1. Problem 5.26

(a) If M is a 2DFA and x is an input for M of length n, then a tape head position for M on x is a number between 0 and $n + 1$ that indicates which cell the tape head is on. (0 indicates that the tape head is on the blank to the left of the input and $n + 1$ indicates that the tape head is on the blank to the right of the input.) A configuration for M on w is a quadruple (w, p, i, j) where p is the current state of M, i is the position of the first tape head and j is the position of the second tape head. Since M cannot write on its tape, if M ever repeats a configuration, then M is in an infinite loop.

A Turing machine N to decide A_{2DFA} is given by

$N = \text{"On input } \langle M, x \rangle \text{ where } M \text{ is a 2DFA and } x \text{ is an input string:} $

1. Simulate M on x until either a) M accepts, b) M tries to move left from the initial blank, c) M tries to move right from the final blank, or d) M repeats a configuration.
2. If a) happens, then accept. If b), c) or d) happens, then reject.”

If M is in an infinite loop, then since there are only finitely many configurations, M must eventually repeat a configuration, so one of a), b), c), d) must eventually happen. Thus, N decides A_{2DFA}.

(b) To show that E_{2DFA} is undecidable, we will reduce A_{TM} to E_{2DFA}. Given a Turing machine M and an input w, we can construct a 2DFA B such that $L(B)$ is the set of accepting configurations of M on w. This B is similar to the LBA B constructed in the proof of Theorem 5.9, except that to check if C_{i+1} follows from C_i legally, this B does not zig-zag back and forth using dots as markers, but instead it puts one tape head on C_i and the other tape head on C_{i+1} and compares the two without having to write anything on the tape.

Suppose that R is a TM that decides E_{2DFA}. Then, the following TM S decides A_{TM}.

$S = \text{"On input } \langle M, w \rangle \text{, where } M \text{ is a TM and } w \text{ is an input string:} $

1. Construct the 2DFA B as described above.
2. Run R on $\langle B \rangle$.
3. If R rejects, then accept; if R accepts, then reject.”

Since A_{TM} is not decidable, there cannot be such a TM S, so there is not such TM R and E_{2DFA} is undecidable.

2. Exercise 5.4

No. For example, let $A = \{0^n1^n | n \geq 0 \}$ and $B = \{0^n1^m | n,m \geq 0 \}$. We will show that $A \leq_m B$ even though A is not regular and B is regular. A
mapping reduction \(f \) from \(A \) to \(B \) is computed by the Turing machine \(F \) given by

\[F = \{ \text{On input } w \in \{0,1\}^*, \]

1. Determine if \(w \) belongs to \(A \). (Since \(A \) is decidable, \(F \) can do this with no further information.)

2. If \(w \) belongs to \(A \), then output 01. If \(w \) does not belong to \(A \), then output 10.

(In fact, the same argument shows that if \(A \) is any decidable language and \(B \) is any language other than \(\emptyset \) and \(\Sigma^* \), then \(A \leq_m B \).

3. **Problem 5.22**

 \(A \) is Turing-recognizable if and only if \(A \leq_m A_{TM} \).

 Proof: First suppose that \(A \) is Turing-recognizable and let \(M \) be a Turing machine that recognizes \(A \). The function \(f \) defined by \(f(w) = \langle M, w \rangle \) is a reduction from \(A \) to \(A_{TM} \) because it is obviously computable and we have

 \[w \in A \text{ iff } M \text{ accepts } w \text{ iff } \langle M, w \rangle \in A_{TM} \text{ iff } f(w) \in A_{TM}. \]

 Now suppose that \(A \leq_m A_{TM} \). We know that \(A_{TM} \) is Turing-recognizable, so by Theorem 5.28, \(A \) is Turing-recognizable.

4. **Problem 5.23**

 \(A \) is decidable if and only if \(A \leq_m 0^*1^* \).

 Proof: First suppose that \(A \) is decidable. Define \(f \) by \(f(x) = 01 \) if \(x \in A \) and \(f(x) = 10 \) if \(x \notin A \). Since \(A \) is decidable, \(f \) is computable and \(x \in A \) if and only if \(f(x) \in 0^*1^* \), so \(A \leq_m 0^*1^* \).

 Conversely, suppose that \(A \leq_m 0^*1^* \). Since \(0^*1^* \) is decidable, \(A \) is decidable by Theorem 5.22.

5. **Problem 5.24**

 The set \(\overline{A_{TM}} \) is mapping reduced to \(J \) by the function \(f(y) = 1y \). Thus, \(J \) is not Turing-recognizable. The set \(A_{TM} \) is mapping reduced to \(J \) by the function \(g(x) = 0x \). This shows that \(A_{TM} \) is mapping reducible to \(J \) and hence that \(J \) is not Turing-recognizable.

6. **Problem 5.25**

 Consider the set \(J \) of Problem 5.24. According to that problem, \(J \) is not Turing-recognizable, so \(J \) is not decidable. We will show that \(J \leq_m J \), so \(B = J \) is a solution to the problem.

 First note that \(J = \{ w | w = 0x \text{ for some } x \in \overline{A_{TM}} \text{ or } w = 1y \text{ for some } y \in A_{TM} \text{ or } w = \varepsilon \text{ or } w \text{ begins with a symbol other than 0 or 1} \} \). Let z₀
be some fixed string in \(J \), for example, \(z_0 \) could be \(0x_0 \) for some particular \(x_0 \) in \(A_{TM} \). Define \(f : \Sigma^* \rightarrow \Sigma^* \) by

\[
f(w) = \begin{cases}
1x & \text{if } w = 0x \\
0y & \text{if } w = 1y \\
z_0 & \text{if } w = \varepsilon \text{ or } w \text{ starts with a symbol other than } 0 \text{ or } 1.
\end{cases}
\]

Then, it is clear that \(f \) is computable. To see that \(f \) mapping reduces \(J \) to \(\overline{J} \), suppose first that \(w \in J \). We must show that \(f(w) \in \overline{J} \). If \(w \in J \), there are two possibilities. If \(w = 0x \) with \(x \in A_{TM} \), then \(f(w) = 1x \) with \(x \in A_{TM} \), so \(f(w) \in \overline{J} \). If \(w = 1y \) with \(y \in \overline{A_{TM}} \), then \(f(w) = 0y \) with \(y \in \overline{A_{TM}} \), so \(f(w) \in \overline{J} \). Thus, if \(w \in J \), then \(f(w) \in \overline{J} \).

Now suppose that \(w \notin J \). We must show that \(f(w) \notin \overline{J} \). There are four possibilities to consider. If \(w = 0x \) with \(x \in \overline{A_{TM}} \), then \(f(w) = 1x \), so \(f(w) \notin \overline{J} \). If \(w = 1y \) with \(y \in A_{TM} \), then \(f(w) = 0y \), so \(f(w) \notin \overline{J} \). If \(w = \varepsilon \) or \(w \) starts with a symbol other than 0 or 1, then \(f(w) = z_0 \), so \(f(w) \notin \overline{J} \). Thus, if \(w \notin J \), then \(f(w) \notin \overline{J} \).

This shows that \(f \) is a mapping reduction of \(J \) to \(\overline{J} \).

7. It is not possible to \(m \)-reduce \(\text{ALL}_{CFG} \) to \(\text{ALL}_{DFA} \).

Proof: Suppose that \(\text{ALL}_{CFG} \leq_m \text{ALL}_{DFA} \). Then by Exercise 4.3, \(\text{ALL}_{DFA} \) is decidable, so by Theorem 5.22, \(\text{ALL}_{CFG} \) is decidable. This contradicts Theorem 5.13.

8. It is not possible to \(m \)-reduce \(\text{EQ}_{TM} \) to \(\overline{A_{TM}} \).

Proof: Suppose that \(\text{EQ}_{TM} \leq_m \overline{A_{TM}} \). Then we have \(\text{EQ}_{TM} \leq_m \overline{A_{TM}} \). By Theorem 5.30, \(\text{EQ}_{TM} \) is not Turing recognizable, so by Corollary 5.29, \(A_{TM} \) is not Turing recognizable. This contradicts the fact that \(A_{TM} \) is Turing recognizable, as stated on page 202 of the text.