CS430/630 - Homework 3

Released Nov 10, Due Nov 26 100 points (10/100 of final grade)

Instructions: The homework is due BEFORE CLASS (19:00) on Wed Nov 26th. Submit a file called HW3.pdf in your course folder with the solution (which must be typeset, not handwritten).

Question 1 (20 points)

A university database contains information about professors (identified by social security number *SSN*) and courses (identified by *courseid*). Professors also have a name, an address and a phone number. Courses have a name and a number of credits. Professors teach courses. For each of the following situations, draw an ER diagram that describes it (assuming no further constraints hold).

- (a) Every professor must teach some course.
- (b) Every professor teaches exactly one course (no more, no less).
- (c) Every professor teaches exactly one course (no more, no less), and every course must be taught by some professor.
- (d) [630 students only] Modify the diagram from (a) such that a professor can have a set of addresses (which are street-city-state triples) and a set of phones. Recall that in the E/R model there can be only primitive data types (no sets).
- (e) [630 students only] Modify the diagram from (d) such that professors can have a set of addresses, and at each address there is a set of phones.

Question 2 (10 points)

Let a and b be integer-valued attributes that may be \mathtt{NULL} in some tuples. For each of the following conditions that may appear in a \mathtt{WHERE} clause, describe exactly the value space of (a,b) tuples that satisfy the condition, including the case where a and/or b is \mathtt{NULL} .

- (a) a=10 OR b=20
- **(b)** a=10 AND b=20
- (c) a<10 OR a>=10
- (d) [630 students only] a=b

Question 3 (10 points)

Consider a database schema with three relations:

```
Movies (movie id, title, year, studio)
Actors (actor id, name, nationality)
StarsIn(actor id, movie id, character)
```

Provide SQL statements for the following:

(a) Create a view CharactersPlayed that lists actor names, their nationality and the characters they interpreted together with the year they interpreted it in. The view will have four columns with headings: ActorName, ActorNationality, CharacterName and Year.

- (b) Query the view above to retrieve the set of distinct nationalities for actors that interpreted character "Winston Smith".
- (c) Query the view above to find for each year the count of distinct nationalities of actors who starred in some role for that year.

Question 4 (20 points)

Suppose you are given a relation R with four attributes ABCD and the following set of FDs: AB \rightarrow C, BC \rightarrow D.

- a. Identify the candidate key(s) for R (recall that keys must be minimal)
- b. Determine if R is in BCNF, 3NF, or none of the above. If it is not in BCNF, decompose it into a set of BCNF relations.

Question 5 (20 points)

Suppose you are given a relation R with four attributes ABCD and the following set of FDs: BC \rightarrow A, AB \rightarrow C, C \rightarrow DA.

- a. Identify the key(s) for R (recall that keys must be *minimal*)
- b. Determine if R is in BCNF, 3NF, or none of the above. If it is not in BCNF, decompose it into a set of BCNF relations.

Question 6 (20 points)

Show the grant diagrams after steps 7 and 8 of the sequence of actions below, where A owns the relation on which the privilege p is assigned. Can C still exercise privilege p after step 8? What about E?

Step	Executed by	Action
1	А	GRANT p TO B
2	Α	GRANT p TO C WITH GRANT OPTION
3	С	GRANT p TO D WITH GRANT OPTION
4	А	GRANT p TO D WITH GRANT OPTION
5	D	GRANT p TO B WITH GRANT OPTION
6	В	GRANT p TO C
7	D	GRANT p TO E
8	А	REVOKE p FROM C CASCADE