CS 420, Springl 2019
Homework 3 Solutions

1. Convert the regular expression (abU ¢)* into an NFA using the method
from class (which is the same as the method from the book and is different
from the method in JFLAP).

Solution:

First we have the following NFAs for a, b, and c.

~0=6
~0+0
~0=0

Then, we obtain an NFA for ab

and the following for (abU c)

O~0~0*-0
4}0;@

Finally, we obtain the NFA below for (abU ¢)*.

QQQ@
H@Q

2. Let N be the following NFA:

Convert N into a regular expression using the method from class (which
is the same as the method in the book, and is not the same as the method
in JFLAP).

Solution:

Normally, when we turn an NFA into a GNFA, we have to add a new start
state with an e-transition to the old start state, but in this case, the NFA
has no transitions into the start state, so it is not necessary to add a new
start state, so we get the following GNFA when we transform the NFA to
a GNFA.

Eliminating state q; gives

b

a*
—_— -
\5‘
a*bUe c
‘ a ‘ /
- £
\j b

a

Eliminating state go gives

Eliminating state g3 gives

(ab* Ue)a*a U a*b*

ba*a

Finally, eliminating state g4 gives

((a*bUg)a*a U a*b*)(ba*a)* Ua*b*

and the regular expression is ((a*bU¢e)a*a U a*b*)(ba*a)* U a*b*.

3. Problem 1.31 Show that if A is regular so is A%.
Proof: Since A is regular,there is some NFA M = (Q,%,0,qo, F') that
recognizes A. We construct an NFA M’ such that L(M') = A®. The idea
is that the start state of M’ is the accept state of M, the accept state
of M’ is the start state of M, and for every transition in M, there is a
transition with the same label in M’, but going in the reverse direction.
The problem with this is that M may have more than one accept state.
Since M’ can have only one start state, we add a new start state to M’

4.

and e transitions from the new start state to all the accept states of M.
The formal construction is:
M = (QU{gs},%,0,qs,{qo}) where g5 is a new state and

{p:qedlp,a)} ifq#qs
§(ga) =4 F ifg=gqs,a=¢

0 ifq:qs,a7é€

(a) Let M be the NFA given in the solution to Problem 2(b) on Home-

work 2. Give an NFA N with two states and no e-transitions that
recognizes the same language. (Your NFA can have more than one
accept state.)

Solution:

I
~0=0

Generalize what you did in Part (a) of this problem by proving the
following theorem:

Theorem: If M is an NFA, then there is an NFA N with the fol-
lowing properties

(1) N has the same number of states as M.

(2) N has no e-transitions.

(3) L(N) = L(M).

Solution: We obtain N from M by doing three things:

1. We remove all e-transitions.

2. If in M there is a series of e-transitions that leads from a state
p to an accept state ¢, then in N, p is also an accept state.

3. If in M there is a series of e-transitions from a state p to s state
q, and M can go from q to a state r reading a symbol a, then N
can go directly from p to r reading a.

Formally, let M = (Q,X,8,q0, F). We define N = (Q,%,¢, qo, F').
If g is a state in @, we use the notation FEjs(q) for the set of states
that can be reached from ¢ using 0 or more e-transitions in M. The
definition of N is now given by

F'={q€QEn(q) N F # 0}

and

ifa=c¢

/ o @
“q’“’{ Ul a)lp € Eai(@)} ifae

5. Use the Pumping Lemma to show that the following languages are not
regular:

(a)

{a™b™c"|n,m >0 and r = n+ m};

Solution: Given p > 1, choose s = aPbPc?. Then, s is in the
language and |s| = 4p > p. Given z,y, z with s = zyz, |zy| < p and
ly| > 0, we choose ¢ = 2. Then, since |zy| < p, y consists only of a’s,
so xy?z = aPt1YIpPc?P which is not in the language since |y| > 0, so
p+lyl+p# 2p.

{0"10™|n < m}.

Solution: Given p > 1, choose s = 0P10P. Then, s is in the language
and |s| = 2p+ 1 > p. Given z,y,z with s = xyz, |zy] < p and
ly| > 0, we choose i = 2. Then, since |zy| < p, y consists only of 0’s,
so zyyz = 0PH1Y10P which is not in the language since |y| > 0, so
p+lyl £p.

{c*a™b™|n > m}.

Solution: Given p > 1, choose s = c*aPb?. Then, s is in the language
and |s| = 2p+4 > p. Given z,y, z with s = zyz, |xy| < p and |y| > 0,
we choose ¢ = 0.To see that zz is not in the language, we consider
two cases.

Case 1: y contains at least one ¢. Then, xz contains fewer than 4
¢’s so is not in the language.

Case 2: y does not contain any c¢’s. Then, since |zy| < p, y must
contain only a’s, so zz = ¢*a?~1¥b? which is not in the language,
since |y| > 0, so p — |y| Z# p-

{a"b™c*™|n, m > 0}.

Solution: Given p > 1, choose s = bPc??. [Note that you must
choose s to contain no a’s since if there are any a’s in s, then s can
be pumped by letting y = a.] Then, s is in the language and |s| =
3p > p. Given x,y,z with s = zyz, |zy| < p and |y| > 0, we choose
i = 2. Since |ry| < p, y must consist only of b’s, so xy?z = pplyle2e
which is not in the language since |y| > 0, so 2(p + |y|) # 2p.

