1. Using the method from class, give an NFA that recognizes L_2^*, where L_2 is the language from Exercise 3(b) of Homework 2.

Solution:

![NFA Diagram]

2. Give regular expressions for the following languages:

 (a) $\{w \in \{0, 1\}^* | w$ ends with either 110 or 01$\}$

 Solution: $(0 \cup 1)^*(110 \cup 01)$

 (b) $\{w \in \{0, 1\}^* | w$ starts with a 1 and has even length$\}$

 Solution: $1(0 \cup 1)((0 \cup 1)(0 \cup 1))^*$

 (c) $\{w \in \{0, 1\}^* | w$ has length at least 3 and the third symbol from the right in w is a 1$\}.$

 Solution: $(0 \cup 1)^*1((0 \cup 1)(0 \cup 1))$

 (d) $\{w \in \{0, 1\}^* | w$ does not end with 110 and does not end with 01$\}$.

 Solution: $\varepsilon \cup 0 \cup 1 \cup 00 \cup 10 \cup 11 \cup (0 \cup 1)^*(000 \cup 01(0 \cup 1) \cup 100 \cup 111)$

3. Convert the regular expression $(a \cup b)^*c$ into an NFA using the method from class (which is the same as the method from the book and is different from the method in JFLAP).

Solution:

First we have the following NFAs for a, b, and c.

[Diagram for a, b, and c]
Then, we obtain an NFA for $a \cup b$

![Diagram](image1)

and the following for $(a \cup b)^*$.

![Diagram](image2)

Finally, we obtain the NFA below for $(a \cup b)^*c$.

![Diagram](image3)
4. Let N be the following NFA:

Convert N into a regular expression using the method from class (which is the same as the method in the book, and is not the same as the method in JFLAP).

Solution:

Turning this into a GNFA, we get
Eliminating state q_4 gives

Eliminating state q_0 gives
Eliminating state q_2 gives
Eliminating state q_1 gives

Finally, eliminating state q_3 gives

and the regular expression is $(a^*b\cup a^*(b \cup ba^*ab))(aa^*ab \cup b^*(b \cup ba^*ab))^*$.

5. **Problem 1.31** Show that if A is regular so is A^R.

Proof: Since A is regular, there is some NFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes A. We construct an NFA M' such that $L(M') = A^R$. The idea is that the start state of M' is the accept state of M, the accept state
of M' is the start state of M, and for every transition in M, there is a transition with the same label in M', but going in the reverse direction.

The problem with this is that M may have more than one accept state. Since M' can have only one start state, we add a new start state to M' and ε transitions from the new start state to all the accept states of M.

The formal construction is:

$$M' = (Q \cup \{q_s\}, \Sigma, \delta', q_s, \{q_0\})$$

where q_s is a new state and

$$\delta'(q, a) = \begin{cases}
\{p : q \in \delta(p, a)\} & \text{if } q \neq q_s \\
F & \text{if } q = q_s, a = \varepsilon \\
\emptyset & \text{if } q = q_s, a \neq \varepsilon
\end{cases}$$

6. (a) Let M be the NFA given in the solution to Problem 3(b) on Homework 2. Give an NFA N with three states and no ε-transitions that recognizes the same language.

Solution:

![Diagram of NFA with three states and no \(\varepsilon\)-transitions]

(b) Generalize what you did in Part (a) of this problem by proving the following theorem:

Theorem: If M is an NFA, then there is an NFA N with the following properties

1. N has the same number of states as M.
2. N has no ε-transitions.
3. $L(N) = L(M)$.

Solution: We obtain N from M by doing three things:

1. We remove all ε-transitions.
2. If in M there is a series of ε-transitions that leads from a state p to an accept state q, then in N, p is also an accept state.
3. If in M there is a series of ε-transitions from a state p to a state q, and M can go from q to a state r reading a symbol a, then N can go directly from p to r reading a.

Formally, let $M = (Q, \Sigma, \delta, q_0, F)$. We define $N = (Q, \Sigma, \delta', q_s, F')$.

If q is a state in Q, we use the notation $E_M(q)$ for the set of states...
that can be reached from q using 0 or more ε-transitions in M. The definition of N is now given by

$$F' = \{q \in Q | E_M(q) \cap F \neq \emptyset\}$$

and

$$\delta'(q, a) = \begin{cases}
\emptyset & \text{if } a = \varepsilon \\
\bigcup \{\delta(p, a) | p \in E_M(q)\} & \text{if } a \neq \varepsilon
\end{cases}$$