Due: October 24

1. Let G be the grammar

$$
S \rightarrow TaTaT \\
T \rightarrow aTb | bTa | TT | \varepsilon
$$

(a) Using the method from class, give a PDA M with $L(M) = L(G)$.

(b) Show an accepting computation for M on the string $baaaab$ by giving a chart with the state, tape contents, and stack contents after each step.

2. Let M be the following PDA:

(a) Convert M into a “special” PDA M'.

(b) Give the Case 2b rules when you convert M' into a CFG G using the method from class.

3. In class, we gave a PDA M that recognizes $A = \{ w \in \{0, 1\}^* |$ every prefix of w has at least as many 0’s as 1’s $\}$. We converted M into an equivalent special PDA P and then converted P to a CFG G. (If you missed class, you can find these in the video. I did not use the names A, M, P and G in my lecture.)

(a) Give a chart with the state, tape contents, and stack contents after each step to show how P accepts 001001 by a computation that empties its stack.

(b) Give a parse tree in G for the string 001001 corresponding to the computation that P carries out on the string.

4. Problem 2.18. [This problem has a solution in the book. You do not have to turn in a solution. I just want you to read and understand the solution given in the book.]