1. Using the method from class, give an NFA that recognizes L_2^*, where L_2 is the language from Exercise 3(b) of Homework 2.

Solution:

```
\[ \begin{array}{c}
\circ \rightarrow \varepsilon \\
\varepsilon \rightarrow \varepsilon, 0 \\
\varepsilon \rightarrow \varepsilon \\
\varepsilon \rightarrow \varepsilon
\end{array} \]
```

2. Give regular expressions for the following languages:

(a) \{w \in \{0, 1\}^* | w ends with either 110 or 01\}

Solution: \((0 \cup 1)^*(110 \cup 01)\)

(b) \{w \in \{0, 1\}^* | w starts with a 1 and has even length\}

Solution: \(1(0 \cup 1)((0 \cup 1)(0 \cup 1))^*\)

(c) \{w \in \{0, 1\}^* | w has length at least 3 and the third symbol from the right in w is a 1\}

Solution: \((0 \cup 1)^*1((0 \cup 1)(0 \cup 1))\)

(d) \{w \in \{0, 1\}^* | w does not end with 110 and does not end with 01\}

Solution: \(\varepsilon \cup 0 \cup 1 \cup 00 \cup 10 \cup 11 \cup (0 \cup 1)^*(000 \cup 01(0 \cup 1) \cup 100 \cup 111)\)

3. Convert the regular expression \((a \cup b)^*c\) into an NFA using the method from class (which is the same as the method from the book and is different from the method in JFLAP).

Solution:

First we have the following NFAs for \(a\), \(b\), and \(c\).
Then, we obtain an NFA for \(a \cup b \)

![Diagram for \(a \cup b \)](image)

and the following for \((a \cup b)^*\).

![Diagram for \((a \cup b)^*\)](image)

Finally, we obtain the NFA below for \((a \cup b)^*c\).

![Diagram for \((a \cup b)^*c\)](image)
4. Let N be the following NFA:

Convert N into a regular expression using the method from class (which is the same as the method in the book, and is not the same as the method in JFLAP).

Solution:

Turning this into a GNFA, we get
Eliminating state q_4 gives

Eliminating state q_0 gives
Eliminating state q_2 gives
Eliminating state q_1 gives

Finally, eliminating state q_3 gives

and the regular expression is $(a^*b \cup a^*b^*(b \cup ba^*ab))(aa^*ab \cup b^*(b \cup ba^*ab))^*$.

5. **Problem 1.31** Show that if A is regular so is A^R.

Proof: Since A is regular, there is some NFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes A. We construct an NFA M' such that $L(M') = A^R$. The idea is that the start state of M' is the accept state of M, the accept state
of \(M' \) is the start state of \(M \), and for every transition in \(M \), there is a transition with the same label in \(M' \), but going in the reverse direction. The problem with this is that \(M \) may have more than one accept state. Since \(M' \) can have only one start state, we add a new start state to \(M' \) and \(\varepsilon \) transitions from the new start state to all the accept states of \(M \).

The formal construction is:

\[
M' = (Q \cup \{q_s\}, \Sigma, \delta', q_s, \{q_0\})
\]

where \(q_s \) is a new state and

\[
\delta'(q, a) = \begin{cases}
\{ p : q \in \delta(p, a) \} & \text{if } q \neq q_s \\
F & \text{if } q = q_s, a = \varepsilon \\
\emptyset & \text{if } q = q_s, a \neq \varepsilon
\end{cases}
\]