1. (a) REJECT_{TM} is defined as $\{\langle M, w \rangle | M$ is a Turing machine, and M rejects $w\}$. Prove that REJECT_{TM} is Turing recognizable.

Solution: REJECT_{TM} is recognized by the following Turing machine V:

$V =$ “On input $\langle M, w \rangle$

1. Run M on w.
2. If M rejects, accept. If M accepts, reject.”

(b) Show that REJECT_{TM} is undecidable using diagonalization. Your proof should be similar to, but not the same as, the proof that A_{TM} is undecidable.

Solution: We assume that REJECT_{TM} is decidable and obtain a contradiction. Suppose that the Turing machine H decides REJECT_{TM}.

This means that

$$H(\langle M, w \rangle) = \begin{cases}
\text{reject} & \text{if } M \text{ accepts } w \\
\text{accept} & \text{if } M \text{ rejects } w \\
\text{reject} & \text{if } M \text{ loops on } w
\end{cases}$$

Using H, we define another Turing machine D

$D =$ “On input $\langle M \rangle$ where M is a Turing machine

1. Run H on $\langle M, \langle M \rangle \rangle$.
2. If H accepts, accept. If H rejects, reject.”

We have

$$D(\langle M \rangle) = \begin{cases}
\text{reject} & \text{if } M \text{ accepts } \langle M \rangle \\
\text{accept} & \text{if } M \text{ rejects } \langle M \rangle \\
\text{reject} & \text{if } M \text{ loops on } \langle M \rangle
\end{cases}$$

Applying this to $M = D$, we get

$$D(\langle D \rangle) = \begin{cases}
\text{reject} & \text{if } D \text{ accepts } \langle D \rangle \\
\text{accept} & \text{if } D \text{ rejects } \langle D \rangle \\
\text{reject} & \text{if } D \text{ loops on } \langle D \rangle
\end{cases}$$

No matter what D does on $\langle D \rangle$, we get a contradiction, so D can’t exist, which means that H can’t exist and REJECT_{TM} is undecidable.

(c) Give a second proof that REJECT_{TM} is undecidable by reducing A_{TM} to REJECT_{TM}.

[This will involve some creativity because the technique we used to reduce A_{TM} to HALT_{TM} will not work here.]

Solution: Suppose that the Turing machine R decides REJECT_{TM}. Then we define a Turing machine S that decides A_{TM} as follows:

$S =$ “On input $\langle M, w \rangle$
1. Construct a TM M' from M by reversing the accept and reject states.
2. Run R on $\langle M', w \rangle$.
3. If R accepts, accept. If R rejects, reject.”

Note that $\langle M, w \rangle \in A_{TM}$ if and only if M accepts w if and only if M' rejects w if and only if $\langle M', w \rangle \in \text{REJECT}_{TM}$ if and only if R accepts $\langle M, w \rangle$ if and only if S accepts $\langle M, w \rangle$, so S decides A_{TM}. Since A_{TM} is undecidable, no such Turing machine S exists, so R cannot exist and REJECT_{TM} is undecidable.