1. Use the Pumping Lemma to show that the following languages are not context-free.

(a) \(\{a^n b^{3n} c^{2n} | n \geq 0 \} \).

Solution: Given \(p \geq 1 \), chose \(s = a^p b^{3p} c^{2p} \). Then, \(s \) is in the language and \(|s| = 6p \geq p \). Given \(u, v, x, y, z \) with \(s = uvxyz \), \(|vxy| \leq p \), and \(|vy| > 0 \), we choose \(i = 2 \). Since \(|vxy| \leq p \), \(vy \) contains at most two types of symbols in consecutive order.

Case 1: Either \(v \) or \(y \) contains an \(a \). Then, in \(uv^2xyyz \), the number of \(a \)'s is more than \(p \), but the number of \(c \)'s is \(2p \), so \(uv^2xyyz \) is not in the language.

Case 2: Either \(v \) or \(y \) contains a \(c \). Then in \(uv^2xyyz \), the number of \(c \)'s is more than \(2p \), but the number of \(a \)'s is \(p \), so \(uv^2xyyz \) is not in the language.

Case 3: Both \(v \) and \(y \) consist only of \(b \)'s. Then, in \(uv^2xyyz \), the number of \(b \)'s is more than \(3p \), but the number of \(a \)'s is \(p \), so \(uv^2xyyz \) is not in the language.

(b) \(\{u \# w \# u | u, v, w \in \{0, 1\}^* \text{ and } |u| < |v| < |w| \} \).

Solution: Given \(p \geq 1 \), chose \(s = 0^p \# 0^{p+2} \# 0^{p+1} \). Then, \(s \) is in the language and \(|s| = 3p + 5 \geq p \). Given \(u, v, x, y, z \) with \(s = uvxyz \), \(|vxy| \leq p \), and \(|vy| > 0 \), how we chose \(i \) depends on \(v \) and \(y \).

Case 1: Either \(v \) or \(y \) contains a \(\# \). Then, choose \(i = 2 \). Since \(uv^2xyyz \) contains more than two \(\# \)'s, it is not in the language.

Case 2: Neither \(v \) nor \(y \) contains a \(\# \).

Case 2.1: Either \(v \) or \(y \) contains a symbol to the right of the second \(\# \). Choose \(i = 0 \). Since \(|vxy| \leq p \), \(uxz \) contains fewer than \(p + 1 \) symbols to the right of the second \(\# \), but contains \(p \) symbols to the left of the first \(\# \), so \(uxz \) is not in the language.

Case 2.2: Either \(v \) or \(y \) contains a symbol to the left of the first \(\# \). Choose \(i = 2 \). Then, since \(|vxy| \leq p \), \(uv^2xyyz \) contains more than \(p \) symbols to the left of the first \(\# \) and \(p + 1 \) symbols to the right of the second \(\# \), so \(uv^2xyyz \) is not in the language.

Case 2.3: \(v \) and \(y \) are both between the two \(\# \)'s. Choose \(i = 0 \). Then, \(uxz \) contains fewer than \(p + 2 \) symbols between the two \(\# \)'s, but contains \(p + 1 \) symbols to the right of the second \(\# \), so \(uxz \) is not in the language.

(c) \(\{u \# w \# u^R | u, w \in \{0, 1\}^* \text{ and } |u| = |w| \} \).

Solution: Given \(p \geq 1 \), chose \(s = 0^p \# 0^p \# 0^p \). Then, \(s \) is in the language and \(|s| = 3p + 2 \geq p \). Given \(u, v, x, y, z \) with \(s = uvxyz \), \(|vxy| \leq p \), and \(|vy| > 0 \), we chose \(i = 2 \).
Case 1: Either v or y contains a #. Then, since $uvvxyyz$ contains more than two #’s, it is not in the language.

Case 2: Neither v nor y contains a #. Then, in $uvvxyyz$, the number of symbols to the left of the first #, the number of symbols between the two #’s, and the number of symbols to the right of the second # are not all the same, so $uvvxyyz$ is not in the language.

(d) \{w_1cw_2cw_3cw_4\mid w_1 = w_3 \text{ or } w_2 = w_4 \text{ and } w_i \in \{a, b\}^+ \text{ for } i = 1, 2, 3, 4\}.

[This one is hard.]

Solution: Given $p \geq 1$, choose $s = a^p b^p c a c a b^p c b$. Then, s is in the language and $|s| = 4p + 5 \geq p$. Given u, v, x, y, z with $s = uvxyz$, $|vxy| \leq p$, and $|vy| > 0$, we choose $i = 0$. To see that $uvvxyyz$ is not in the language, we consider cases,

Case 1: Either v or y contains a c. Then, uxz contains fewer than 3 c’s, so is not in the language.

Case 2: Neither v nor y contains a c and either v or y is between the first two c’s, or after the third c. Then, in uxz, the string between the first two c’s or after the third c is ϵ, so uxz is not in the language.

Case 3: v and y are both to the left of the first c, or are both between the second and third c’s. Then in uxz, the string to the left of the first c is different than the string between the second and third c’s, and $a \neq b$, so uxz is not in the language.

Case 4: v is to the left of the first c and y is in between the second and third c’s. Then, since $|vxy| \leq p$, v consists of b’s and y consists of a’s. Thus $uxz = a^p b^{p-|v|} c a c a b^{p-|y|} b^p c b$. Since $|vy| > 0$, uxz is not in the language.

2. What is the minimum value of p that works in the Pumping Lemma for the following context-free languages?

(a) \{0^n 10^m \mid n \leq m\}.

Solution:

The minimum pumping length is 3. To see that 2 is not a pumping length, let $s = 010$. Then, s is in the language and $|s| = 3 \geq 2$. If we have $s = uvxyz$ with $|vxy| \leq 2$, then either vy contains 1, in which case $uvvxyyz$ contains more than one 1, so is not in the language, or v and y are both to the left of the 1 (and one of them is empty), so $uvvxyyz = 0010$ which is also not in the language, or v and y are both to the right of the 1, and $uxz = 01$, which is not in the language.

To see that 3 is a pumping length, let s be in the language with $|s| \geq 3$. Then, $s = 0^n 10^m$ with $n \leq m$. We consider cases to determine how to define u, v, x, y, z.

Case 1: $n = 0$. Then, since $|s| \geq 3$, $m > 0$ and we can pump s by letting $u = 1, v = 0, x = y = \epsilon, z = 0^{m-1}$. We have $|vxy| = 1 \leq 3$.

2
Case 2: $n > 0$. Then, since $n \leq m$, we have $m > 0$ We pump s by letting $u = 0^{n-1}, v = 0, x = 1, y = 0, z = 0^{m-1}$ We have $|vxy| = 3$.

(b) \{a^n#b^m#c^m|n, m \geq 0\}.

Solution:
The minimum pumping length is 3. To see that 2 is not a pumping length, let $s = \#\#$. Then, s is in the language and $|s| = 2$, but s cannot be pumped to stay in the language.

To see that 3 is a pumping length, let s be in the language with $|s| \geq 3$. Then, $s = a^n#b^m#c^m$. We consider cases to determine how to define u, v, x, y, z.

Case 1: $n > 0$. Then, we can pump s by letting $u = \varepsilon, v = a, x = y = \varepsilon, z = a^{n-1}#b^m#c^m$. We have $|vxy| = 1 \leq 3$.

Case 2: $n = 0$. Then, since $|s| \geq 3$, we have $m > 0$ We pump s by letting $u = a^n#b^{m-1}, v = b, x = \#, y = c, z = c^{m-1}$. We have $|vxy| = 3$.

(c) \{a^n#a^m#a^q#a^r|n = q or m = r\}.

Solution:
The minimum pumping length is 4. To see that 3 is not a pumping length, let $s = \#\#\#$. Then, s is in the language and $|s| = 3$, but s cannot be pumped to stay in the language.

To see that 4 is a pumping length, let s be in the language with $|s| \geq 4$. Then, $s = a^n#a^m#a^q#a^r$ with either $n = q$ or $m = r$. We consider cases to determine how to define u, v, x, y, z.

Case 1: $n = q$ and $m > 0$. Then, we can pump s by letting $u = a^n#, v = a, x = y = \varepsilon, z = a^{n-1}#a^q#a^r$. We have $|vxy| = 1 \leq 4$.

Case 2: $n = q$ and $r > 0$. Similar to Case 1, but we pump one a in the a^r part.

Case 3: $n = q$ and $m = r = 0$. Then, since $|s| \geq 4$, we must have $n = q > 0$. We can pump s by letting $u = a^{n-1}, v = a, x = \#, y = a, z = a^{n-1}#$. We have $|vxy| = 4$.

Case 4: $m = r$. This case breaks down into three cases similar to the three cases for $n = q$.

3. Problem 2.36 Let $A = \{a^i b^j c^k d^l|if \ i = 1 \ then \ j = k = l\}$.

To see that A meets the conditions of the Pumping Lemma, we choose $p = 1$. If $s \in A$ and $|s| \geq p$, then we have $s = a^i b^j c^k d^l$ for some i, j, k, l. We consider cases in choosing u, v, x, y, z as in the Pumping Lemma.

Case 1: $j = k = l = 0$. Then $i \neq 0$ since s has length at least 1. We take $u = v = x = \varepsilon, y = a$ and $z = a^{i-1}$. We have $|vxy| = 1$ and for all $r \geq 0, uv^rxy^rz = a^{i+r-1}$ which is in A.

Case 2: $i = 1$. Then $j = k = l$. We take $u = v = x = \varepsilon, y = a$ and $z = a^{i-1}b^j c^k d^l$. We have $|vxy| = 1$ and for all $r \geq 0, uv^rxy^rz = a^{i+r-1}b^j c^k d^l$ which is in A. 3
Case 3: $i \neq 1$ and at least one of j,k,l is not 0. Then we take $u = a^i$, $v = x = \varepsilon$, $y =$ the first symbol in $b^j c^k d^l$ and z to be the rest of the string. Then $|vxy| = 1$ and for all $r \geq 0$, uv^rxy^rz is a string of the form $a^ib^j c^k d^l$, which is in the language since $i \neq 1$.

To see that A is not context-free, we suppose for a contradiction that A is context-free. Then, according to Problem 2.18, so is the language $B = A \cap ab^*c^*d^*$. We will show that B is not context-free and this will be the contradiction we are looking for. B is the language $\{ab^j c^k d^l | j \geq 0 \}$. We use the Pumping Lemma to show that B is not context-free. Given p, choose $s = ab^p c^p d^p$. Then $s \in B$ and $|s| \geq p$. Given u,v,x,y,z as in the Pumping Lemma, we consider cases.

Case 1: Either v or y contains a. Then choose $i = 0$. Since uxz does not contain an a, it is not in B.

Case 2: Neither v nor y contains a. Then choose $i = 0$. In uxz, one or two of the symbols b,c,d has been reduced in number, but the third of these symbols has not been changed. Thus uxz cannot be in B since it does not have the same number of bs, cs and ds.