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a b s t r a c t 

We propose a data-driven approach for tuning, validating and optimizing crowd simulations by learning 

parameters from real-life videos. We discuss the common traits of incidents and their video footages 

suitable for the learning step. We then demonstrate the learning process in three real-life incidents: 

a bombing attack, a panic situation on the subway and a Black Friday rush. We reanimate the inci- 

dents using an existing emotion contagion and crowd simulation framework and optimize the param- 

eters that characterize agent behavior with respect to the data extracted from the video footages of the 

incidents. 
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1. Introduction 

Crowd psychology has attracted the attention of scholars for

more than a century. In his seminal work, “The Crowd: A Study

of the Popular Mind”, Le Bon [1] describes the salient aspects

of crowd psychology as impulsiveness, irrationality, emotionality

and mental unity. This phenomenon is also known as collective

(mis)behavior . Social psychology literature introduces various the-

ories to explain the reasons for collective crowd behavior, in-

cluding social contagion [1,2] , predisposition [3–5] and emergent-

norms [6] theories. Brown [7] describes an elaborate taxonomy of

crowds and classifies crowds under two general categories as au-

diences and mobs depending on the existence of observable uni-

fied behavior, instead of the reasons bringing crowd members to-

gether. In both categories, crowd members share a common goal

unlike pedestrians on a street who happen to be coincidentally at

the same place at the same time. What distinguishes mobs from

audiences is their active and emotional disposition, which leads to

“mob”ility. This feature makes mobs more interesting to study (and

simulate) as they display more diverse and interesting behaviors

than audiences. Therefore, we focus on mob simulations in this

work. 

One of the most influential factors that causes collective

mob behavior is emotion contagion. Emotion contagion is the
✩ This article was recommended for publication by Yiorgos L. Chrysanthou. 
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henomenon of having the feelings and responses of one person

nfluencing and manipulating the emotions of others in a group

f individuals [8] . Within this continuous feedback mechanism, we

enerally observe that emotions and resulting behaviors converge

o a single active response over time, thus converting audiences to

obs. Because of this feature, systems that model emotion conta-

ion mostly focus on mob behaviors. 

We need a universal, objective, quantitative and reusable

ethod for validating crowd simulation models, not just in terms

f the steering behaviors of individuals but the authenticity of the

roup behavior as a whole. We can then formally define future im-

rovements to existing simulation systems and compare different

ystems under different scenario cases. Crowd simulation litera-

ure includes various techniques to evaluate the behavior of vir-

ual agents such as learning parameters from crowd videos [9–

1] ; determining metrics to compare different simulations [12–

4] ; and referring to human expert opinions [15] . In this work,

e propose a data-driven approach to mimic real crowd behav-

ors by learning the parameters that affect crowd behavior and

o validate crowd simulation systems according to their fidelity to

eal life behaviors. We apply this approach to the epidemiological

motion contagion framework proposed by Durupınar et al. [16] .

e explain how to learn the characteristics of emotion contagion

rom a real-life event video and how to improve and optimize the

motion contagion model by Durupınar et al. using the results of

his analysis. To this end, we investigate the agent behavior be-

ore and after the incident and recreate the incident in a virtual

nvironment. 

https://doi.org/10.1016/j.cag.2018.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.02.004&domain=pdf
mailto:eren.basak@bilkent.edu.tr
mailto:gudukbay@cs.bilkent.edu.tr
mailto:durupina@ohsu.edu
https://doi.org/10.1016/j.cag.2018.02.004
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The contributions of this paper are as follows: 

• We propose a data-driven, quantitative and reproducible

pipeline for learning parameters from real crowd videos for

synthesizing virtual crowds. 
• We explain how real-life incidents can be utilized for evaluation

and improvement of crowd simulations. 
• We clarify the properties of suitable material for this process

and demonstrate how to process videos of real-life incidents for

virtual environment creation. 
• We analyze three contemporary incidents and apply our pro-

posed approach to an existing emotion contagion and crowd

simulation system. 

A preliminary version of this research has appeared as a con-

erence paper [17] . Different from [17] , which analyzes only one

cenario, this extended version includes a comprehensive set of ex-

erimental results for three different scenarios. We introduce new

rror metrics to evaluate the proposed approach and include new

gures illustrating our approach and its experimental results, as

ell as new sets of graphs about the experimental results. We also

e-organize and extend the related work to fully cover the state-

f-the-art on the subject. 

The rest of the paper is organized as follows. In Section 2 ,

e discuss the related work in emotion contagion, crowd simu-

ation and empirical evaluation studies. In Section 3 , we provide

 brief overview of existing emotion contagion models and Du-

upınar Emotion Contagion Model that we base our studies on. In

ection 4 , we explain the proposed parameter learning framework

nd necessary steps to analyze crowd videos before using them

or the optimization process. In Section 5 , we explain the incidents

hat we studied, how we extracted data from them, how we recre-

ted them in a virtual environment and how we simulated them

sing Durupınar model. In Section 6 , we demonstrate and discuss

he results of our parameter estimation mechanism on the stud-

ed incidents. Finally, we summarize our work in Section 7 , draw

onclusions and discuss future improvement ideas. 

. Related work 

We provide a comprehensive review of related work on the

imulation of virtual crowds including emotion contagion studies

nd on the comparison of virtual crowds with real crowds in our

revious work [17] . The review refers to various crowd simulation

tudies that analyze interactions with the environment [18] , the in-

uence of architecture on crowd behavior [19] , data-driven eval-

ation of crowds with trajectory extraction [9–11,14] and scoring

etrics [12,13] , emotion contagion models [16,20–23] , the role of

ppraisal in emotion contagion [15] and how emotion contagion

an be used for simulation of emergency situations [24,25] . In ad-

ition to these, there are other studies that cover the influence of

he environment on the emotions and behavior of crowd members.

or instance, Hoogendorn et al. study the information exchange

nd emotion contagion within crowds [26] . They model the change

f information spread with respect to the emotional states of indi-

iduals and simulate an emergency situation to demonstrate their

ork. Borodin et al. [27] and Chen et al. [28] apply the concept

f influence among the groups of people to social networks and

how that the responses of key individuals steer the behavior of

he whole group significantly. 

Heterogeneity is an important aspect of realistic

rowd simulation that has been studied by many groups.

ereira et al. [29] present a computational model for emotion

ontagion in virtual crowds, incorporating personality differences

nd interpersonal relationships. They take intimacy between

irtual agents into account for the influence of emotions, where

igher intimacy results in more homogeneous emotional behaviors
n crowds. Silverman et al. [30] propose an architecture that

ombines an existing pathfinding and cognitive navigation system

MACES) with PMFserv, which models the changing behaviors

f individuals according to stress, emotions and motivations.

elbing and Molnar demonstrate the social forces model for

xplaining crowd behavior [31] , where the characteristics of indi-

iduals in a crowd affect the motion of surrounding pedestrians.

n a later study, they model the panic behavior in crowds mixing

he individualistic behavior and collective instincts [32] . This study

imulates a crowd of people escaping from a smoke-filled room

nd proposes an optimal strategy for escaping from such disasters.

Evaluation of simulated crowds in terms of their similarity to

eal world is another challenge that has been extensively studied.

ridman and Kaminka [33] demonstrate a crowd simulation model

ased on Social Comparison Theory and argue that their model

s suitable for general usage. Furthermore, they propose a method

or evaluating the imitation performance by showing people video

lips of random crowds and as well as simulations, then asking

uestions to clarify whether they perceived the video as the be-

avior of unrelated individuals or more like a collective response.

in et al. [34] model the crowd behavior evacuating an office build-

ng. In their case study, using the videos taken by the security

ameras, they calibrate the parameters of their model. Similarly,

an et al. [35] use an agent-based crowd model for simulating an

vacuation incident and propose a method for representing indoor

pace for such simulations. 

. Emotion contagion approaches 

.1. ASCRIBE 

Bosse et al. [24] present ASCRIBE, a computational model of

eural mechanisms of social mutual adaptation for satisfactory

ommon group decisions. ASCRIBE incorporates a basis for mod-

ling the interaction between the beliefs and emotions of an agent

hile also providing mechanisms for the influence of emotions, in-

entions and beliefs among agents. 

In its core, ASCRIBE has a model for agents that mirror the

ental states of each other, representing the contagion phe-

omenon. In this model the amount of influence of a mental state

f one agent on another depends on the expressiveness of the

ender agent, openness of the receiver agent and channel strength

etween the subjects, which depends on physical conditions such

s distance and field of view. The combination of the influence of

ll the other agents constitutes the overall contagion strength on

n agent. The updated mental state of an agent is calculated as

 combination of the overall contagion and the agent’s previous

tate. The coefficient of the contagion component determines the

peed of adjustment in an agent’s mental state and the conver-

ence of the crowd behavior. 

The interaction among emotions, beliefs and intentions of an

gent are also incorporated into the ASCRIBE model. In this model,

ear starts affecting information retrieval and amplifies the influ-

nce of the beliefs on behavior if it is above a threshold. The value

iven to information by an agent will be affected by the fear and

ersonality as well, e.g., a pessimistic person with high level of fear

ould be significantly affected by negative information; and posi-

ive information would have less influence on the agent’s behavior.

imilarly, information influences the emotional state. For example,

egative information has a tendency to increase fear. Finally, be-

iefs and emotions together affect the intentions of an agent. 

Bosse et al. test ASCRIBE with two scenarios, a synthetic of-

ce evacuation scenario which demonstrates the influence of in-

ormation on agents’ behavior, and a reanimation of a real-life inci-

ent for demonstrating the model’s mimicking potential. The May

th incident that happened in Dam Square, Amsterdam in 2010
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involves a group of about 20 0 0 0 people leaving the area in panic

after a person starts screaming and demonstrates the contagious

nature of fear. 

3.2. ESCAPES 

Tsai et al. [23] introduce Evacuation Simulation with Children,

Authorities, Parents, Emotions, and Social comparison (ESCAPES), a

multi agent evacuation system customized for the airport evacua-

tion domain. ESCAPES includes four key components for the char-

acterization of agent behavior: 

• Various types of agents with different roles and priorities, such

as travelers, families and security personnel. 
• Emotional contagion, which causes an agent’s emotion to affect

others directly and indirectly. Specifically, passengers adopt the

highest level of fear from their surrounding passengers and if

there are security personnel nearby, passengers tend to calm

down. 
• Exchange of information related to the scene and the incident.

ESCAPES is geared towards airport evacuations. Airports have

people with little knowledge of the building unlike office spaces

and houses. This makes the information exchange among pas-

sengers and the directives of security personnel play significant

roles in the behavior of the crowd. 
• Behavioral interaction utilizing Social Comparison Theory [36] ,

which basically involves passengers comparing themselves to

other passengers by evaluating their behavior. This evaluation

is based on various features such as speed, distance, emotional

reactions, and so on. According to this evaluation, agents tend

to mimic the behavior of the agents that are similar to them-

selves, causing convergence in group behavior. 

Tsai et al. run proof of concept tests of ESCAPES by model-

ing the Tom Bradley International Terminal at Los Angeles Inter-

national Airport. They visualize the terminal in 3D based on their

2D model of the building. Later, they compare Durupınar Emotion

Contagion model and ASCRIBE model by implementing both sys-

tems as the way emotional exchange takes place [25] . 

3.3. BioCrowds model 

Neto et al. [37] introduce the emotion contagion concept into

BioCrowds method [38] . Their emotional contagion model is sim-

ilar to the model described by Bosse et al. [21] , incorporating

gradual contagion instead of threshold-based binary contagion.

The model involves channel strength, which affects the inter-agent

emotion influence and is inversely proportional to distance. Emo-

tion contagion in BioCrowds supports multiple groups in a sce-

nario, models inter-group emotion contagion as well as manage-

ment of multiple emotions. The most intense emotion of an agent

represents the emotional state of the agent at that moment. The

goal of an agent is tied to the emotional state, which means that

when the emotional state changes, the goal changes as well. 

3.4. Durupınar model 

We estimate the parameters of the emotion contagion model

proposed by Durupınar et al. [16] . The crowd simulation sys-

tem incorporating this model represents personality by the OCEAN

(Openness, Conscientiousness, Extroversion, Agreeableness, Neu-

roticism) model [39] , which describes five independent dimensions

of human personality also known as the Big-Five Factor struc-

ture [40] . The system defines how each personality trait affects the

development of emotions both for the individuals themselves and

other people around. By specifying different trait values for each

agent, one can generate heterogeneous crowds easily and observe
he change in convergence patterns of crowd behavior with respect

o the given personalities. 

Alongside the personality traits, agents’ appraisal of their envi-

onment and surrounding individuals play an important role in the

evelopment of emotional reactions. The Durupinar crowd simula-

ion system employs the Ortony, Clore, Collins (OCC) model [41] to

imulate cognitive appraisal and emotions. In this model, individ-

als assess their environment in terms of their goals regarding

thers’ and their own actions, their standards about other peo-

le where the actions of others are approved or disapproved and

heir attitudes towards objects. In order to determine the cur-

ent emotional state and make decisions, the system utilizes the

leasure-Arousal-Dominance model [42] . Finally, to model emotion

ontagion in a crowd, the system adopts the generalized contagion

pproach proposed by Dodds and Watts [8] with various augmen-

ations. 

In the Durupınar model, the emotion of an agent is represented

s the combination of the agent’s appraised emotional state with

espect to the defined goals, standards and attitudes and the influ-

nce of other agents in the crowd, which corresponds to the empa-

hy component representing the emotion contagion in the model.

he calculation of empathy is straightforward while the appraisal

art depends on the nature of the scenario and events. 

The Durupınar model simulates emotion contagion by adopt-

ng an epidemiological threshold-based approach [8] . This way, the

motions do not show up until they reach a threshold level. Emo-

ions add up when the agents are exposed to incidents and other

gents’ emotional responses and decay over time when they are

ot affected. The thresholds of emotional reactions are mainly de-

ermined by the expressiveness values of agents. 

.5. Discussion 

Tsai et al. [23] and Bosse et al. [24] discuss the first steps and

enefits of quantitative evaluation, comparison and optimization of

motion contagion and crowd simulation models using real world

ncidents. Yet, they do not discuss the properties of suitable inci-

ents and materials; methods to track individuals on video footage

nd to project the tracking data to the 3D scene in detail. For in-

tance, Bosse et al. track a relatively small group of 35 individuals

n a massive crowd of size about 20 0 0 0 people and use only this

ncident for parameter estimation. 

Although these models seemingly serve the same purpose, they

ave differences in terms of their application targets. For example,

SCAPES has a very specific focus on airport evacuation scenarios;

SCRIBE and BioCrowd demonstrate other kinds of scenarios which

nvolve fear, even though they are capable of being used in dif-

erent kinds of scenarios. However, Durupınar model supports and

emonstrates various scenarios including acquisitive mobs as in a

lack Friday scene and angry mobs as in a protest event, alongside

scape mobs with fear. 

In the sense of supporting multiple groups and individual types

n a scenario, the mentioned methods differ from each other.

hile ASCRIBE copes with only one group in a scenario, ESCAPES,

ioCrowd and Durupınar models support multiple groups with dif-

erent goals, intentions and responsibilities in a scenario. 

Regarding the emotional contagion method, agents in ESCAPES

dopt the maximum level of fear from their surrounding agents

nd their fear level decreases when they pass by an authority fig-

re. In ASCRIBE and BioCrowd, contagion occurs gradually without

ny threshold, and distance is the major external factor in deter-

ining the strength of influence. In ASCRIBE, fear can increase and

ecrease, based on the incoming contagion. It can take a value be-

ween 0 and 1. The Durupınar model incorporates an epidemiolog-

cal emotion concept where emotions show up after they exceed

 threshold and decay over time. Overall, because of its capability
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Fig. 1. General flow of optimization and parameter learning process. 
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f supporting various kinds of scenarios where crowds behave as

 whole and react with various emotions, we base our studies on

urupınar Emotion Contagion Model and Crowd Simulation Sys-

em. 

. Optimization and parameter learning 

Although our approach for data-driven parameter learning for

rowds is not entirely new, we now provide a clear formulation

f the schema, requirements and specific actions needed for per-

orming this. For this purpose, we refer to previous work and our

wn experience. In our parameter learning framework, we first col-

ect video footage for suitable incidents and preprocess them when

ecessary. Next, we track the people on the video and extract rel-

vant data: either trajectories of individuals or occurrences of de-

ned events, and define an error function that represents the ac-

uracy of a simulation. Then, we recreate the scene in the virtual

nvironment of the target crowd simulation model with its static

bstacles, reference points and virtual agents. We project the ex-

racted trajectories from video to the virtual scene. Finally, we de-

ne the parameters to be learned and run the parameter optimiza-

ion algorithm (cf. Fig. 1 ). 

For the first step of the data-driven parameter learning process,

e collect data, which entails finding videos of real-life incidents

ncluding crowds with emotional responses. We describe the char-

cteristics of videos that would be suitable for such work as be-

ng publicly available and without graphic content, having captured

he emotional responses of crowds of suitable sizes and showing

he incident on a flat surface [17] . In this work, we use three dif-

erent videos, each belonging to a different incident. The videos are

ublic and available online. 

.1. Transfer from pixel coordinates to scenario coordinates 

One of the main error functions we use for formulating the

ifference between real world and simulation data is trajectory

atching. Trajectory matching is performed by summing the dif-

erences between the paths of individuals and their corresponding
irtual agents. Instead of camera parameter extraction which re-

ies on careful calibration in a controlled environment [43] , we use

arycentric coordinates [44] to map real-world trajectories onto

he virtual scene [17] . 

Projecting information from camera footage onto 3D space re-

uires picking at least three points of interests with known coordi-

ates both on the video and the virtual scene. So, we must create

 virtual and properly scaled version of the area before the coor-

inate projection. In other words, the relative distances and sizes

n the virtual environment should match the real world. When we

now the camera space coordinates as well as the 2D coordinates

n the scene, we can calculate the barycentric coordinates for any

ixel in a video frame with respect to our three reference points.

hen, we can calculate the coordinates of the point in the 3D scene

sing the barycentric coordinates. 

Let our reference pixels be rp i = [ x i , y i ] , i = 1 , 2 , 3 and query

ixel be qp = [ x p , y p ] , for which we want to get the scene coor-

inates. We can find the corresponding virtual scene coordinates

f pixel qp as follows: 

1. Calculate the barycentric coordinates [ b 1 , b 2 , b 3 ] of the query

point ( qp ) with respect to the pixel coordinates of the three ref-

erence points by solving [ 

x 1 x 2 x 3 
y 1 y 2 y 3 
1 1 1 

] [ 

b 1 
b 2 
b 3 

] 

= 

[ 

x p 
y p 
1 

] 

2. Calculate the scene coordinates sc of the query point with

the known scene coordinates of the three reference points

( srp 1, 2, 3 ) as: 

sc = srp 1 b 1 + srp 2 b 2 + srp 3 b 3 . 

This approach assumes that the event scene is flat and the cam-

ra image is a perfect linear projection of the scene without any

ens distortion. For better results, the camera image can be pre-

rocessed to disable lens distortion. 

.2. Parameter optimization 

Our goal is to find the best combination of parameters that con-

rol the behavior of virtual agents. For this purpose, we must for-

ulate an error function that reflects the difference between the

imulated scenario and the real event. The error function should

e formulated per-scenario basis, considering the natures of events

n the scenario. With this, the meaning of “best combination of pa-

ameters” becomes the vector of values, which minimizes the de-

ned error function: 

minimize 
P 

er ror (P ) 

subject to p imin ≤ p i ≤ p imax , p i ∈ P 

For searching the optimum parameter values in the search

pace, we run a simple independent parameter tuning algorithm

cf. Algorithm 1 ), similar to Bosse et al. [24] . This method instanti-

tes parameters to their minimum values at the beginning, iterates

hrough parameters optimizing one parameter at a time by calcu-

ating the error when the value of the parameter being optimized

s updated step by step and the values of the rest of the parame-

ers are fixed. 

This optimization process allows us to scale the tuning ranges

f individual parameters with minimal overhead to complete the

hole process and gives information about the precision and the

ffect of individual parameters on the overall result. By taking ad-

antage of these properties, we can automatically improve the test-

ng efficiency with each iteration by reducing the step size of the

ensitive parameters and increasing the possibility range of critical

ariables. 



74 A.E. Ba ̧s ak et al. / Computers & Graphics 72 (2018) 70–81 

Algorithm 1 Independent parameter tuning. 

k : number of tuning iterations 

P : set of parameters 

s i : step size of parameter p i 
min (p i ) : minimum value of p i 
max (p i ) : maximum value of p i 
v al[ p i ] : current value of p i 
for c = 1 to k do 

for all p i ∈ P do 

v al[ p i ] ⇐ min (p i ) 

bestError ⇐ ∞ 

bestV al ⇐ v al[ p i ] 

while v al[ p i ] ≤ max (p i ) do 

calculate cur rentEr ror 

if cur rentEr ror < bestEr ror then 

bestEr ror ⇐ cur rentEr ror 

bestV al ⇐ v al[ p i ] 

end if 

v al[ p i ] ⇐ v al[ p i ] + s i 
end while 

end for 

end for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Surveillance camera footage of the Ankara Attack incident. 
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This technique scales quite well in terms of the number of pa-

rameters to be searched as well as the number of distinct values

(steps) each parameter can take. If n is the number of parameters

and m is the average number of steps of parameters, then the run-

time of this algorithm is O(n × m ) . 

After all the values have been tested, the parameter is assigned

to the optimal value and the calibration process continues with the

next parameter. After all the parameters are tuned, the whole pro-

cess restarts with the first parameter, using the previously found

optimum values. 

5. Scenarios 

In order to demonstrate our system at work, we have recreated

three different real-life incidents involving emotional responses of

crowds using the Durupınar emotion contagion model and crowd

simulation system. The first incident involves a suicide bomber

detonating himself and the crowd’s escape from the incident area.

The second incident is a state of panic in a subway train where the

crowd suspects one of the passengers being a suicide bomber. The

third incident is a crowd storming the gate of a store opening on

a Black Friday. 

5.1. Ankara attack scenario 

The first video is the footage of the terrorist attack in Ankara

Train Station on October 10, 2015, which we are going to refer from

now on as the Ankara Attack. During a gathering in an open space

just outside the railway station, two bombs were detonated, result-

ing in a death toll of 103 civilians and the physical injury of more

than 400. We chose this video because there is a stable footage

of the incident taken from a surveillance camera overseeing the

scene and the panicking crowd, the size of the crowd captured by

the camera is between 50 and 200 people – suitable for the crowd

simulation model, the footage does not contain graphic violence,

thus can be used in public media, and the environment is flat. 

5.1.1. Surveillance camera footage 

The video footage is taken from a city surveillance camera at

the center of the gathering area, pointing to the west (see Fig. 2 ).

On the video, there is a traffic light pole at the center, a street

light pole and a white panel van car parked at the bottom right
orner; and the scene is filled by the crowd slowly roaming the

rea or standing still. The explosion is seen on the left at the 11th

econd of the original video. After that, the crowd starts running

way from the center of the explosion to the top and bottom right

orners of the video. 

The original video that we have access to is a mobile phone

amera recording of a computer screen, playing the actual surveil-

ance camera footage. Therefore, it contains unwanted panning and

otion blur. In order to reduce these glitches, we preprocessed

he video by stabilizing it with the traffic light pole as the refer-

nce point. After stabilizing the video, we cropped it, so the whole

cene consists of the actual footage of the surveillance camera. Fi-

ally, we trimmed the video. The processed video has a resolution

f 446 × 250, 16 seconds of length with 12 frames per seconds and

34 kbps of bit rate, which sums to 826 kilobytes in size. 

.1.2. Tracking 

In order to track the people in the crowd, we first tried

utomating the pedestrian trajectory extraction, as described in

he literature [9] . However, because the quality of the video is

ow, the pedestrian detection methods perform poorly. So, after

arious attempts, we decided to track people manually, similar

o Bosse et al. [21] . We used an open source software, called

Tracker” [45] for tracking people in the crowd. This was done in

 per-agent basis, by clicking on the position of a person at each

rame, doing this until the person leaves the area covered by the

ideo. Because the video is blurry, it is difficult to track the po-

itions of individuals in groups. We were able to track ten indi-

iduals. We started tracking just before the explosion and tracked

hese individuals for various durations– five seconds (or 62 frames)

n the average. For the barycentric coordinate projection, we have

dentified three spots as the reference points: the traffic pole in

he center, the street light on the right, and the corner of protec-

ion bars of the underpass for the projection process. The reference

oints are shown with red dots in Fig. 3 . 

.1.3. Virtual scene 

We constructed the virtual scene with 180 agents by export-

ng a satellite image from Google Earth around the coordinates of

9.9366 latitude and 32.8442 longitude (cf. Fig. 4 ). We scaled the

mage as the ground plane in a Unity 3D scene with real world

oordinates of one meter corresponding to one unit in Unity. 

The scene is placed in such a way that the base of surveillance

amera pole sits at the origin of the world coordinate system with

he positive z axis pointing to the north and the positive x axis

ointing to the east. With this setup, y axis points to the sky be-

ause Unity uses left-handed coordinate system. We placed static

bstacles for the train station building, trees between the train sta-

ion and incident scene, the traffic light pole, the street light pole,
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Fig. 3. Reference points used for barycentric coordinate projection of tracked pix- 

els in Ankara Attack incident. (For interpretation of the references to color in this 

figure, the reader is referred to the web version of this article.) 

Fig. 4. Virtual simulation of the Ankara Attack incident. 
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Table 1 

Parameters used in the Ankara Attack scenario. 

Parameter Min. Max. Step Optimum 

size value 

mean(O) −0.8 0.8 0.2 0.6 

std(O) 0.0 1.0 0.2 0.4 

mean(C) −0.8 0.8 0.2 0.2 

std(C) 0.0 1.0 0.2 0.2 

mean(E) −0.8 0.8 0.2 0.2 

std(E) 0.0 1.0 0.2 0.8 

mean(A) −0.8 0.8 0.2 −0.2 

std(A) 0.0 1.0 0.2 0.0 

mean(N) −0.8 0.8 0.2 0.6 

std(N) 0.0 1.0 0.2 0.6 

Wait goal 0.0 1.0 0.1 0.5 

Escape goal 0.0 1.0 0.1 0.4 

Std. for self 0.0 1.0 0.1 0.7 

Std. for crowd 0.0 1.0 0.1 0.0 

Panic threshold 0.0 1.0 0.1 0.2 

Fig. 5. Security camera footage of the Subway Panic incident. 
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he car under the street light and the underpass to populate the

cene. 

The Durupınar Emotion Contagion model allows us to define

tandards that individuals have for themselves as well as the oth-

rs. Standards are about what people think of other people’s ac-

ions: approving or disapproving them. In this scenario, we set ap-

roving standards of individuals towards themselves as well as to-

ards other agents. Because people are gathered in the area for a

ommon goal, we assume that they sympathize with each other.

e also assigned them an unpleasant (displeased) goal of waiting

n the area because the gathering was about a protest. 

We defined 15 parameters that could be tuned easily and im-

act the outcomes of the simulation results (cf. Table 1 ). Ten of

hese parameters are the means and standard deviations of the

ve personality factors. The Durupinar Model allows us to assign

he values of personality traits for each agent in the crowd from

robability distributions whose means and standard deviations are

pecified. Hence, the parameters are not the values of the person-

lity traits for each agent in the crowd, but rather the means and

tandard deviations of the personality traits for the crowd. This

ignificantly reduces the number of parameters to be tuned for

he crowd. We specify the ranges (minimum and maximum val-

es) and optimum values for the means and standard deviations of

he five personality traits. Alongside the personality variation, we

uned the parameters for the weights of the standards the agents

ave for themselves and for the other people, the initial goal of

oaming around the gathering area, the goal of running from the

xplosion and the fear threshold for starting to panic. 

The error function for this scenario is a trajectory matching er-

or function, i.e., the sum of distances between each tracked person
nd the corresponding virtual agent. Minimizing this error function

llows us to obtain a realistic escape pattern with accurate run-

ing speeds, escaping directions and obstacle avoidance behavior

f agents. 

We set the tuning environment for the virtual Ankara Attack

cenario with the described 15 parameters, running each test three

imes and taking the median for the error. The tests were run for

our iterations, so the parameters took turns four times in the tun-

ng process, with another set of tuned parameters each time. In

ddition, we ran the test scenario in 0.5 × slow motion in order

o let Unity dedicate more processing time to each frame. 

.2. Subway panic scenario 

The second incident that we study is a state of panic on a sub-

ay car. Late 2015 was a period in Turkey when various terrorist

ombing attacks had happened and people were expecting more

ttacks because of rumors on social media [46] . On October 16th,

wo days after a bombing attack, during rush hour in a subway car

n Ankara, a passenger started yelling and pointing to another pas-

enger stating that she suspected him to be a suicide bomber. At

hat point, two undercover police officers rushed to neutralize the

uspect while other passengers ran away from him. 

.2.1. Security camera footage 

The incident can be seen from video footage of a security cam-

ra in the subway car, published by the press. On the video, we see

he passengers turning their heads to the screaming person and

tarting to run away from the incident point (see Fig. 5 ). The cam-

ra looks away from the screaming person, so she is not visible. 
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Fig. 6. Representation of the error function used for optimizing the model for Sub- 

way Panic incident. The area between the simulated and tracked people count lines 

corresponds to our error. 

Fig. 7. Virtual simulation of the Subway Panic incident. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Parameters used in the Subway Panic scenario. 

Parameter Min. Max. Step Optimum 

size value 

mean(O) −0.8 0.8 0.2 −0.4 

std(O) 0.0 1.0 0.2 0.8 

mean(C) −0.8 0.8 0.2 0.4 

std(C) 0.0 1.0 0.2 0.4 

mean(E) −0.8 0.8 0.2 0.4 

std(E) 0.0 1.0 0.2 0.4 

mean(A) −0.8 0.8 0.2 −0.8 

std(A) 0.0 1.0 0.2 0.2 

mean(N) −0.8 0.8 0.2 0.4 

std(N) 0.0 1.0 0.2 0.2 

Wait goal 0.0 1.0 0.1 0.2 

Escape goal 0.0 1.0 0.1 0.6 

Std. for self 0.0 1.0 0.1 0.4 

Std. for crowd 0.0 1.0 0.1 0.6 

Panic threshold 0.0 1.0 0.1 0.2 

Fig. 8. Video footage of the Black Friday incident. 
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5.2.2. Tracking and error function 

We tracked the movement of individuals to estimate the flow

rate of the crowd in the car. For each frame, we counted how

many people have entered the field of view of the camera so far.

We aimed to capture the reaction times of individuals as the fear

spreads, which can be used to calculate a flow rate for the crowd.

We counted around 50 people as they ran from the suspect in fear

and came up with a time series graph of the number of people

who crossed the line with respect to the time passed. We derived

the same graph for the simulation with the virtual agents and used

the difference between the tracked and simulated graphs as an er-

ror function, as can be seen in Fig. 6 . 

5.2.3. Virtual scene 

We created a scene with 300 virtual agents in three subway

cars, with the middle car representing the one seen on the video

(cf. Fig. 7 ). In the scene, seats are assigned to virtual agents by

their proximities. When the fear level of an agent exceeds a fear

threshold, which is a tuning parameter of the scene, that agent

stands up and tries to run away. 

Similar to the Ankara Attack scene, ten tuning parameters come

from the OCEAN personality model: mean and standard deviation

of each of the five personality traits. Additionally, we have defined

a goal to freeze, i.e., stand still as nothing has happened, a goal for

escaping from the danger, an approving standard for the agent it-

self, a disapproving standard for the surrounding agents and a fear

threshold, after which the agents start running away (cf. Table 2 ). 
.3. Black Friday scenario 

The third incident is a Black Friday midnight opening of a store

n a mall on November 25, 2011 where a crowd of people rushed

o get inside the store. The incident involves about 400 people, get-

ing inside in about 30 s. 

We have a 30 s video of the incident, taken by a person with

 cell phone camera from a higher ground. In the beginning, when

he gate is closed, people are waiting outside the store. When the

ates start being pulled up, people start yelling and pushing each

ther towards the store gate. After a few seconds, people start get-

ing inside the store (see Fig. 8 ). 

.3.1. Video tracking 

The camera footage of the Black Friday incident has significant

mount of movement and is not suitable for stabilization with post

rocessing, therefore we couldn’t use trajectory matching for this

ncident. For tracking the video we selected evenly-positioned 14

ndividuals in the crowd from the video and recorded their time

o enter the store. Similar to the Ankara Attack scenario, we trans-

ormed the pixel coordinates of the initial positions of the selected

ndividuals to the virtual scene positions. We created 14 clusters of

irtual agents, each cluster representing a tracked individual. Then

e assigned each virtual agent to one of the clusters according to

ts closest tracked individual. In the scenario, we used these clus-

ers to record the average time-to-enter the store and as a metric

or error computation. 
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Fig. 9. Virtual simulation of the Black Friday incident. 
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Table 3 

Parameters used in the Black Friday scenario. 

Parameter Min. Max. Step Optimum 

size value 

mean(O) −0.8 0.8 0.2 0.2 

std(O) 0.0 1.0 0.2 0.8 

mean(C) −0.8 0.8 0.2 0.4 

std(C) 0.0 1.0 0.2 0.6 

mean(E) −0.8 0.8 0.2 0.6 

std(E) 0.0 1.0 0.2 0.4 

mean(A) −0.8 0.8 0.2 −0.4 

std(A) 0.0 1.0 0.2 0.8 

mean(N) −0.8 0.8 0.2 0.6 

std(N) 0.0 1.0 0.2 0.4 

Std. for gate 0.0 1.0 0.1 0.7 

Crowd displeasure 0.0 1.0 0.1 0.5 

Sales fear 0.0 1.0 0.1 1.0 

Sales hope 0.0 1.0 0.1 0.0 

Wait goal 0.0 1.0 0.1 0.6 

Fig. 10. Tendency of error versus the number of experiments performed. 
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.3.2. Virtual scene 

We created a virtual scene with 400 agents waiting outside the

tore (cf. Fig. 9 ). At the beginning of the scenario, we assigned the

gents to their representative tracked individual, forming a cluster

round the tracked individual. We also selected a weighted random

estination for each virtual agent inside the store. The weights

sed in selecting the random destination are based on whether the

gent is on the left side of the crowd or the right. Depending on

his, an agent’s destination is more likely to be on the same side

s the agent. In the scene, the virtual gate starts to open after two

econds from the scenario beginning at 0.25 m/s speed. When the

ate starts opening, virtual agents try to push towards the gate,

imilar to what happens on the video. To simulate the people get-

ing inside the store before the gate is fully open, we assigned a

andom threshold height between 1 m and 1.8 m for each virtual

gent so that the agent can enter the store after the gate height is

bove the threshold. 

The error function that has been used for optimizing the model

or the Black Friday scenario is the store entrance duration differ-

nce between the tracked and the simulated individuals. For each

irtual agent, we recorded the time to enter the store. After all the

gents in the scene enter the store, the average duration of clusters

o enter the store and the sum of the differences between the clus-

er averages and tracked agents were calculated. The error function

an be formulated as 

rror = 

n ∑ 

i =1 

| t (ta i ) −
∑ c i 

j=1 
t (aa i, j ) 

c i 
| , 

here ta i is the i th tracked agent, aa i , j is the j th virtual agent as-

igned to ta i , c i is the number of virtual agents assigned to ta i ,

 ( ta i ) and t ( aa i , j ) are the time to enter the store for ta i and aa i , j ,

espectively, and n is the number of tracked agents. 

.3.3. Tuning parameters 

We have 16 parameters in this scenario (cf. Table 3 ). Similar to

ther scenarios, ten of these consist of means and standard de-

iations of the distributions of five OCEAN personality traits. We

efine a goal to pass the gate, disapproval towards the other shop-

ers, and some stimulating factor towards the sales event. If the

euroticism value of an agent is below a threshold, which is also

arameter, the stimulating factor is used as “hope to get wanted

tems”. If the neuroticism level is above the threshold, the stimu-

ating factor represents the “fear of not getting the items”. 

. Results and discussion 

The total time to run all the simulations was about 50h with

mall differences among scenarios. For this work, we have used a
omputer with Intel® Core TM i7-4790 CPU running at 3.60 Ghz,

6GB RAM and two AMD® Radeon 

TM R9 290 GPUs with 4GB

DDR5 memory each connected with AMD® CrossFireX 

TM multi-

PU technology, running Windows® 10 64bit and Unity Engine

5.6.1. 

In our experiments, we observe that the error tends to go down

n general as we perform more experiments and tune the parame-

ers accordingly (see Fig. 10 ). The improvement happens at a faster

ate at the beginning because of the overwritten default values;

ut after the first pass, the improvement slows down. For exam-

le, it is very difficult to notice the improvement after about 150

xperiments on the Black Friday scenario. 

The fluctuations in the error graphs are caused by two reasons.

he first one is that the parameter estimation algorithm tests dif-

erent values for a single parameter over time and we can expect

n actual improvement only when the complete range of values

or a parameter is evaluated and a local optimum is chosen for

hat parameter. The second one is that the underlying crowd sim-

lation system is not deterministic; even if the same simulation is

erformed with the same parameter configuration, the results vary

ignificantly. The indeterminism is caused by the asynchronous
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Fig. 11. Tendency of error as parameters are being tuned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Tendency of error with tuning iterations. 

Fig. 13. Sensitivity of the parameters as the experiments performed. 
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multi-agent pathfinding framework of the Unity3D engine. Because

Unity does not provide control over the internal mechanisms and

parameters of its algorithms, simulations produce different results

even if we fix the values of our parameters. In order to achieve

more stable simulation results, we repeated each experiment mul-

tiple times and recorded the average observed error within a rep-

etition group as the error value of a parameter configuration. 

As parameters are further calibrated, we expect the minimum,

mean and maximum error values observed within the tuning

groups to go down as well. In this context, a tuning group is a set

of experiments where one parameter changes value and the other

parameters are fixed. This is because parameters together affect

the simulation results and as more parameters are in their ‘correct’

values, the effect of one ‘wrong’ parameter would be smaller. Our

results show that this is the case, especially for the Ankara Attack

and Subway Panic scenarios. As more parameters are tuned, the

range of the observed error values go down (see Fig. 11 ). In the

Black Friday scenario, blessing of indeterminism plays a role and

the best error is reached in the earliest stages; but the results be-

come more stable as more parameters are tuned. Ideally, this graph

would be a non-increasing one, because every step represents one

more tuned parameter, that would result with a new error value

which is less than or equal to the previous one. Despite the fluctu-

ations, observed errors tend to go down. 

We expect that performing multiple passes of parameter tun-

ing, i.e., setting parameters to their observed best values after an

iteration and restarting the tuning process with these values would

further decrease the error function. This is because the influence

of the parameters on agent behavior and the overall simulation re-

sults are not independent of each other. Indeed, our experiments

show that performing multiple tuning iterations would increase

the simulation accuracy as can be seen in Fig. 12 . Overall, the re-

sults show that our methodology allows simulations to resemble

the real world events. 
Next, we observe that the sensitivities of parameters in each

cenario are variable. Sensitivity is the variation in the resulting

rror for a given parameter. It allows determining the order of

ignificance and granularity of tuning ranges of parameters. Ini-

ially, we expected parameter sensitivities to go down as param-

ters are being tweaked. As more parameters were optimized, the

rror would decrease and the effect of changing a single parameter

hile other parameters are fixed on their latest optima would get

maller over time. However, the experimental results (see Fig. 13 )

how that there is no correlation between the overall parameter
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Fig. 14. Parameter sensitivities of the Ankara Attack scenario. 
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Fig. 15. Parameter sensitivities of the Subway Panic scenario. 

Fig. 16. Parameter sensitivities of the Black Friday scenario. 
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ensitivity and the number of experiments performed. We suspect

hat the indeterministic nature of the simulations and the amount

f change in the error due to optimizations being smaller than the

ctual sensitivity of a parameter; i.e., the change in error when a

arameter is changed, could cause such behavior. 

In the Ankara Attack scenario, we expected the most sensi-

ive and significant parameters to be the ones about survival in-

tincts that are directly related to the steering behavior of agents:

elf standards of agents, their fear threshold to start panicking and

he goal about running away from the explosion. In our results, as

hown in Fig. 14 , we confirm that individuals’ standards for them-

elves and goals about the explosion have the highest sensitivity.

ersonality parameters have slightly less significance compared to

ppraisal elements because they usually affect the reactions indi-

ectly. It is not surprising that neuroticism is one of the most sig-

ificant traits because it is directly connected to the contagion of

ear. Conscientiousness trait is also a significant parameter. One ex-

lanation of this observation is that because the conscientiousness

f agents affects their collision avoidance behaviors, it can also af-

ect their escape paths and thus the error function. The variations

n the distribution of personality traits have less significant param-

ters, probably because individual differences do not matter when

he crowd reaction converges quickly. 

The nature of the Subway Panic scenario is similar to the

nkara Attack scenario: survival by escaping from a danger source.

his led us to have similar expectations with the Ankara Attack

cenario, i.e., that the most important factors would be about sur-

ival. As can be seen in Fig. 15 , the experiments show that the

ost sensitive parameters of the Subway Panic scenario are similar

o the ones in the Ankara Attack scenario. The survival reaction-

elated parameters (escape-goal, wait-goal, neuroticism, standard

bout self and others) are the most sensitive. However, we ex-

ected the wait-goal to have more significance because fear in-

reases more slowly than the Ankara Attack scenario and the ten-

ency to freeze would be a more determining factor. Similarly, we

xpected conscientiousness to be a more significant parameter as

n the Ankara Attack scenario although the actual trajectories of

gents are not considered in the error function here. 

The Black Friday scenario has a different nature than the other

cenarios where the agents are trying to escape from a danger

ource. The crowd is competing with each other to get their de-

ired items, which is also about survival in primal sense [47] . Sim-

lar to the subway panic scenario, the error function is geared

owards capturing a realistic human flow through a gateway.

ith these in mind, we expected the wait-goal, which is directly
elated to people rushing towards the store and passing under the

ate before it is fully open; attitude towards the other members

f the crowd (general-liking, crowd-displeasure), which affects the

mount of pushing between agents and goals towards getting into

he store (sales-hope, sales-fear) to be the most significant param-

ters. The experiments show that the results mostly meet our ex-

ectations (see Fig. 16 ). The wait-goal is the most significant factor

ecause it directly affects the error function and crowd-displeasure

s the second for directly affecting the crowd flow. However, fear of

ot getting the desired items is a less significant parameter. We ob-

erve that this parameter does not affect the agents’ behavior until

hey enter the store. Because our error function only considers the

otion of entering the store rather than what happens afterwards,

he parameter becomes less significant. 

In all three scenarios, we can observe that the scenario-specific

arameters, such as the wait goal, the panic threshold, and the es-

ape goal, are among the most significant ones. The reason for this

attern is that the scenario-specific tuning of parameters affects

he agents’ motions directly, causing changes in error. For example,

hen panic threshold is too low in the Ankara Attack scenario, we

aw that simulated agents started running faster too soon, causing

 larger difference between the simulated and tracked trajectories.

n the opposite extreme, when the fear threshold was too low, the

gents didn’t panic at all and escaped from the scene by walking

almly, again resulting in a different trajectory. 
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Another common pattern among the sensitivity of parameters

in different scenarios is that the least significant parameters were

the OCEAN-related ones. This can be explained by only a few per-

sonality dimensions affecting the motions of the agents and their

impact being lower than the scenario-specific parameters. In ad-

dition, the results indicate that standard deviations of OCEAN di-

mensions are much less significant than the mean values of the

parameters. Our data extraction process mostly consists of track-

ing a small subset of individuals in the video and generalizing the

results. We observe that even when the variation of personality

values are high, the generalization of simulated results eliminates

the heterogeneity of the data, which is the cause of the low sen-

sitivities of parameters for standard deviations of OCEAN dimen-

sions. For example, in the Black Friday scenario, when the standard

deviation of the neuroticism is high, the difference between the

motions of agents in the simulated group can be easily observed.

However, this difference is not reflected in the error function be-

cause we take the average time-to-enter to the store of a cluster of

agents while calculating the error. 

The results of the optimization effort s is a way of validating the

crowd simulation model that has been tuned. For each scenario,

we defined error functions to represent dissimilarity between the

real and the simulated world. Being able to achieve a small er-

ror by tuning a crowd simulation model can be interpreted as the

suitability of the studied crowd simulation model to represent the

specified scenario. In other words, if two different crowd simula-

tion models are tuned with this approach, using the same scenar-

ios and the error functions for both and keeping their own param-

eter sets, then their performances can be compared based on the

resulting error values. 

7. Conclusion, limitations and future work 

We propose a framework for the optimization of crowd sim-

ulation parameters by using videos of real-life incidents. We de-

scribe the nature of suitable incidents and the steps involved in

data extraction from them. We then optimize the Durupınar Emo-

tion Contagion model considering a subset of individuals in such

incidents by learning personality, emotion and contagion parame-

ters from videos and tuning them one by one. We apply the pro-

cess on three separate incidents and discuss the performance of

the proposed method and our findings about the incidents. 

In the future, we intend to improve our individual tracking

method. To achieve this, multiple and clearer video tracks of sim-

ilar events are required. This would be possible by gaining more

access to press media, professional or surveillance camera footages.

Applying the work done in this study to other kinds of incidents,

such as protests, stampedes, riots, looting incidents, natural disas-

ters, and so on, would be valuable for augmenting the learned per-

sonality distribution and improving the emotion contagion model. 

By collecting media for real-life incidents and processing them,

we could acquire solid evidence about the personalities of differ-

ent groups or cultures. By optimizing the learned parameters from

multiple incidents in a region, we could extract the actual distribu-

tion of personalities in the area and use these learned personalities

for the simulation of possible incidents to understand how people

would react in such events. This could be used to take precautions

and design streets, public gathering areas and crowded buildings

such as shopping malls and airports. 

We use the barycentric coordinates for projecting positions

from the camera to the scene thus ignoring the distortions caused

by lenses. If we had more reference points or details about the

characteristics of the cameras used, we could use intrinsic and/or

extrinsic camera parameter extraction techniques to estimate the

projection matrix of the pinhole model of the camera. With this

camera matrix, we could reverse the projection from the camera
o the 3D world, which would result in a more accurate projection

odel. 

For the parameter optimization problem, we try to optimize

he personality parameters independently. Although the underlying

CEAN personality model depicts them as orthogonal traits, their

appings to behaviors and the outcomes of these behaviors would

ffect each other. Therefore, more general and stable parameter op-

imization methods such as genetic algorithms or support vector

achines might produce faster and more accurate results. More-

ver, the parameter estimation could be expanded to the amount

f emotion doses according to the reactions to events, goals and

esponse thresholds. 

As the error function of the Ankara Attack incident, we use

he sum of distances between the tracked agents and their cor-

esponding virtual agents. Although this metric is beneficial for

stimating the running speeds, directions and reaction times, us-

ng more accurate metrics could lead to better understanding on

he decisions made by the individuals. One such metric could be

he proportion of people doing action a k , 1 ≤ k ≤ n in a set of ac-

ions { a i , i ∈ 1 , . . . , n } . For example, in the Ankara Attack scenario,

 1 could be the action of “running north”, a 2 could be “running

ast” and a 3 could be “lying on the ground”. Moreover, optimizing

he parameters for multiple metrics at the same time would help

roduce more robust models. 

The immense computational requirements of the emotion con-

agion models and parameter estimation techniques limits us on

he number of tuning iterations, granularity of parameter ranges,

rowd size of the analyzed incidents, etc. Improvement in the re-

ults of this study can be achieved by dedicating more compu-

ational resources and time on the tuning process and working

n areas of computational optimization in the crowd simulation

odel implementation. For example, we assign personality values

o a group by assuming a Gaussian distribution of personality traits

ithin the group; thus specifying only the mean and standard

eviation values of the distribution. Optimizations on the model

nd more powerful computers may allow us to treat personalities

f each individual agent as a separate parameter to be tweaked

o have more fine-tuned results. In general, providing more data,

reparing more scenarios and dedicating more resources result in

 more stable and better tuned crowd simulation model. 

Our parameter tuning approach is not limited to tuning the Du-

upınar model, but can be used with other crowd simulation mod-

ls as well. The proposed pipeline can also be used to compare and

alidate different crowd simulation and emotion contagion models

y comparing results of error functions after parameter tuning is

one for each model. Of course, the parameters to be tweaked are

pecific to each model. However, we explicitly describe the actions

o calibrate the parameters in order to find optimal values so that

ur schema can be generalized across different crowd simulation

r emotional contagion models. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cag.2018.02.004 . 
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