
to move left, b) M halts without ever trying to move left, or c) M moves
right beyond the original input and then repeats some state without ever
trying to move left. One of these three things has to happen eventually
because if M never tries to move left and never halts, it will always move
right and eventually move past the original input. Since there are only
finitely many states, eventually a state will be repeated after M has gone
past its original input. If a) happens, then 〈M,w〉 ∈MOV ELEFTTM . If
b) happens, then 〈M,w〉 6∈MOV ELEFTTM . If c) happens, then we also
have 〈M,w〉 6∈ MOV ELEFTTM because if M goes from a configuration
upt to a configuration uvpt without ever moving left, then M ’s computa-
tion will continue as uvvpt, uvvvpt, . . . without ever trying to move left.
Since a Turing machine can implement this algorithm, MOV ELEFTTM

is decidable.

7. Problem 27

Let EQ2DIM−DFA = {〈A,B〉|A and B are 2DIM-DFA and L(A) = L(B)}.
We show that EQ2DIM−DFA is undecidable.

Let E2DIM−DFA = {〈A〉|A is a 2DIM-DFA and L(A) = ∅}. E2DIM−DFA

is m-reducible to EQ2DIM−DFA in the same way that ETM is m-reducible
to EQTM , so if we show that E2DIM−DFA is undecidable, this will show
that EQ2DIM−DFA is undecidable.

To show that E2DIM−DFA is undecidable, we will m-reduce ATM to
E2DIM−DFA by a mapping which takes 〈M,w〉 to 〈B〉. This means that
if M accepts w, then we want L(B) to be non-empty and if M does not
accept w, we want L(B) to be empty. We accomplish this by making L(B)
be the set of accepting computation histories of M on w. A computation
history C1, . . . , Ck is presented to B as a rectangle with C1 in the first
row, C2 in the second row, etc. (Short configurations are padded with
blanks on the right end.) Given an input rectangle, B checks that the
first row is the initial configuration of M on w, that the last row is an
accepting configuration, and that each row follows from the previous row
by the rules of M . (B can’t write, but because the configurations are one
on top of the other, B can still check that one configuration Ci+1 follows
correctly from Ci – the only entries in Ci+1 that could be different from
the entries in Ci are the ones within one cell of where the state is in Ci.)
If the rectangle passes all these tests, then B accepts, else B rejects.

If M accepts w, then there is an accepting configuration history of M on
w and L(B) 6= ∅. If M does not accept w, then there is no accepting

4



computation history of M on w and L(B) = ∅. Thus, we have m-reduced
ATM to E2DIM−DFA and E2DIM−DFA is undecidable. It follows that
EQ2DIM−DFA is undecidable.

5


