
CS 420, Spring 2019
Homework 8 Solutions

1. Let M1 be the Turing machine whose description is given in Example 3.9.
Give the sequence of configurations that M1 enters when started on the
following input strings.

(a) 011#011.

q1011#011 xq711#x11 xx1#q6xx1 xxx#xq5x1 xxxq1#xxx
xq211#011 q7x11#x11 xx1q6#xx1 xxx#xxq51 xxx#q8xxx
x1q21#011 xq111#x11 xxq71#xx1 xxx#xq6xx xxx#xq8xx
x11q2#011 xxq31#x11 xq7x1#xx1 xxx#q6xxx xxx#xxq8x
x11#q4011 xx1q3#x11 xxq11#xx1 xxxq6#xxx xxx#xxxq8
x11q6#x11 xx1#q5x11 xxxq3#xx1 xxq7x#xxx xxx#xxx t qaccept
x1q71#x11 xx1#xq511 xxx#q5xx1

(b) 110#11.

q1110#11 x10q6#x1 xxq30#x1 xx0q6#xx xxx#q4xx
xq310#11 x1q70#x1 xx0q3#x1 xxq70#xx xxx#xq4x
x1q30#11 xq710#x1 xx0#q5x1 xq7x0#xx xxx#xxq4
x10q3#11 q7x10#x1 xx0#xq51 xxq10#xx xxx#xx t qreject
x10#q511 xq110#x1 xx0#q6xx xxxq2#xx

(c) 0#0#.

q10#0# xq1#x#
xq2#0# x#q8x#
x#q40# x#xq8#
xq6#x# x#x#qreject
q7x#x#

2. Exercise 3.7

The description is not legitimate because there are infinitely many possible
settings of the variables x1, . . . , xk to integral values, so a Turing machine
cannot test them all and reject if none of them are roots. (It is legitimate
for a Turing machine to test the possible integral values for x1, . . . , xk and
accept if any of them are roots of p, but if p has no integral roots, the
Turing machine will loop, not reject.)

3. (a) Give an implementation-level description of a one-tape Turing ma-
chine that decides the language

{w ∈ {a, b, c}∗|na(w) = nb(w) and na(w) > nc(w)}

Solution:

M = “On input string w:

1



1. Repeat the following until it becomes impossible:

2. Scan the input and cross off one a, one b and one c.

3. If there are no a’s or no b’s left on the tape reject.

4. If there are a’s and b’s left on the tape, repeat the following until
it becomes impossible:

5. Scan the tape and cross off one a and one b.

6. If all symbols are crossed off, accept, else reject.

(b) Give a more efficient multi-tape Turing machine to decide the lan-
guage from Part (a).

Solution:

We define a four-tape Turing machine N to decide the same language.
N = “On input string w:

1. Scan the input, and copy all a’s to tape 2, all b’s to tape 3 and
all c’s to tape 4..

2. Return the tape heads to the first cells on tapes 2 ,3, and 4 and
then scan to the right on each tape until the first blank is met
on any of the three tapes.

3. If the tape head on tape 2 or tape 3 is reading a blank, reject.

4. Continue moving to the right on tapes 2 and 3 until a blank is
read on one of these tapes. If both tape heads reach blanks at
the same time, accept, else reject..”

4. Problem 3.9

(a) This part follows from Part (b), but we give a separate proof. We
know that 1-PDAs are just PDAs, so since A = {0n1n2n|n ≥ 0} is
not a CFL, there is no 1-PDA that recognizes A. We will describe
a 2-PDA M that recognizes A. This will show 2-PDAs are more
powerful than 1-PDAs.

M will stop in a nonaccept state if it sees a 0 after it sees 1s or 2s or
if it sees a 1 after it sees 2s. Initially, M marks the bottom of both its
stacks. While it is reading 0s, it pushes the 0s onto both of its stacks.
While it reads 1s, it matches the 1s against the 0s on the first stack.
If there are more 0s than 1s, it stops in a nonaccept state. Once
the first stack is empty, M does not read any more 1s, but instead
matches 2s from the tape with the 0s on the second stack. When the
second stack is empty, M goes into an accept state and doesn’t read
any more symbols.

(b) First, we argue that any 3-PDA can be simulated by a TM. Let M
be a 3-PDA. A nondeterministic TM M ′ to simulate M will have 4
tapes. The first tape will hold the input and the other three tapes
will hold the three stacks of M , one per tape, with the bottom of the
stack at the left end of the tape. M ′ nondeterministically simulates
one possible computation of M on its input step-by-step, simulating

2



the changes to the stack that M makes by writing on its tape. If
this computation of M reaches an accepting state after reading its
whole input, then M ′ accepts. If the computation of M gets stuck
before reading the whole input or halts in a nonaccepting state after
reading the whole input and without reaching an accepting state after
reading the whole input, then M ′ rejects. If the computation of M
goes into an infinite sequence of ε moves, then M ′ loops.

Now, we argue that every TM can be simulated by a 2-PDA. Let M
be a TM. A 2-PDA P to simulate M works as follows. P first marks
the bottom of its two stacks. Then it reads its input, pushing it all
onto its first stack. Then P pops all but the first symbol from the
first stack and pushes these symbols onto the second stack. At this
point, P has the first symbol of the input on its first stack and all
the rest of the input, in left-to-right order, on its second stack, with
the right end of the input at the bottom of the stack.

P now simulates M one step at a time, using moves that do not read
any symbols from P ’s tape. The current symbol of M is always at
the top of the first stack. If M moves right, then P replaces the top
of the first stack with the symbol written by M and pops the top
symbol off the second stack and pushes it onto the first stack. If the
marker is at the top of the second stack, then P leaves this symbol
alone instead of popping it and pushes a blank onto the first stack.

If M moves left, then P pops a symbol off the first stack and pushes
onto the second stack the symbol that M writes in its move. If this
brings the marker to the top of the first stack, then this means that
M has tried to move left from the left end of the tape, so P pops the
symbol it just put onto the second stack and puts it back on the first
stack.

If M reaches its accept state, then P goes into an accept state. If M
goes into its reject state, then P stops simulating M , but does not go
into an accept state. If M loops, then P has an infinite sequence of
ε moves after reading its whole input. M and P recognize the same
language.

Now we have

• Every 2-PDA can be simulated by a 3-PDA. (Since a 3-PDA can
just ignore its third stack.)

• Every 3-PDA can be simulated by a TM.

• Every TM can be simulated by a 2-PDA.

Thus, 2-PDAs, 3-PDAs and TMs are all equally powerful.

5. Problem 3.11

We must show that every ordinary Turing machine can be simulated by a
Turing machine with doubly infinite tape and that every Turing machine
with doubly infinite tape can be simulated by an ordinary Turing machine.

3



First suppose that M is an ordinary Turing machine. We define a Turing
machine M ′ with doubly infinite tape to simulate M as follows. M ′ begins
by moving left one cell and printing a special symbol $. Then, M ′ moves
right and goes into the start state of M . From then on, M ′ just simulates
M , except that whenever M ′ reads $, it moves right and stays in the same
state.

Now suppose that N is a Turing machine with doubly infinite tape. We
define an ordinary Turing machine N ′ that simulates N . N ′ will be a
two-tape Turing machine. The book shows that a two-tape TM can be
simulated by a one-tape TM. The first tape of N ′ contains the cells from
the first symbol of the original input to the right. The second tape contains
the cells on N ’s tape to the left of the original input, in reverse order.
Initially, N ′ transforms its input w1 · · ·wn on the first tape into #w1 · · ·wn

and puts a # in the first cell of tape 2. The tape head on tape one sits on
w1 and the tape head on tape two sits on #. N ′ then starts simulating
moves of N one at a time. At the start of each move simulation, exactly
one of the two tape heads will be sitting on #. If the first tape head is not
on #, then a move is simulated on tape 1. If after the move is simulated,
the tape head on tape 1 reads #, then the tape head on tape 2 is moved
one cell to the right. If at the beginning of a move simulation the tape
head on tape 2 is not reading #, then the move is simulated on tape 2,
but a left move for N causes the tape head to move right on the second
tape of N ′ and a right move for N causes N ′ to move left on tape 2.

6. In our definition of Turing machine, if the machine tries to move left from
the first tape cell, then it stays put. An alternative defintion would be
that if the Turing machine tries to move left from its first cell, then it halts
and rejects. (So in the alternative definition, there are two ways to reject -
going to the reject state and trying to move left from the first cell.) Show
how to transform a Turing machine M of the type we defined in class into
a Turing machine M ′ using this alternative defintion in such a way that
M and M ′ recognize the same language.

Solution:

Given a Turing machine M of the type we defined in class, we define
a Turing machine M ′ that uses the alternative definition that simulates
M as follows. M ′ begins by shifting its input one cell to the right and
putting a new symbol ∗ in the first cell. It then moves to it’s second cell
and starts simulting M one move after another. If M ′ ever reads ∗ (which
means that M tried to move left from its first cell), M ′ moves right and
continues simulating M . Since M ′ never moves left from its first cell, the
only reason it would reject is if M rejects, and M and M ′ recognize the
same language.

7. (a) Problem 3.15d

Let M be a Turing machine that decides a language A. Then a
Turing machine M ′ that decides the complement of the language A

4



is the same as M except that the accepting and rejecting states are
reversed. Thus, the complement of A is decidable.

(b) Problem 3.15e

Let M1 and M2 be Turing machines that decide the languages A1

and A2, respectively. Then, a 2-tape TM M that decides A1 ∩ A2

works as follows.

M = “On input string w

1. Copy w onto tape 2.

2. Simulate M1 on w using tape 1 and M2 on w using tape 2.

3. If both M1 and M2 accept, then accept; else reject.”

M is a decider since both M1 and M2 are deciders. If the input w is
in A1 ∩A2, then both M1 and M2 will accept w, so M accepts w. If
w is not in A1 ∩A2, then either M1 or M2 (or both) will reject w, so
M rejects w. Thus M decides A1 ∩A2 and A1 ∩A2 is decidable.

8. (a) Problem 3.16b

Let M1 and M2 be Turing machines that recognize the languages A1

and A2, respectively. Then, a nondeterministic, 3-tape TM N that
recognizes A1A2 works as follows.

N = “On input string w

1. Nondeterministically divide w into w = uv. Copy u onto tape 2
and v onto tape 3.

2. Simulate M1 on u using tape 2. If M1 rejects, then reject. If M1

accepts, then go to Step 3.

3. Simulate M2 on v using tape 3. If M2 accepts, then accept. If
M2 rejects, then reject.”

(Note that if either M1 loops on u or M2 loops on v, then the given
computation of N loops.) If the input w is in A1A2, then there will
be some computation of N on w (the one that makes the right guess
where to break up w into u and v) that accepts. If w is not in A1A2,
then all computations of N on w either reject or loop. Thus, N
recognizes A1A2 and A1A2 is Turing-recognizable.

(b) Problem 3.16d

Let M1 and M2 be Turing machines that recognize the languages A1

and A2, respectively. Then, a 2-tape TM M that recognizes A1 ∩A2

works as follows.

M = “On input string w

1. Copy w onto tape 2.

2. Simulate M1 on w using tape 1. If M1 rejects, then reject. If M1

accepts, then go to Step 3.

3. Simulate M2 on w using tape 2. If M2 accepts, then accept. If
M2 rejects, then reject.”

5



(Note that if either M1 or M2 loops on w, then M loops on w.) If
the input w is in A1 ∩ A2, then both M1 and M2 will accept w, so
M accepts w. If w is not in A1 ∩A2, then either M1 or M2 (or both)
will reject or loop on w, so M either rejects or loops on w. Thus M
recognizes A1 ∩A2 and A1 ∩A2 is Turing-recognizable.

9. Apply the method from class that decides EDFA to the following DFA
and answer the questions below.

&%
'$

"!
# 
"!
# 

"!
# 

-
-p

q

sr

t u

b

W

a

6

b

��
���

b

6
a

W

a

j

a

�
b

��
��C
C
CCO

a

-

b

k

b

� a

(a) List the states you mark in the order they get marked.
p, q, r, u

(b) Does the DFA belong to EDFA? Yes

(c) How does your answer to (b) follow from your answer to (a)?
No accept state is marked.

10. Apply the method from class that decides ECFG to the following CFG
and answer the questions below.

S → aTbU |aSTb

6



T → Y aU |bT
U → aY bY |VW

V → aV |bW
W → aW |bV
X → bX|ε
Y → aY |a|TU

(a) List the terminals and variables you mark in the order they get
marked. (List each terminal and variable only the first time you
mark it. There is more than one possible order.)
a, b|X,Y |U |T |S

(b) Does the CFG belong to ECFG? No

(c) How does your answer to (b) follow from your answer to (a)?
S is marked

11. The language EQREX is defined as {〈R,S〉|R,S are regular expressions
and L(R) = L(S)}. Prove that EQREX is decidable.

Solution:

A Turing machine M that decides the language EQREX is given by

M = “On input 〈R,S〉 where R and S are regular expressions,

1. Combining the methods of Lemma 1.55 and Theorem 1.39, produce
DFAs B and C with L(B) = L(R) and L(C) = L(S).

2. Run the TM F that decides EQDFA on 〈B,C〉.
4. If F accepts, then accept. If F rejects, then reject.”

12. Let ALLNFA = {〈A〉|A is an NFA and L(A) = Σ∗}. Show that ALLNFA

is decidable.

Solution:

ALLNFA is decided by the following Turing machine M .

M = “On input 〈A〉 where A is an NFA,

1. Using the method of Theorem 1.39, construct a DFA B that is equiv-
alent to A.

2. Obtain a DFA C from B by reversing accept and reject states.

3. Run the TM T that decides EDFA on 〈C〉.
3. If T accepts, then accept. If T rejects, then reject.”

Note that you have to transform A into a DFA because the complemen-
tation construction does not always work for NFAs.

7


