
CS 420 Spring 2019
Supplemental Homework Solutions

1. Exercise 7.1

(a) TRUE

(b) FALSE

(c) FALSE

(d) TRUE

(e) TRUE (since 3n = (2log2 3)n = 2(log2 3)n.)

(f) TRUE

2. Exercise 7.4

j
1 2 3 4

1 T R, T S S,R, T
i 2 − R S S

3 − − T R, T
4 − − − R

Since S is in the (1, 4) entry of the table, w is in L(G).

3. Exercise 7.6

Let A and B be two languages in P , say MA and MB are polynomial
time Turing machines that decide A and B, respectively. Let MA run in
time O(nk) and MB run in time O(nl). We give polynomial time bounded
Turing machines MU , MCON and MCOM that decide the languages A∪B,
AB, and A. This will show that P is closed under union, concatenation
and complementation.

MU = “On input w

1. Run MA on w. If MA accepts, then accept.

2. Run MB on w. If MB accepts, then accept. Otherwise, reject.”

MU decides A ∪B and runs in time O(nmax{k,l}).

MCON = “On input w = w1 · · ·wn

1. For k = 0, . . . , n, do the following:

2. Let u = w1 · · ·wk and v = wk+1 · · ·wn.

3. Run MA on u and MB on v. If both accept, then accept.

4. If none of the executions of stage 3 leads to acceptance, then reject.”

1



MCON decides AB. Each execution of stage 3 takes time O(nk)+O(nl) =
O(nmax{k,l}). Since stage 3 is executed O(n) times, the running time for
MCON is O(nmax{k,l}+1).

MCOM = “On input w

1. Run MA on w.

2. If MA accepts, then reject. If MA rejects, then accept.”

MCOM decides A and runs in time O(nk).

4. Exercise 7.7

Let A and B be languages in NP, say NA and NB are polynomial time
nondeterministic Turing machines that decide A and B, respectively. We
give polynomial time nondeterministic Turing machines NU and NCON

that decide the languages A ∪B and AB.

NU = “On input w

1. Nondeterministically chose one of the machines NA and NB .

2. Simulate a computation of the chosen machine on the input w.

3. If the computation accepts, then accept. Otherwise, reject.”

NU decides A∪B and since NA and NB both run in polynomial time, NU

runs in polynomial time.

NCON = “On input w

1. Nondeterministically chose strings u and v with w = uv.

2. Simulate a computation of NA on u and a computation of NB on v.

3. If both of the simulated computations accept, then accept. Otherwise,
reject.”

NCON decides the language AB and runs in polynomial time because both
NA and NB run in polynomial time.

5. Exercise 7.8

Let m be the number of nodes of G. Stages 1 and 4 are executed only once.
Stage 3 runs at most m times because each time except the last it marks
an additional node in G. Thus, the total number of stages used is at most
m+2, which is a polynomial in the size of G. Stage 1 is easily implemented
in polynomial time. Stages 3 and 4 involve a scan of the input and a test
if certain nodes are marked. This can also be implemented in polynomial
time. Thus, both the number of stages executed and the running time
of each stage is polynomial in the input size, so the running time of the
algorithm is polynomial.

2



6. Exercise 7.9

TRIANGLE is decided by the following Turing machine.

M = “On input 〈G〉, where G is a graph

1. For all triples p, q, r of nodes of G, do the following.

2. See if (p, q), (q, r) and (p, r) are all edges of G. If so, then accept.

3. If none of the triples leads to acceptance, then reject.”

If there are m nodes in G, then the number of triples of distinct nodes

of G is m(m−1)(m−2)
6 . This number is no bigger than m3, so stage 2 is

executed only a polynomial number of times. Since each execution of a
stage can be done in polynomial time, the algorithm runs in polynomial
time.

(A similar argument shows that for any fixed k, the k-CLIQUE problem
is in P. However, the CLIQUE problem is NP-complete and therefore not
known to be in P.)

7. Exercise 7.10 Show that ALLDFA is in P .

Solution: ALLDFA is decided by the following deterministic Turing ma-
chine.

T = “On input 〈M〉 where M is a DFA

1. Mark the start state of M .

2. Repeat until no new states are marked.

3. Mark any state that has a transition coming into it from a marked
state.

4. If every marked state is an accept state, accept.

Steps 1 and 4 are done once. Each time through the loop in Steps 2 and 3
except the last time, an unmarked state is marked, so the loop is executed
no more than m times, where m is the number of states in M . Thus,
the total number of steps executed is no more than 2m + 2 and this is
polynomial in the size of 〈M〉.
Step 1 involves finding the start state in the list of states and marking
it. Step 3 involves processing each transition once and for each transition
checking if it goes from a marked state to an unmarked state. Step 4
involves checking if each marked state is in the list of accept states. Each
of these steps can be implemented in time polynomial in the size of 〈M〉,
so the algorithm runs in polynomial time.

8. Exercise 7.12

The following nondeterministic Turing machine decides ISO.

N = “On input 〈G,H〉, where G and H are graphs

3



1. If G and H have different numbers of nodes, then reject.

2. Let the nodes of G be g1, . . . , gm and the nodes of H be h1, . . . , hm.

3. Guess a permutation (i.e., a reordering) g′1, . . . , g
′
m of the nodes of G.

4. For each pair of numbers i, j with 1 ≤ i < j ≤ m do the following:

5. If G has an edge connecting g′i and g′j but H has no edge con-
necting hi and hj , or G has no edge connecting g′i and g′j but H
has an edge connecting hi and hj , then reject.

6. If none of the executions of stage 5 lead to rejection, then accept.”

N decides ISO. The maximum number of times stage 5 is executed is
n(n−1)

2 = O(n2) since this is the number of pairs i, j of distinct numbers
between 1 and n. Thus the number of stages executed is polynomial,
and each stage can be implemented in polynomial time, so N runs in
nondeterministic polynomial time.

9. Problem 7.15

Let A be in P and let M be a Turing machine that decides A in polynomial
time. If y = y1 · · · yn with each yi in Σ, define a table of Boolean values
where for 1 ≤ i ≤ j ≤ n, table(i, j) is true if and only if the string yi · · · yj
is in A∗. We can fill in table recursively using the following easy to verify
fact: table(i, j) is true if and only if either yi · · · yj is in A or there is a k
with i ≤ k < j such that table(i, k) and table(k + 1, j) are both true.

A Turing machine M∗ that decides A∗ is given by

M∗ = “On input y = y1 · · · yn

1. For l = 1 to n,

2. For i = 1 to n− l + 1,

3. Let j = i + l − 1,

4. Run M on input yi · · · yj . If M accepts, then set table(i, j) =
true.

5. For k = i to j − 1,

6. If table(i, k) and table(k + 1, j) are both true, then set
table(i, j) = true.

7. If table(i, j) was not set to true above, then set table(i, j) =
false.

8. If table(1, n) = true, then accept. Otherwise, reject.”

Since M runs in polynomial time, each stage runs in polynomial time.
Stage 6 is executed no more than n3 times and the other stages are ex-
ecuted no more often than stage 6, so the number of stages executed is
polynomial. Thus M∗ decides A∗ in polynomial time.

4



10. Problem 7.18

Suppose that P = NP and that A is a language in P different from ∅ and
Σ∗. There are strings x0 and x1 such that x1 ∈ A and x0 6∈ A.

To show that A is NP-complete, we have to show two things. First, we have
to show that A ∈ NP . But we are given that A ∈ P and we know P ⊆ NP ,
so A ∈ NP . Second, we have to show that for every B ∈ NP , we have
B ≤p A. So suppose that B ∈ NP . Since we are assuming that P = NP ,
we actually have B ∈ P . Let M be a deterministic Turing machine that
decides B in polynomial time. We can now define a polynomial time
reduction f of B to A. The Turing machine F computes f .

F = “On input w

1. Run M on w.

2. If M accepts, then output x1. If M rejects, then output x0.”

If w is in B, then M will accept w and f(w) = x1 which is in A. If w is
not in B, then M will reject w and f(w) = x0 which is not in A. Thus, f
is a reduction from B to A. Since M runs in polynomial time, so does F ,
and thus f is a polynomial time reduction.

This shows that every set in NP is polynomial time reducible to A and
hence A is NP-complete.

11. Problem 7.20

There are two parts to this problem. First, explain why it is believed that
PATH is not NP-complete, and second, show that if PATH is proved to
not be NP-complete, then it is proved that P 6= NP .

For the first part, we know from Theorem 7.14 that PATH ∈ P . If PATH
were NP-complete, then by Theorem 7.35, P = NP . Since it is believed
that P 6= NP , it is believed that PATH is not NP-complete.

For the second part, it follows from Problem 7.18 that if P = NP , then
PATH is NP-complete. Thus, if it is proved that PATH is not NP-
complete, then it is proved that P 6= NP .

12. (a) A is decided by the following one-tape TM:

M=“On input w

1. Repeat as long as there are at least two a’s and one b on the
tape:

2. Scan the tape and cross off two a’s and one b.

3. If there are no a’s and b’s left, accept, else reject.”

Each scan takes time O(n) and there are no more than bn/3c scans
since each scan crosses off three symbols, so the total running time
is O(n2).

(b) The following three tape TM decides A in time O(n):

N =“On input w

5



1. Scan the first tape. For each a read, write on a on tape 2. For
each b read, write two b’s on tape 3.

2. Scan tapes 2 and 3. If the number of a’s on tape 2 equals the
number of b’s on tape 3, accept, else reject.”

6


