1. Let G be the grammar

$$
S \rightarrow TaT \\
T \rightarrow aTb | bTa | TT | \varepsilon
$$

(a) Using the method from class, give a PDA M with $L(M) = L(G)$.

(b) Show an accepting computation for M on the string $ababbaa$ by giving a chart with the state, tape contents, and stack contents after each step.
2. Let M be the following PDA:

(a) Convert M into a “special” PDA M'.

Solution:
(b) Give the Case 2b rules when you convert M' into a CFG G using the method from class.

Solution: There are two transitions that push the stack symbol x and two transitions that pop x. Combining each pop with each push gives the following rules:

- $A_{qr} \rightarrow 0A_{qr}2$
- $A_{qt} \rightarrow 0A_{qt}$
- $A_{pr} \rightarrow 1A_{pr}2$
- $A_{pt} \rightarrow 1A_{pt}$

There are two transitions that push # and one transition that pops #. Combining each push with the pop gives the following rules:

- $A_{qt} \rightarrow A_{tt}$
- $A_{rt} \rightarrow A_{tt}$

There is one transition that pushes * and one that pops *. This gives the following rule:

- $A_{qp} \rightarrow A_{uu}$

Finally, the transition that pushes & combined with the transition that pops & gives the following rule:

- $A_{pr} \rightarrow A_{ww}$

(c) Give a parse tree in G for the string 00122.

Solution:
3. Use the Pumping Lemma to show that the following languages are not context-free.

(a) \(\{a^n b^m c^n d^m | n, m \geq 0 \} \).

Solution: Given \(p \geq 1 \), chose \(s = a^p b^p c^p d^p \). Then, \(s \) is in the language and \(|s| = 4p \geq p \). Given \(u, v, x, y, z \) with \(s = uvxyz \), \(|vxy| \leq p \), and \(|vy| > 0 \), we choose \(i = 2 \). Since \(|vxy| \leq p \), \(vy \) contains at most two types of symbols in consecutive order.

Case 1: Either \(v \) or \(y \) contains an \(a \). Then, in \(uvxyyz \), the number of \(a \)'s is more than \(p \), but the number of \(c \)'s is \(p \), so \(uvxyyz \) is not in the language.

Case 2: Either \(v \) or \(y \) contains a \(b \). Then, in \(uvxyyz \), the number of \(b \)'s is more than \(p \), but the number of \(d \)'s is \(p \), so \(uvxyyz \) is not in the language.

Case 3: Either \(v \) or \(y \) contains a \(c \). Then in \(uvxyyz \), the number of \(c \)'s is more than \(p \), but the number of \(a \)'s is \(p \), so \(uvxyyz \) is not in the language.
Case 4: Either v or y contains a d. Then in uvvxyyz, the number of d’s is more than p, but the number of b’s is p, so uvvxyyz is not in the language.

(b) \(\{a^n c^m b^n | n > m \geq 0\}\).

Solution: Given \(p \geq 1\), choose \(s = a^{p+1} c^p b^{p+1}\). Then, s is in the language and \(|s| = 3p + 2 \geq p\). Given \(u, v, x, y, z\) with \(s = uvxyz\), \(|vx| \leq p\) and \(|vy| > 0\), we choose \(i = 2\).

Case 1: Either v or y contains an a. Then, since \(|vx| \leq p\), neither v nor y contains a b. Thus uvvxyyz contains more a’s than b’s, so is not in the language.

Case 2: Either v or y contains a b. Then, since \(|vx| \leq p\), neither v nor y contains an a. Thus uvvxyyz contains more b’s than a’s, so is not in the language.

Case 3: Both v and y consist only of c’s. Then, uvvxyyz contains at least \(p + 1\) c’s and exactly \(p + 1\) a’s and b’s, so uvvxyyz does not contain more a’s than c’s and is not in the language.

(c) \(\{w \in \{a, b, c\}^* | n_a(w) = n_b(w)\text{ and } n_a(w) > n_c(w)\}\)

[Here \(n_x(w)\) means the number of occurrences of the symbol x in the string w.]

Solution: The proof of the previous part works here as well to show that this language is not context-free.

(d) \(\{w # t # w^R | w, t \in \{a, b\}^*\text{ and } |w| = |t|\}\).

Solution: Given \(p \geq 1\), choose \(s = a^p # b^p # a^p\). Then, s is in the language and \(|s| = 3p + 2 \geq p\). Given \(u, v, x, y, z\) with \(s = uvxyz\), \(|vx| \leq p\) and \(|vy| > 0\), we choose \(i = 2\).

Case 1: Either v or y contains a #. Then, uvvxyyz contains more than two #’s, so is not in the language.

Case 2: Neither v nor y contains a # and either v or y contains an a. Since \(|vx| \leq p\), v and y do not contain both a’s to the left of the first # and to the right of the second #, so in uvvxyyz, the string to the left of the first # is not the reversal of the string to the right of the second #.

Case 2: Both v and y consist only of b’s. Then, in uvvxyyz, the string between the two #’s is longer than the string to the left of the first #, so uvvxyyz is not in the language.

4. What is the minimum value of \(p\) that works in the Pumping Lemma for the following context-free languages?

(a) \(\{0^n 1^n 2^m 3^m | n, m \geq 0\}\).

Solution:

The minimum pumping length is 2. To see that 1 is not a pumping length, let \(s = 01\). Then, \(s\) is in the language and \(|s| = 2 \geq 1\), but
the only way to pump the string is to let \(v = 0, x = \varepsilon \) and \(y = 1 \) and then \(|xy| = 2 \not\leq 1 \).

To see that 2 is a pumping length, let \(s \) be in the language with \(|s| \geq 2 \). Then, \(s = 0^n1^n2^m3^m \) for some \(n, m \).

\textbf{Case 1:} \(n > 0 \). Then, we can pump \(s \) by letting \(u = 0^{n-1}, v = 0, x = \varepsilon, y = 1, z = 1^{n-1}2^m3^m \) and we have \(|vxy| = 2 \).

\textbf{Case 2:} \(n = 0 \). Then, since \(|s| \geq 2 \), we must have \(m > 0 \) and we can pump \(s \) by letting \(u = 2^{m-1}, v = 2, x = \varepsilon, y = 3, z = 3^{m-1} \) and we have \(|vxy| = 2 \).

(b) \(\{x\#y | x, y \in \{0,1\}^* \text{ and } |x| = 2|y| \} \).

\textbf{Solution:}

The minimum pumping length is 4. To see that 3 is not a pumping length, let \(s = 00\#0 \). Then, \(s \) is in the language and \(|s| = 4 \geq 3 \), but the only way to pump the string is to let \(v = 00, x = \# \) and \(y = 0 \) and then \(|vxy| = 4 \not\leq 3 \).

To see that 4 is a pumping length, let \(s \) be in the language with \(|s| \geq 4 \). Then, \(s = x'\#y' \) for some \(x', y' \in \{0,1\}^* \) with \(|x'| = 2|y'| \). Since \(|s| \geq 4 \), we must have \(|y'| > 0 \) and so \(|x'| \geq 2 \). We can pump \(s \) with \(u \) being all but the last two symbols in \(x' \), \(v \) the last two symbols of \(x' \), \(x = \# \), \(y \) the first symbol of \(y' \) and \(z \) the rest of \(y' \). We have \(|vxy| = 4 \), so 4 is a pumping length.

5. Problem 2.18

(a) Let \(C \) be a context-free language and \(R \) be a regular language. Prove that the language \(C \cap R \) is context-free.

\textbf{Proof:} Let \(N = (Q_N, \Sigma, \delta_N, q_0, F_N) \) be a DFA that recognizes \(R \) and \(M = (Q_M, \Sigma, \delta_M, p_0, F_M) \) be a PDA that recognizes \(C \). The machines \(N \) and \(M \) are combined to construct a PDA \(M' \) that recognizes \(C \cap R \). This will show that \(C \cap R \) is context-free. A state of \(M' \) will be a pair of states \((p, q)\) with \(p \) a state of \(M \) and \(q \) a state of \(N \). \(M' \) will simultaneously keep track of a state that \(M \) could be in after reading the symbols seen so far and a state that \(N \) could be in after reading these symbols. The formal definition is:

\[M' = (Q_M \times Q_N, \Sigma, \Gamma, \delta_{M'}, (p_0, q_0), F_M \times F_N) \]

The transition function \(\delta_{M'} \) is defined by

\[\delta_{M'}((p, q), a, x) = \{(p', q'), y) | (p', y) \in \delta_M(p, a, x) \text{ and } \delta_N(q, a) = q' \} \]

for all \(p \in Q_M, q \in Q_N, a \in \Sigma \) and \(x \in \Gamma_\varepsilon \) and

\[\delta_{M'}((p, q), \varepsilon, x) = \{(p', q), y) | (p', y) \in \delta_M(p, \varepsilon, x) \} \]

for all \(p \in Q_M, q \in Q_N \) and \(x \in \Gamma_\varepsilon \).
(Every transition of a DFA processes an input symbol while a PDA may contain transitions that do not process input. The transitions just introduced simulate the action of a PDA transition that does not process an input symbol.)

(b) Use the part (a) to show that the language \(A = \{w|w \in \{a,b,c\}^* \text{ and contains equal numbers of } a’s, b’s, \text{ and } c’s\} \) is not a CFL.

Proof: Assume \(A \) is a CFL. Let \(B \) be the regular language \(a^n b^n c^n \). Then, by Part a, \(A \cap B \) is context-free. However, it is easy to see that \(A \cap B = \{a^n b^n c^n|n \geq 0\} \), and we know that this language is not context-free. Thus, \(A \) is not a CFL.