
CS 420, Spring 2019
Homework 5 Solutions

1. Give regular expressions for the following languages: [A problem of this
type should have been on Homework 3, but I forgot to do this.]

(a) {w ∈ {0, 1}∗|w contains exactly three 1’s}
Soluiton: 0∗10∗10∗10∗

(b) {w ∈ {0, 1}∗|w contains either 001 or 100 as a substring}
Solution: (0 ∪ 1)∗001(0 ∪ 1)∗ ∪ (0 ∪ 1)∗100(0 ∪ 1)∗

(c) {w ∈ {0, 1}∗|w has length at least 3 and the third symbol from the
right in w is a 0}.
Solution: (0 ∪ 1)∗0(0 ∪ 1)(0 ∪ 1)

(d) {w ∈ {0, 1}∗|w does not contain 001 as a substring}.
[This one is tricky, but there is a short regular expression for this
language.]

Solution: (1 ∪ 01)∗0∗

2. Let L be the language {w ∈ {a, b}∗|w contains exactly one more b than
a}.

(a) Give a context-free grammar that generates L.

Solution: We have actually given a solution to this problem in class,
namely in the grammar

S → ε|aB|bA
A → aS|bAA
B → bS|aBB

we know that the variable B generates the strings with exactly one
more b than a, so if we declare B to be the start symbol in the above
grammar, we have one solution to the problem. To make this problem
more interesting, I will give a different solution:

S → TbT
T → aTb|bTa|TT |ε

You were not asked to explain how your grammar works, but here
is an explanation for the above grammar. We know from class that
the variable T generates the strings with the same number of a’s and
b’s. Now suppose we have a string w with exactly one more b than a.
Then, we have to show that w matches the rule S → TbT . We think
of a counter running along w where b counts as +1 and a counts as
−1. The count at the end of w is +1, so we divide w up into ucv
where c is the symbol read when the count first reaches +1. The
count at the end of u is either 0 or 2, but if the count is 2 at the end

1

of u, then the count must have been 1 somewhere in the middle of
u, contradicting how we picked c, so the count is 0 at the end of u
and c must be a b. Since u brings the counter from 0 to 0, u must
have the same number of a’s as b’s, and since v brings the counter
from 1 to 1, v also has the same number of a’s as b’s. Thus, w = ubv
matches the rule S → TbT .

(b) Give a leftmost derivation and a parse tree in your grammar for the
string abbabab.

Solution: A leftmost derivation in the second grammar is:

S ⇒ TbT ⇒ aTbbT ⇒ abbT ⇒ abbaTb⇒ abbabTab⇒ abbabab

A parse tree corresponding to this derivation is:

��������
����

������������

����

���� ���� ����
����

�������� ��������@
@@

S

T b T

a T b a T b

ε b T a

ε

3. Give an unambiguous grammar for the language L of the previous problem.

(This is a difficult problem, but give it a try. As a hint, you can use three
variables other than the start symbol. One variable generates strings with
the same number of a’s as b’s, the second variable generates strings with
the same number of a’s as b’s that have the additional property that every
prefix has at least as many a’s as b’s, and the third variable generates

2

all strings with the same number of a’s as b’s that have the additional
property that every prefix has at least as many b’s as a’s.)

Solution:

S → WbT
T → ε|aWbT |bV aT
W → ε|aWbW
V → ε|bV aV

4. Let A be the language {anbn|n ≥ 0} and let B = A.

Using closure of the context-free languages under union, give a context-
free grammar that generates B.
[Hint: You can express B as the union of three languages, one of which is
a∗b∗.]

Solution: The language B can be expressed as L1 ∪ L2 ∪ L3, where

L1 = a∗b∗,

L2 = {anbm|n > m}},

and
L3 = {anbm|n < m}.

The following grammar generates L1:

S1 → T1baT1

T1 → aT1|bT1|ε

The language L2 is generated by

S2 → aS2b|aS2|a

and L3 is generated by

S3 → aS3b|S3b|b

Using the union construction, we get the following grammar for B

S → S1|S2|S3

S1 → T1baT1

T1 → aT1|bT1|ε
S2 → aS2b|aS2|a
S3 → aS3b|S3b|b

3

5. Let C be the language

{0n1m2p3q|n,m, p, q ≥ 0 and n > m and p < q}.

Using closure of the context-free languages under concatenation, give a
context-free grammar for C.

Solution:

We can write B = L1 ◦ L2 where

L1 = {0n1m|n > m}

and
L2 = {2p3q|p < q}

A grammar for L1 is given by

S1 → 0S11|0S1|0

and a grammar for L2 is given by

S2 → 2S23|S23|3

By closure under concatenation, we obtain a grammar generating C by
adding a new start symbol S and the rule S → S1S2.

6. Using the method from class, convert the regular expression (a∪ ε)b∗ into
a context-free grammar.

Solution:

We have the grammars Ga, Gb, Gε given by Sa → a, Sb → b and Sε → ε,
respectively, generating a, b and ε. Using the union construction, we get
the grammar

Sa∪ε → Sa|Sε

Sa → a
Sε → ε

generating a∪ ε, and using the star construction, we obtain the grammar

Sb∗ → Sb∗Sb|ε
Sb → b

generating b∗, and finally, using the concatenation construction we obtain
the grammar

4

S → Sa∪εSb∗

Sa∪ε → Sa|Sε

Sa → a
Sε → ε
Sb∗ → Sb∗Sb|ε
Sb → b

generating (a ∪ ε)b∗.

7. Give right regular grammars for the following languages:

(a) {w ∈ {0, 1}∗|w contains exactly three 1’s}
Solution:

S → 0S|1T
T → 0T |1U
U → 0U |1W
W → 0V |ε

(b) {w ∈ {0, 1}∗|w contains either 001 or 100 as a substring}
Solution:

S → 0S|1S|0T1|1U1

T1 → 0T2

T2 → 1W
U1 → 0U2

U2 → 0W
W → 0W |1W |ε

(c) {w ∈ {0, 1}∗||w| ≥ 3 and the third symbol from the right in w is a
0}.
Solution:

S → 0S|1S|0T
T → 0U |1U
U → 0|1

(d) {w ∈ {0, 1}∗|w does not contain 001 as a substring}.
Solution:

S → 1S|0T |ε
T → 1S|0U |ε
U → 0U |ε

5

8. Using the method from class, convert the DFA given in the solutions to
Problem 1c on Homework 1 into a right regular grammar.

Solution:

Using the variables A0, A1, A2 for the three states at the top of the diagram
going left to right, and A3 for the sink state, we get

A0 → 1A1|0A3|ε
A1 → 0A3|1A2

A2 → 0A0|1A1|ε
A3 → 0A3|1A3

9. Convert the following right regular grammar into an NFA.

S → 0S|1T |0
T → 0S|1U |1
U → 1T |0W
W → 0W |1W |ε

Solution:

We first replace the rules S → 0 and T → 1 to obtain:

S → 0S|1T |0Z
T → 0S|1U |1Z
U → 1T |0W
W → 0W |1W |ε
Z → ε

We then obtain the following NFA:

��
��

��
��

-

-qS qT qU qW

qZ

1

0

W

0

-

- 1

�
0

�

1

U �0 1

W

0, 1

6

