1. Give DFAs that recognize the following languages

(a) \(\{w \in \{0, 1\}^* | w \text{ contains at least two 0's}\}\).

Solution:

```
1 --0-> 2 --0-> 3
```

(b) \(\{w \in \{0, 1\}^* | w \text{ contains 110 as a substring}\}\).

Solution:

```
4 --1-> 5 --1-> 6 --0-> 7
```
2. Using the complementation construction and one of the DFAs from Exercise 1, give a DFA that recognizes the language
\(\{w \in \{0, 1\}^* | w \text{ does not contain } 110 \text{ as a substring}\} \).

Solution:

3. Let \(A \) be the language \(\{0^n1^n | n \geq 0\} \). What is wrong with the following “proof” that \(A \) is regular?

Proof:

Consider the DFA given below
The DFA accepts every string in \(A \), so \(A \) is regular.

Solution: In order for a language \(A \) to be regular, there must be a DFA \(M \) that recognizes \(A \). \(M \) recognizing \(A \) means that

1. \(M \) accepts every string in \(A \), and
2. \(M \) rejects every string not in \(A \).

For the DFA \(M \) given in the “proof,” \(M \) accepts every string in \(A \), but \(M \) does not reject every string not in \(A \). For instance, \(M \) accepts the string 0 even though 0 is not in \(A \). Thus, \(M \) does not recognize \(A \). The fact that \(M \) accepts every string in \(A \) is not sufficient to make \(A \) regular; \(M \) would also have to reject all strings not in \(A \), and that is not true here.