Relational Algebra

CS430/630
Lecture 2

Slides based on “Database Management Systems” 3" ed, Ramakrishnan and Gehrke

Relational Query Languages

» Query languages:

Allow manipulation and retrieval of data from a database

» Relational model supports simple, powerful QLs:
Strong formal foundation based on logic

Allows for much optimization

» Query Languages != programming languages
QLs not intended to be used for complex calculations
QLs support easy, efficient access to large data sets

Formal Relational Query Languages

» Two languages form the basis for SQL:
Relational Algebra:

operational
useful for representing execution plans

very relevant as it is used by query optimizers!

Relational Calculus:

Lets users describe the result, NOT how to compute it -
declarative

We will focus on relational algebra

Preliminaries

» A query is applied to relation instances, and the result of a
query is also a relation instance
Schemas of input relations for a query are fixed

The schema for the result of a given query is determined by
operand schemas and operator type

» Each operation returns a relation
operations can be composed !

Well-formed expression: a relation, or the results of a
relational algebra operation on one or two relations

Relational Algebra

» Basic operations:

Selection O Selects a subset of rows from relation

Projection /T Deletes unwanted columns from relation

Cross-product X Allows us to combine several relations

oin ><] Combines several relations using conditions

Division = A bit more complex, will cover later on

Set-difference — Union U Intersection M

Renaming /O Helper operator, does not derive new result, just
renames relations and fields

P~P(R(F),E)

F contains oldname —newname pairs

Example Schema

Sailors Boats
sid sname rating |age bid |name color
22 |dustin | 7 1450 101 |interlake |red
31 |lubber | 8 55.5 103 |clipper |green
58 |rusty 10 |35.0
Reserves

sid |bid day

22 (101 |10/10/96

58 103 |11/12/96

Relation Instances Used

Sailors
S1 52 _
sid |sname |rating |age sid |sname |rating |age
22 |dustin | 7 |45.0 | |48 |yuppy | 9 |30
31 |lubber | 8 |555 | |31 |lubber | 8 1555
44 |guppy | 5 [35.0
58 |rust 10 |(35.0
4 58 |rusty 10 |35.0
Reserves
sid |bid day
22 1101 |10/10/96
58 103 |11/12/96

Projection

» Unary operator

» Deletes (projects out) attributes that are not in projection list

ﬂattr],attrz,...rGIat'On

» Result Schema contains the attributes in the projection list
With the same names that they had in the input relation

» Projection operator has to eliminate duplicates!
Real systems typically do not do so by default
Duplicate elimination is expensive! (sorting)

User must explicitly asks for duplicate eliminations (DISTINCT)

Projection Example
52
sid [sname |rating |age
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 guppy | 5 35.0
58 |rusty 10 (35.0

sname |rating
yuppy | 9
lubber | 8
guppy | S
rusty 10

ﬂsname, rating (52)

Selection

» Unary Operator

» Selects rows that satisfy selection condition

O relation

condition
» Condition contains constants and attributes from relation

Evaluated for each individual tuple
May use logical connectors AND (#), OR (V), NOT (-)

» No duplicates in result! Why?

» Result Schema is identical to schema of the input relation

Selection Example
52
sid |sname |rating |age
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 |guppy | oS 35.0
58 |rusty 10 (35.0

sid |sname |rating |age
28 |yuppy 9 35.0
58 |rusty 10 [35.0

Selection and Projection

7T]
sname,rating

O-rating >8

(S2)

rating>8

sname |rating
yuppy | 9
rusty 10

(o (52))

Cross-Product

» Binary Operator

RxS

» Each row of relation R is paired with each row of §

» Result Schema has one field per field of R and S

Field names "inherited’ when possible

Cross-Product Example

S1 [5ig R1

sid |sname |rating |age sid |bid day
22 |dustin | 7 |45.0 22 |101 |10/10/96
31 |lubber 8 55.5 58 1103 111/12/96

58 |rusty 10 |35.0

C=51 X R1 (sid) |sname [rating |age [(sid) |bid |[day

22 |dustin| 7 45.0 (22 101 |10/10/96
22 |dustin| 7 45.0 (58 103 |11/12/96
31 |lubber| 8 55.5 (22 101 |10/10/96
31 |lubber| 8 55.5 (58 103 |11/12/96

58 |rusty 10 |35.0 |22 {101 (10/10/96
58 |rusty 10 |35.0 |58 |103 (11/12/96

Conflict: Both R and S have a field called sid

Cross-Product + Renaming Example

C sidl |sname |rating |age |[sid2 |bid |day

22 |dustin| 7 45.0 (22 |101 |10/10/96
22 |dustin| 7 45.0 (58 |103 |[11/12/96
31 |lubber| 8 55.5 |22 [101 |10/10/96
31 |lubber| 8 55.5 |58 [103 |11/12/96

58 |rusty 10 |35.0 |22 |101 |10/10/96
58 |rusty 10 |35.0 |58 [103 |[11/12/96

Renaming operator p(C(1—>sid15—sid 2),S1xR1)

Condition Join (Theta-join)

Re< HSzag(RxS)

» Result Schema same as that of cross-product

Condition Join (Theta-join)

51 X R1

L xample

sidl |sname |rating |age |sid2 |bid |day
T2—rdustrrr—v—t 5 0221101646/~
22 |dustin| 7 45.0 (58 103 |11/12/96
3t—rtabber+—8—555—22—1101—16/16/96—T—
31 |lubber| 8 55.5 |58 103 |11/12/96
TS—rasty——30—-35-0—22— 61— 6H6/86——

S« ., . . Rl
S1.sid<Rl.sid
sidl |sname |rating |age (sid2 |bid |day
22 |dustin| 7 45.0 (58 [103 |11/12/96
31 |lubber| 8 55.5 |58 [103 (11/12/96

Equi-Jdoin

» A special case of condition join where the condition
contains only equalities

R>< Rattrl=S.attr2 >

» Result Schema similar to cross-product, but only one copy of
fields for which equality is specified.

Equi-doin Example

51 X R1

sidl |sname |rating |age |sid2 |bid |day

22 |dustin| 7 45.0 (22 {101 |10/10/96
T22=——reustimr 7145056110511/ 26T
3t—rtabber+—8—555—22—1101—16/16/96—T—
+FH—rtaber—8——555—5—03—3 11206

5ttty 035 02— 01550 ——

58 |rusty 10 |35.0 (58 103 |11/12/96
S« . Rl
sid
sid |sname |rating |age |bid |day
22 |dustin| 7 45.0 |101 |10/10/96
58 |rusty 10 (35.0 (103 |11/12/96

Natural Join

» Equijoin on all common fields

R>< S

» Common fields are NOT duplicated in the result

Union, Intersection, Set-Difference

» All of these operations take two input relations, which must be
union-compatible

Same number of fields.

Corresponding fields have the same domain (type)

» What is the schema of result?

Union Example

51
sid |sname |rating |age
22 |dustin 7 45.0
31 |lubber | 8 55.5
58 |rusty 10 |35.0

S2
sid [sname |rating |age
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 |guppy | 95 35.0
58 |rusty 10 |35.0

sid |sname |rating |age

22 |dustin / 45.0

31 |lubber | 8 55.5

58 |rusty 10 [35.0

44 |\guppy 5 35.0

28 |yuppy 9 35.0
S1US2

Intersection Example
51
sid |sname |rating |age
22 |dustin 7 45.0
31 |[lubber | 8 55.5
58 |rusty 10 |35.0
S2
sid [sname |rating |age
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 guppy | 5 35.0
58 |rusty 10 |35.0

sid |sname |rating |age

31 [lubber 8 55.5

58 |rusty 10 |35.0
S1NS2

Set-Difference Example
51
sid |sname (rating |age
22 |dustin 7 45.0
31 |[lubber | 8 55.5
58 |rusty 10 |35.0 :
sid [sname |rating |age
52 : 22 |dustin 7 45.0
sid |sname |rating |age
28 |yuppy | 9 |35.0 S1-52
31 |lubber | 8 55.5
44 |guppy | 95 35.0
58 |rusty 10 |35.0

