Relational Algebra Practice Queries

CS430/630 Lecture 3

Slides based on "Database Management Systems" 3rd ed, Ramakrishnan and Gehrke

Relational Algebra

Basic operations:

- <u>Selection</u> σ Selects a subset of rows from relation
- <u>Projection</u> π Deletes unwanted columns from relation
- Cross-product X Allows us to combine several relations
- Join Combines several relations using conditions
- Division \div A bit more complex, will cover later on
- ▶ <u>Set-difference</u> <u>Union</u> \cup <u>Intersection</u> \cap
- Renaming ρ Helper operator, does not derive new result, just renames relations and fields

 $\rho(R(F), E)$

▶ F contains oldname →newname pairs

Operator Precedence

- In decreasing order of priority:
 - 1. <u>Selection</u> σ <u>Projection</u> π
 - 2. Cross-product χ Join \bowtie
 - 3. <u>Set-difference</u> <u>Intersection</u>
 - 4. <u>Union</u> U

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

bid	name	color
101	interlake	red
103	clipper	green

sid	bid	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Find names of sailors who've reserved boat #103

$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie \text{Sailors})$$

$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

bid	name	color
101	interlake	red
103	clipper	green

sid	bid	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Find names of sailors who've reserved a red boat

 $\pi_{sname}(\pi_{sid}((\pi_{bid}(\sigma_{color='red'}Boats))) \bowtie \operatorname{Res}) \bowtie Sailors)$

 $\pi_{sname}((\sigma_{color='red'}Boats) \bowtie \text{Reserves} \bowtie Sailors)$

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

bid	name	color
101	interlake	red
103	clipper	green

sid	bid	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Find names of sailors who've reserved a red or a green boat

 ρ (Tempboats, ($\sigma_{color='red' \lor color='green'}$ Boats))

 π_{sname} (Tempboats \bowtie Reserves \bowtie Sailors)

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

bid	name	color
101	interlake	red
103	clipper	green

sid	bid	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Find names of sailors who've reserved a red <u>and</u> a green boat ρ (*Tempred*, $\pi_{sid}((\sigma_{color='red'}Boats)) \bowtie \text{Reserves}))$

 ρ (Tempgreen, π_{sid} (($\sigma_{color = green}$, Boats) \bowtie Reserves))

 $\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$

Þ

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

bid	name	color
101	interlake	red
103	clipper	green

sid	bid	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Find names of sailors who've reserved only red boats ρ (Tempred, π_{sid} (($\sigma_{color}='red'$, Boats)) $\approx Reserves$)) ρ (Tempothers, π_{sid} (($\sigma_{color}='red'$, Boats)) $\approx Reserves$))

 $\pi_{sname}((Tempred-Tempothers) \bowtie Sailors)$

An Example of Self-Joins

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Find sailors with maximum age

An Example of Self-Joins

sid	sname	rating	age	sid	sname	rating	age
$\gamma\gamma$	dustin	7	45.0	ha	ductin	7	45.0
22	dustin	7	45.0	31	lubber	8	55.5
22	dustin	7	45.0	58	rusty	10	35.0
31	lubber	8	55.5		dustin		45.0
31	lubber	8	55.5	D 1	lubber	8	55.5
31				58	TUSTV	10	25.0
58	rusty	10	35.0	22	dustin	7	45.0
58	rusty	10	35.0	31	lubber	8	55.5
50	miatu	10	25.0	50	minety	10	25.0
50	Tusty	10			rusty		55.0

An Example of Self-Joins

 $\rho(S1, Sailors)$ $\rho(S2, Sailors)$

$$\rho (TempJoin(1 \rightarrow f1,2 \rightarrow f2,3 \rightarrow f3,4 \rightarrow f4),$$

$$S1 \bowtie S1.age < S2.age \qquad S2)$$

$$\rho (LeftHalf,\pi_{f1,f2,f3,f4} TempJoin)$$

- Finally, subtract the resulting left hand side from the initial relation, and you get sailors with maximum ages
 - Final result is