1. If A is a language, then $\text{PREFIX}(A)$ is the language
 \[
 \{u|uv \in A \text{ for some string } v\}
 \]
 (a) Prove that if A is decidable, then $\text{PREFIX}(A)$ is Turing recognizable.
 (b) Prove that if A is Turing recognizable, then $\text{PREFIX}(A)$ is Turing recognizable.
 [Since every decidable language is Turing recognizable, this part implies the first part, but since the proof is harder, I made it a separate part.]

2. Apply the method from class that decides E_{DFA} to the following DFA and answer the questions below.
(a) List the states you mark in the order they get marked.

(b) Does the DFA belong to E_{DFA}?

(c) How does your answer to (b) follow from your answer to (a)?

3. The language EQ_{NFA} is defined as $\{(A, B) | A, B$ are NFAs and $L(A) = L(B)\}$. Prove that EQ_{NFA} is decidable.

4. Let $ALL_{REX} = \{(R) | R$ is a regular expression and $L(R) = \Sigma^*\}$. Show that ALL_{REX} is decidable.