
Relational Algebra

CS430/630
Lecture 2

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Relational Query Languages

 Query languages:

 Allow manipulation and retrieval of data from a database

 Relational model supports simple, powerful QLs:

 Strong formal foundation based on logic

 Allows for much optimization

 Query Languages != programming languages

 QLs not intended to be used for complex calculations

 QLs support easy, efficient access to large data sets

Formal Relational Query Languages

 Two languages form the basis for SQL:

 Relational Algebra:

 operational

 useful for representing execution plans

 very relevant as it is used by query optimizers!

 Relational Calculus:

 Lets users describe the result, NOT how to compute it -

declarative

 We will focus on relational algebra

Preliminaries

 A query is applied to relation instances, and the result of a

query is also a relation instance

 Schemas of input relations for a query are fixed

 The schema for the result of a given query is determined by

operand schemas and operator type

 Each operation returns a relation

 operations can be composed !

 Well-formed expression: a relation, or the results of a

relational algebra operation on one or two relations

Relational Algebra

 Basic operations:

 Selection Selects a subset of rows from relation

 Projection Deletes unwanted columns from relation

 Cross-product Allows us to combine several relations

 Join Combines several relations using conditions

 Division A bit more complex, will cover later on

 Set-difference Union Intersection

 Renaming Helper operator, does not derive new result, just

renames relations and fields

 F contains oldname newname pairs


















)),((EFR


Example Schema

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailors

bid name color

101 interlake red

103 clipper green

Boats

Relation Instances Used

R1

S1 S2
Sailors

Reserves

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44

58

guppy

rusty

5

10

35.0

35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

Projection

 Unary operator

 Deletes (projects out) attributes that are not in projection list

 Result Schema contains the attributes in the projection list

 With the same names that they had in the input relation

 Projection operator has to eliminate duplicates!

 Real systems typically do not do so by default

 Duplicate elimination is expensive! (sorting)

 User must explicitly asks for duplicate eliminations (DISTINCT)

relation
attrattr ,...2,1



Projection Example

)2(
,

S
ratingsname



S2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44

58

guppy

rusty

5

10

35.0

35.0

sname rating

yuppy 9

lubber 8

guppy

rusty

5

10

Selection

 Unary Operator

 Selects rows that satisfy selection condition

 Condition contains constants and attributes from relation

 Evaluated for each individual tuple

 May use logical connectors AND (^), OR (˅), NOT (¬)

 No duplicates in result! Why?

 Result Schema is identical to schema of the input relation

relation
condition



Selection Example


rating

S
8

2()

 
sname rating rating

S
,

(())
8

2

S2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44

58

guppy

rusty

5

10

35.0

35.0

sid sname rating age

28 yuppy 9 35.0

58 rusty 10 35.0

sname rating

yuppy 9

rusty 10

Selection and Projection

Cross-Product

 Binary Operator

 Each row of relation R is paired with each row of S

 Result Schema has one field per field of R and S

 Field names `inherited’ when possible

SR

Cross-Product Example

Conflict: Both R and S have a field called sid

R1 S1 sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

C=S1 X R1
(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Cross-Product + Renaming Example

C sid1 sname rating age sid2 bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

)11),25,11((RSsidsidC  Renaming operator

Condition Join (Theta-join)

 Result Schema same as that of cross-product

)(SRSR 







Condition Join (Theta-join) Example

11
.1.1

RS
sidRsidS 



sid1 sname rating age sid2 bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 X R1

sid1 sname rating age sid2 bid day

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 58 103 11/12/96

Equi-Join

 A special case of condition join where the condition

contains only equalities

 Result Schema similar to cross-product, but only one copy of

fields for which equality is specified.

S
attrSattrR

R
2.1. 



Equi-Join Example

11 RS
sid



sid1 sname rating age sid2 bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

S1 X R1

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96

58 rusty 10 35.0 103 11/12/96

Natural Join

 Equijoin on all common fields

 Common fields are NOT duplicated in the result

SR 

Union, Intersection, Set-Difference

 All of these operations take two input relations, which must be

union-compatible

 Same number of fields.

 Corresponding fields have the same domain (type)

 What is the schema of result?

Union Example

S S1 2

S1

S2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44

58

guppy

rusty

5

10

35.0

35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

44 guppy 5 35.0

28 yuppy 9 35.0

Intersection Example

S S1 2

S1

S2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44

58

guppy

rusty

5

10

35.0

35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

31 lubber 8 55.5

58 rusty 10 35.0

Set-Difference Example

S S1 2

S1

S2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44

58

guppy

rusty

5

10

35.0

35.0

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

 sid sname rating age

22 dustin 7 45.0

