
CS 420, Springl 2019
Homework 3 Solutions

1. Convert the regular expression (ab ∪ c)∗ into an NFA using the method
from class (which is the same as the method from the book and is different
from the method in JFLAP).

Solution:

First we have the following NFAs for a, b, and c.
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Then, we obtain an NFA for ab
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and the following for (ab ∪ c).
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Finally, we obtain the NFA below for (ab ∪ c)∗.
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2. Let N be the following NFA:
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Convert N into a regular expression using the method from class (which
is the same as the method in the book, and is not the same as the method
in JFLAP).

Solution:

Normally, when we turn an NFA into a GNFA, we have to add a new start
state with an ε-transition to the old start state, but in this case, the NFA
has no transitions into the start state, so it is not necessary to add a new
start state, so we get the following GNFA when we transform the NFA to
a GNFA.
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Eliminating state q1 gives
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Eliminating state q2 gives
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Eliminating state q3 gives
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Finally, eliminating state q4 gives

-

&%
'$&%

'$
q0

��
��z

((a∗b ∪ ε)a∗a ∪ a∗b∗)(ba∗a)∗ ∪ a∗b∗

qa

and the regular expression is ((a∗b ∪ ε)a∗a ∪ a∗b∗)(ba∗a)∗ ∪ a∗b∗.

3. Problem 1.31 Show that if A is regular so is AR.
Proof: Since A is regular,there is some NFA M = (Q,Σ, δ, q0, F ) that
recognizes A. We construct an NFA M ′ such that L(M ′) = AR. The idea
is that the start state of M ′ is the accept state of M , the accept state
of M ′ is the start state of M , and for every transition in M , there is a
transition with the same label in M ′, but going in the reverse direction.
The problem with this is that M may have more than one accept state.
Since M ′ can have only one start state, we add a new start state to M ′
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and ε transitions from the new start state to all the accept states of M .
The formal construction is:
M ′ = (Q ∪ {qs},Σ, δ′, qs, {q0}) where qs is a new state and

δ′(q, a) =

 {p : q ∈ δ(p, a)} if q 6= qs
F if q = qs, a = ε
∅ if q = qs, a 6= ε

4. (a) Let M be the NFA given in the solution to Problem 2(b) on Home-
work 2. Give an NFA N with two states and no ε-transitions that
recognizes the same language. (Your NFA can have more than one
accept state.)

Solution:
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(b) Generalize what you did in Part (a) of this problem by proving the
following theorem:

Theorem: If M is an NFA, then there is an NFA N with the fol-
lowing properties

(1) N has the same number of states as M .

(2) N has no ε-transitions.

(3) L(N) = L(M).

Solution: We obtain N from M by doing three things:

1. We remove all ε-transitions.

2. If in M there is a series of ε-transitions that leads from a state
p to an accept state q, then in N , p is also an accept state.

3. If in M there is a series of ε-transitions from a state p to s state
q, and M can go from q to a state r reading a symbol a, then N
can go directly from p to r reading a.

Formally, let M = (Q,Σ, δ, q0, F ). We define N = (Q,Σ, δ′, q0, F
′).

If q is a state in Q, we use the notation EM (q) for the set of states
that can be reached from q using 0 or more ε-transitions in M . The
definition of N is now given by
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F ′ = {q ∈ Q|EM (q) ∩ F 6= ∅}

and

δ′(q, a) =

{
∅ if a = ε⋃
{δ(p, a)|p ∈ EM (q)} if a 6= ε

5. Use the Pumping Lemma to show that the following languages are not
regular:

(a) {anbmcr|n,m ≥ 0 and r = n+m};
Solution: Given p ≥ 1, choose s = apbpc2p. Then, s is in the
language and |s| = 4p ≥ p. Given x, y, z with s = xyz, |xy| ≤ p and
|y| > 0, we choose i = 2. Then, since |xy| ≤ p, y consists only of a’s,
so xy2z = ap+|y|bpc2p which is not in the language since |y| > 0, so
p+ |y|+ p 6= 2p.

(b) {0n10m|n ≤ m}.
Solution: Given p ≥ 1, choose s = 0p10p. Then, s is in the language
and |s| = 2p + 1 ≥ p. Given x, y, z with s = xyz, |xy| ≤ p and
|y| > 0, we choose i = 2. Then, since |xy| ≤ p, y consists only of 0’s,
so xyyz = 0p+|y|10p which is not in the language since |y| > 0, so
p+ |y| 6≤ p.

(c) {c4anbm|n ≥ m}.
Solution: Given p ≥ 1, choose s = c4apbp. Then, s is in the language
and |s| = 2p+4 ≥ p. Given x, y, z with s = xyz, |xy| ≤ p and |y| > 0,
we choose i = 0.To see that xz is not in the language, we consider
two cases.

Case 1: y contains at least one c. Then, xz contains fewer than 4
c’s so is not in the language.

Case 2: y does not contain any c’s. Then, since |xy| ≤ p, y must
contain only a’s, so xz = c4ap−|y|bp which is not in the language,
since |y| > 0, so p− |y| 6≥ p.

(d) {anbmc2m|n,m ≥ 0}.
Solution: Given p ≥ 1, choose s = bpc2p. [Note that you must
choose s to contain no a’s since if there are any a’s in s, then s can
be pumped by letting y = a.] Then, s is in the language and |s| =
3p ≥ p. Given x, y, z with s = xyz, |xy| ≤ p and |y| > 0, we choose
i = 2. Since |xy| ≤ p, y must consist only of b’s, so xy2z = bp+|y|c2p

which is not in the language since |y| > 0, so 2(p+ |y|) 6= 2p.
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