1. Using the method from class, give an NFA that recognizes $L_1 \cup L_2$, where L_1 and L_2 are the languages from Exercise 5 of Homework 1.

Solution:
2. Using the method from class, give an NFA that recognizes $L_1 \circ L_2$, where L_1 and L_2 are the languages from Exercise 5 of Homework 1.

Solution:

3. Using the method from class, give an NFA that recognizes L_1^*, where L_1 is the language from Exercise 5 of Homework 1.

Solution:

4. Give regular expressions for the following languages:

 (a) $\{w \in \{0,1\}^* | w$ starts with a 0 and has odd length $\}$.
Solution: 0((0 ∪ 1)(0 ∪ 1))∗
(b) \{w ∈ \{0, 1\}∗|w contains 011 as a substring\}.
Solution: (0 ∪ 1)∗011(0 ∪ 1)∗
(c) \{w ∈ \{0, 1\}∗|w does not contain 011 as a substring\}.
[There is a simple regular expression for this language, but it requires
some thinking to find it.]
Solution: 1∗(0 ∪ 01)∗
(d) \{w ∈ \{0, 1\}∗|one of the last three symbols in w is a 1\}.
Solution: (0 ∪ 1)∗1(0 ∪ ε)(0 ∪ ε)

5. Convert the regular expression ((a ∪ b)c)∗ into an NFA using the method
from class (which is the same as the method from the book and is different
from the method in JFLAP).

Solution:
First we have the following NFAs for a, b, and c.

```
a: --→ a
    □
```

```
b: --→ b
    □
```

```
c: --→ c
    □
```

Then, we obtain an NFA for a ∪ b
```
    □
  ε --→ a
    □
```

```
    □
  ε --→ b
    □
```

and the following for (a ∪ b)c.
Finally, we obtain the NFA below for \(((a \cup b)c)^*\).

6. Convert the DFA M_1 in Exercise 1.1 of the textbook into a regular expression using the method from class (which is the same as the method in the book, and is not the same as the method in JFLAP).

Solution:

Turning this into a GNFA, we get
Eliminating state q_1 gives

and the regular expression is $b^*a((a \cup b)(bb^*a \cup a))^*$.

7. **Problem 1.31** Show that if A is regular so is A^R.

Proof: Since A is regular, there is some NFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes A. We construct an NFA M' such that $L(M') = A^R$. The idea is that the start state of M' is the accept state of M, the accept state of M' is the start state of M, and for every transition in M, there is a transition with the same label in M', but going in the reverse direction. The problem with this is that M may have more than one accept state. Since M' can have only one start state, we add a new start state to M' and ε transitions from the new start state to all the accept states of M. The formal construction is:
\[M' = (Q \cup \{q_s\}, \Sigma, \delta', q_s, \{q_0\}) \]

where \(q_s \) is a new state and

\[
\delta'(q, a) = \begin{cases}
\{ p : q \in \delta(p, a) \} & \text{if } q \neq q_s \\
F & \text{if } q = q_s, a = \varepsilon \\
\emptyset & \text{if } q = q_s, a \neq \varepsilon
\end{cases}
\]

8. (a) Let \(M \) be the NFA given in the solution to Problem 5(b) on Homework 1. Give an NFA \(N \) with three states and no \(\varepsilon \)-transitions that recognizes the same language.

Solution:

\[0 \quad 1 \quad 2 \]

(b) Generalize what you did in Part (a) of this problem by proving the following theorem:

Theorem: If \(M \) is an NFA, then there is an NFA \(N \) with the following properties

1. \(N \) has the same number of states as \(M \).
2. \(N \) has no \(\varepsilon \)-transitions.
3. \(L(N) = L(M) \).

Solution: We obtain \(N \) from \(M \) by doing three things:

1. We remove all \(\varepsilon \)-transitions.
2. If in \(M \) there is a series of \(\varepsilon \)-transitions that leads from a state \(p \) to an accept state \(q \), then in \(N \), \(p \) is also an accept state.
3. If in \(M \) there is a series of \(\varepsilon \)-transitions from a state \(p \) to a state \(q \), and \(M \) can go from \(q \) to a state \(r \) reading a symbol \(a \), then \(N \) can go directly from \(p \) to \(r \) reading \(a \).

Formally, let \(M = (Q, \Sigma, \delta, q_0, F) \). We define \(N = (Q, \Sigma, \delta', q_0, F') \).

If \(q \) is a state in \(Q \), we use the notation \(\mathcal{E}_M(q) \) for the set of states that can be reached from \(q \) using 0 or more \(\varepsilon \)-transitions in \(M \). The definition of \(N \) is now given by

\[F' = \{ q \in Q | \mathcal{E}_M(q) \cap F \neq \emptyset \} \]
and

\[\delta'(q, a) = \begin{cases} \emptyset & \text{if } a = \varepsilon \\ \bigcup \{ \delta(p, a) \mid p \in E_M(q) \} & \text{if } a \neq \varepsilon \end{cases} \]