1. If A is a language, then $\text{PREFIX}(A)$ is the language
\[\{u|uv \in A \text{ for some string } v\} \]

(a) Prove that if A is decidable, then $\text{PREFIX}(A)$ is Turing recognizable.

(b) Prove that if A is Turing recognizable, then $\text{PREFIX}(A)$ is Turing recognizable.

[Since every decidable language is Turing recognizable, this part implies the first part, but since the proof is harder, I made it a separate part.]

Solution:

a) Let A be a language over an alphabet Σ and let M be a Turing machine that decides A. Since Σ^* is countably infinite, we may list the strings in Σ^* as s_1, s_2, s_3, \ldots. A Turing machine N that recognizes $\text{PREFIX}(A)$ is given by

\[N = \text{"On input } w \]

1. For $i = 1, 2, 3, \ldots$

2. Run M on ws_i. If M accepts, accept. If M rejects, next i.

b) Now assume that M only recognizes A. Then, M may go into an infinite loop on some inputs, and we have to modify our definition of N to take account of this fact. Instead of just running M on ws_i and waiting for M to halt, which may not happen, N runs M in parallel on several inputs, for a fixed number of steps.

\[N = \text{"On input } w \]

1. For $i = 1, 2, 3, \ldots$

2. Run M on ws_1, ws_2, \ldots, ws_i for i steps each. If M accepts any of the strings in i steps accept, else, next i.

2. Apply the method from class that decides E_{DFA} to the following DFA and answer the questions below.
(a) List the states you mark in the order they get marked.
 \[p, q, s, t, u \]

(b) Does the DFA belong to \(E_{DFA} \)? \(\text{No} \)

(c) How does your answer to (b) follow from your answer to (a)?
 An accept state \(\langle u \rangle \) is marked.

3. The language \(EQ_{NFA} \) is defined as \(\{ \langle A, B \rangle \mid A, B \text{ are NFAs and} \ L(A) = L(B) \} \). Prove that \(EQ_{NFA} \) is decidable.

Solution:
A Turing machine \(M \) that decides the language \(EQ_{NFA} \) is given by

\[M = \text{“On input} \langle A, B \rangle \text{ where} A \text{ and} B \text{ are NFAs,} \]

1. Using the method Theorem 1.39, produce DFAs \(C \) and \(D \) with \(L(C) = L(A) \) and \(L(D) = L(B) \).
2. Run the TM \(F \) that decides \(EQ_{DFA} \) on \(\langle C, D \rangle \).
3. If \(F \) accepts, then \(\text{accept} \). If \(F \) rejects, then \(\text{reject} \).
4. Let $ALL_{REX} = \{(R)|R$ is a regular expression and $L(R) = \Sigma^*\}$. Show that ALL_{REX} is decidable.

Solution:

ALL_{REX} is decided by the following Turing machine M.

$M =$ “On input $\langle R \rangle$ where R is a regular expression,

1. Combining the methods of Lemma 1.55 and Theorem 1.39, construct a DFA A with $L(A) = L(R)$.
2. Obtain a DFA B from A by reversing accept and reject states.
3. Run the TM T that decides E_{DFA} on $\langle B \rangle$.
3. If T accepts, then accept. If T rejects, then reject.”

Note that you have to transform R into a DFA and not just into an NFA because the complementation construction does not always work for NFAs.