CS 420, Spring 2018
Homework 6 Solutions

1. Using the method from class, transform the following right regular grammar into an NFA

\[S \rightarrow 0S|1S|0T \\
T \rightarrow 0T|1U \\
U \rightarrow 1 \]

Solution: We first replace the rule \(U \rightarrow 1 \) to obtain:

\[S \rightarrow 0S|1S|0T \\
T \rightarrow 0T|1U \\
U \rightarrow 1Z \\
Z \rightarrow \varepsilon \]

We then obtain the following NFA:

\[\]

2. Read Definition 2.8, Theorem 2.9 and Example 2.10 in the textbook (third edition) concerning Chomsky Normal Form and then put the following grammar into Chomsky Normal Form.

\[S \rightarrow T|TaS \\
T \rightarrow aTa|TT |\varepsilon \]

Step 1: Introduce new start symbol
\[S_0 \to S \\
S \to T|TaS \\
T \to aTb|bTa|TT|\varepsilon \]

Step 2: Eliminate \(\varepsilon \)-rules.
Eliminate \(T \to \varepsilon \):

\[
\begin{align*}
S_0 & \to S \\
S & \to T|TaS|aS|\varepsilon \\
T & \to aTb|bTa|TT|ab|ba|T
\end{align*}
\]

Eliminate \(S \to \varepsilon \):

\[
\begin{align*}
S_0 & \to S|\varepsilon \\
S & \to T|TaS|aS|Ta|a \\
T & \to aTb|bTa|TT|ab|ba|T
\end{align*}
\]

Step 3: Eliminate unit rules
Eliminate \(S_0 \to S \):

\[
\begin{align*}
S_0 & \to \varepsilon|T|TaS|aS|Ta|a \\
S & \to T|TaS|aS|Ta|a \\
T & \to aTb|bTa|TT|ab|ba|T
\end{align*}
\]

Eliminate \(S_0 \to T \):

\[
\begin{align*}
S_0 & \to \varepsilon|T|TaS|aS|Ta|a|aTb|bTa|TT|ab|ba \\
S & \to T|TaS|aS|Ta|a \\
T & \to aTb|bTa|TT|ab|ba|T
\end{align*}
\]

[Note that we did not add back in \(S_0 \to T \) even though we have the rule \(T \to T \), because we do not add back in a rule after (or when) we eliminate it.]

Eliminate \(S \to T \):

\[
\begin{align*}
S_0 & \to \varepsilon|T|TaS|aS|Ta|a|aTb|bTa|TT|ab|ba \\
S & \to TaS|aS|Ta|a|aTb|bTa|TT|ab|ba \\
T & \to aTb|bTa|TT|ab|ba|T
\end{align*}
\]

Eliminate \(T \to T \):

\[
\begin{align*}
S_0 & \to \varepsilon|T|TaS|aS|Ta|a|aTb|bTa|TT|ab|ba \\
S & \to TaS|aS|Ta|a|aTb|bTa|TT|ab|ba \\
T & \to aTb|bTa|TT|ab|ba
\end{align*}
\]
Step 4: Eliminate long rules

Step 5: Eliminate terminals in wrong place

3. Problem 2.26 Show that if G is a CFG in Chomsky normal form, then for any string $w \in L(G)$ of length $n \geq 1$, exactly $2n - 1$ steps are required for any derivation of w.

Proof: First note that in rules of the form $A \rightarrow BC$, neither A nor B can be S. This means that in a derivation of a string w of length greater than 0, the rule $S \rightarrow \varepsilon$, if it exists in G, cannot be used, so the derivation can use only rules of the forms $A \rightarrow BC$ and $A \rightarrow a$. Each application of a rule of the first form lengthens the string derived by one symbol. Since the $A \rightarrow a$ rules leave the length of the string the same, this means that $A \rightarrow BC$ rules are used exactly $n - 1$ times in deriving a string w of length n. Since each use of a rule $A \rightarrow a$ introduces one terminal and this terminal can never be removed, rules of the form $A \rightarrow a$ are used exactly n times in the derivation of string w consisting of n terminals. In total, the derivation of w has length $n - 1 + n = 2n - 1$.

We can also give a proof by induction. First note that if A is a variable of G different from S, then it is impossible to derive ε from A. We show the following more general statement: if A is a variable and w is a string of terminals of length $n \geq 1$, then any derivation of w from A in G takes $2n - 1$ steps. The proof is by induction on n. If $n = 1$, then w is a single terminal. If the derivation of w from A began with the rule $A \rightarrow BC$, then, since neither B nor C is S, w would have length at least 2. Thus, the derivation must consist of a single application of the rule $A \rightarrow w$ and so has length 1. Since $2 \times 1 - 1 = 1$, the desired relationship holds in this case. Now, suppose that $n > 1$ and the result holds for strings of length j with $1 \leq j \leq n - 1$. If w is a string of terminals of length n that can be
derived from A, then the derivation must begin with a rule $A \rightarrow BC$. Let $x = yz$ where y is the part of x derived from B and z is the part derived from C. Since neither B nor C is S, neither y nor z is ε. Thus, we can apply the inductive hypothesis to both y and z. This means that if $|y| = k$ and $|z| = n - k$, then the derivation of y from B takes $2k - 1$ steps and the derivation of z from C takes $2(n - k) - 1$ steps. The total length of the derivation of w from A is then $1 + (2k - 1) + (2(n - k) - 1) = 2n - 1$, which completes the induction.

4. Give PDAs that recognize the following languages:

 (a) $\{0^{2n}1^n | n \geq 0\}$:

 (b) $\{0^n1^m | n \geq 2m\}$:

 (c) $\{w\#u | w, u \in \{0, 1\}^* \text{ and } |w| < |u|\}$:
5. Let G be the grammar

$$
S \rightarrow T[VaT]VaS \\
T \rightarrow \varepsilon[aUbT]bVaT \\
U \rightarrow \varepsilon[aUbU] \\
V \rightarrow \varepsilon[bVaV]
$$

(a) Using the method from class, give a PDA M with $L(M) = L(G)$.

(d) $\{x_1\#x_2\#x_3|x_1, x_2, x_3 \in \{a, b\}^* \text{ and } x_2 = x_3^R\}$.

5.
(b) Show an accepting computation for M on the string $babaaba$ by giving a chart with the state, tape contents, and stack contents after each step.

<table>
<thead>
<tr>
<th>State</th>
<th>Tape</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{start}</td>
<td>babaaba</td>
<td>ε</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>babaaba</td>
<td>S</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>babaaba</td>
<td>VaT</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>babaaba</td>
<td>$bVaT$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>abaaba</td>
<td>$VaVaT$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>abaaba</td>
<td>$aVaT$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>baaba</td>
<td>Va</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>baaba</td>
<td>$bVaVaT$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>aaba</td>
<td>$VaVaT$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>aaba</td>
<td>$aVaT$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>aba</td>
<td>VaT</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>aba</td>
<td>aT</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>ba</td>
<td>T</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>ba</td>
<td>$bVaT$</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>a</td>
<td>VaT</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>a</td>
<td>aT</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>ε</td>
<td>T</td>
</tr>
<tr>
<td>q_{loop}</td>
<td>ε</td>
<td>$$</td>
</tr>
<tr>
<td>q_{accept}</td>
<td>ε</td>
<td>ε</td>
</tr>
</tbody>
</table>