1. Apply the method from class that decides E_{DFA} to the following DFA and answer the questions below.

(a) List the states you mark in the order they get marked.

(b) Does the DFA belong to E_{DFA}? ______

(c) How does your answer to (b) follow from your answer to (a)?

2. Apply the method from class that decides E_{CFG} to the following CFG and answer the questions below.

$$ S \rightarrow TaX|aSb $$
(a) List the terminals and variables you mark in the order they get marked. (List each terminal and variable only the first time you mark it. There is more than one possible order.)

(b) Does the CFG belong to E_{CFG}?

(c) How does your answer to (b) follow from your answer to (a)?

3. The language E_{REX} is defined as \{$\langle R \rangle | R$ is a regular expression and $L(R) = \emptyset$\}. Prove that E_{REX} is decidable.

4. Problem 4.3.

5. Let $F = \{ \langle A \rangle | A$ is a DFA and every string in $L(A)$ has odd length\}. Prove that F is decidable.

6. Let $K = \{ \langle A \rangle | A$ is a DFA and $L(A)$ contains a string with two more a’s than b’s\}. Show that K is decidable. (The solution to Problem 4.25 [4.23] is useful here.)

7. Let $L = \{ \langle G \rangle | G$ is a CFG and $L(G)$ contains at least one odd length string\}. Prove that L is decidable.

8. Show that the set that consists of all finite sequences of natural numbers is countable. In other words show that

$$\{ s | \text{for some } n \geq 0 \text{ and natural numbers } a_1, \ldots, a_n, s = \langle a_1, \ldots, a_n \rangle \}$$

is a countable set.