
CS 420 Spring 2019
Homework 7 Solutions

1. Let G be the grammar

S → TaT
T → aTb|bTa|TT |ε

(a) Using the method from class, give a PDA M with L(M) = L(G).

"!

"!

-

?

?

z 9

qstart

ε, ε→ S$

qloop

ε, $→ ε

ε, S → TaT
ε, T → aTb
ε, T → bTa
ε, T → TT
ε, T → ε

qaccept��
��

a, a → ε
b, b → ε

(b) Show an accepting computation forM on the string ababbaa by giving
a chart with the state, tape contents, and stack contents after each
step.

1

State Tape Stack
qstart ababbaa ε
qloop ababbaa S$
qloop ababbaa TaT$
qloop ababbaa aTbaT$
qloop babbaa TbaT$
qloop babbaa baT$
qloop abbaa aT$
qloop bbaa T$
qloop bbaa bTa$
qloop baa Ta$
qloop baa bTaa$
qloop aa Taa$
qloop aa aa$
qloop a a$
qloop ε $
qaccept ε ε

2. Let M be the following PDA:

"!

��
��

-

W

q

0, ε→ x

-��
��

- ��
��
��
��ε, ε→ ε

?

1, ε→ x

ε, ε→ ε
W

2, x→ ε

p r

(a) Convert M into a “special” PDA M ′.

Solution:

2

"!

"!

��
��

-

W

q

0, ε→ x

��
��

��
��?

1, ε→ x

W

2, x→ ε

p r

s �
t

ε, ε→ #
ε, ε→ #

�

ε,# → ε
ε, x → ε

��
��

��
��

u w

ε, ε→ ∗

ε, ε→ &ε, ∗ → ε

ε,&→ ε

� A
A
A
A
AU

7

^

(b) Give the Case 2b rules when you convert M ′ into a CFG G using the
method from class.

Solution: There are two transitions that push the stack symbol x
and two transitions that pop x. Combining each pop with each push
gives the following rules:

Aqr → 0Aqr2
Aqt → 0Aqt

Apr → 1Apr2
Apt → 1Apt

There are two transitions that push # and one transition that pops
#. Combining each push with the pop gives the following rules:

Aqt → Att

Art → Att

There is one transition that pushes ∗ and one that pops ∗. This gives
the following rule:

Aqp → Auu

Finally, the transtion that pushes & combined with the transition
that pops & gives the following rule:

Apr → Aww

(c) Give a parse tree in G for the string 00122.

Solution:

3

ε

Aww
ε

Auu 1 Apr 2

Aqp Apr ε

0 Aqr 2 Att

Aqr
Art

Aqt0

Aqt

�
�

3. Use the Pumping Lemma to show that the following languages are not
context-free.

(a) {anbmcndm|n,m ≥ 0}.
Solution: Given p ≥ 1, chose s = apbpcpdp. Then, s is in the
language and |s| = 4p ≥ p. Given u, v, x, y, z with s = uvxyz,
|vxy| ≤ p, and |vy| > 0, we choose i = 2. Since |vxy| ≤ p, vy
contains at most two types of symbols in consecutive order.

Case 1: Either v or y contains an a. Then, in uvvxyyz, the number
of a’s is more than p, but the number of c’s is p, so uvvxyyz is not
in the language.

Case 2: Either v or y contains a b. Then, in uvvxyyz, the number
of b’s is more than p, but the number of d’s is p, so uvvxyyz is not
in the language.

Case 3: Either v or y contains a c. Then in uvvxyyz, the number
of c’s is more than p, but the number of a’s is p, so uvvxyyz is not
in the language.

4

Case 4: Either v or y contains a d. Then in uvvxyyz, the number
of d’s is more than p, but the number of b’s is p, so uvvxyyz is not
in the language.

(b) {ancmbn|n > m ≥ 0}.
Solution: Given p ≥ 1, choose s = ap+1cpbp+1. Then, s is in the
language and |s| = 3p + 2 ≥ p. Given u, v, x, y, z with s = uvxyz,
|vxy| ≤ p and |vy| > 0, we choose i = 2.

Case 1: Either v or y contains an a. Then, since |vxy| ≤ p, neither
v nor y contains a b. Thus uvvxyyz contains more a’s than b’s, so is
not in the language.

Case 2: Either v or y contains a b. Then, since |vxy| ≤ p, neither v
nor y contains an a. Thus uvvxyyz contains more b’s than a’s, so is
not in the language.

Case 3: Both v and y consist only of c’s. Then, uvvxyyz contains
at least p+ 1 c’s and exactly p+ 1 a’s and b’s, so uvvxyyz does not
contain more a’s than c’s and is not in the language.

(c) {w ∈ {a, b, c}∗|na(w) = nb(w) and na(w) > nc(w)}
[Here nx(w) means the number of occurrences of the symbol x in the
string w.

Solution: The proof of the previous part works here as well to show
that this language is not context-free.

(d) {w#t#wR|w, t ∈ {a, b}∗ and |w| = |t|}.
Solution: Given p ≥ 1, choose s = ap#bp#ap. Then, s is in the
language and |s| = 3p + 2 ≥ p. Given u, v, x, y, z with s = uvxyz,
|vxy| ≤ p and |vy| > 0, we choose i = 2.

Case 1: Either v or y contains a #. Then, uvvxyyz contains more
than two #’s, so is not in the language.

Case 2: Neither v nor y contains a # and either v or y contains an
a. Since |vxy| ≤ p, v and y do not contain both a’s to the left of the
first # and to the right of the second #, so in uvvxyyz, the string to
the left of the first # is not the reversal of the string to the right of
the second #.

Case 2: Both v and y consist only of b’s. Then, in uvvxyyz, the
string between the two #’s is longer than the string to the left of the
first #, so uvvxyyz is not in the language.

4. What is the minimum value of p that works in the Pumping Lemma for
the following context-free languages?

(a) {0n1n2m3m|n,m ≥ 0}.
Solution:

The minimum pumping length is 2. To see that 1 is not a pumping
length, let s = 01. Then, s is in the language and |s| = 2 ≥ 1, but

5

the only way to pump the string is to let v = 0, x = ε and y = 1 and
then |vxy| = 2 6≤ 1.

To see that 2 is a pumping length, let s be in the language with
|s| ≥ 2. Then, s = 0n1n2m3m fo some n,m.

Case 1: n > 0. Then, we can pump s by letting u = 0n−1, v =
0, x = ε, y = 1, z = 1n−12m3m and we have |vxy| = 2.

Case 2: n = 0. Then, since |s| ≥ 2, we must have m > 0 and we
can pump s by letting u = 2m−1, v = 2, x = ε, y = 3, z = 3m−1 and
we have |vxy| = 2.

(b) {x#y|x, y ∈ {0, 1}∗ and |x| = 2|y|}.
Solution:

The minimum pumping length is 4. To see that 3 is not a pumping
length, let s = 00#0. Then, s is in the language and |s| = 4 ≥ 3, but
the only way to pump the string is to let v = 00, x = # and y = 0
and then |vxy| = 4 6≤ 3.

To see that 4 is a pumping length, let s be in the language with
|s| ≥ 4. Then, s = x′#y′ for some x′, y′ ∈ {0, 1}∗ with |x′| = 2|y′|.
Since |s| ≥ 4, we must have |y′| > 0 and so |x′| ≥ 2. We can pump s
with u being all but the last two symbols in x′, v the last two symbols
of x′, x = #, y the first symbol of y′ and z the rest of y′. We have
|vxy| = 4, so 4 is a pumpimg length.

5. Problem 2.18

(a) Let C be a context-free language and R be a regular language. Prove
that the language C ∩R is context-free.

Proof: Let N = (QN ,Σ, δN , q0, FN) be a DFA that recognizes R
and M = (QM ,Σ,Γ, δM , p0, FM) be a PDA that recognizes C. The
machines N and M are combined to construct a PDA M ′ that rec-
ognizes C ∩R. This will show that C ∩R is context-free. A state of
M ′ will be a pair of states (p, q) with p a state of M and q a state of
N . M ′ will simultaneously keep track of a state that M could be in
after reading the symbols seen so far and a state that N could be in
after reading these symbols. The formal definition is:

M ′ = (QM ×QN ,Σ,Γ, δM ′ , (p0, q0), FM × FN)

The transition function δM ′ is defined by

δM ′((p, q), a, x) ={((p′, q′), y)|(p′, y) ∈ δM (p, a, x) and δN (q, a) = q′}

for all p ∈ QM , q ∈ QN , a ∈ Σ and x ∈ Γε and

δM ′((p, q), ε, x) = {((p′, q), y)|(p′, y) ∈ δM (p, ε, x)}

for all p ∈ QM , q ∈ QN and x ∈ Γε.

6

(Every transition of a DFA processes an input symbol while a PDA
may contain transitions that do not process input. The transitions
just introduced simulate the action of a PDA transition that does
not process an input symbol.)

(b) Use the part (a) to show that the language A = {w|w ∈ {a, b, c}∗
and contains equal numbers of a’s, b’s, and c’s} is not a CFL.

Proof: Assume A is a CFL. Let B be the regular language a∗b∗c∗.
Then, by Part a, A ∩ B is context-free. However, it is easy to see
that A∩B = {anbncn|n ≥ 0}, and we know that this language is not
context-free. Thus, A is not a CFL.

7

