
SQL Aggregate Queries

CS430/630
Lecture 8

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Aggregate Operators

Significant extension of relational algebra

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT COUNT (*)
FROM Sailors S

A is a single column

Result is single value obtained by applying aggregate over all
qualifying tuples

Aggregate Queries Examples

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)
 FROM Sailors S2)

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Aggregate + nested!

Common Mistake with Aggregates

 Can’t have both aggregates and non-aggregates in SELECT

 Exception: GROUP BY (later in this class)

 Reason: it is not guaranteed that there is only one tuple

with the MAX value

SELECT S.sname, MAX (S.age)
FROM Sailors S

Illegal Query!

Grouping Results

 So far, aggregates applied to all (qualifying) tuples

 We may want to apply them to each of several groups

 “Find the age of the youngest sailor for each rating level”

 In general, we don’t know how many rating levels exist, and what

the rating values for these levels are!

 Suppose we know that rating values go from 1 to 10

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = 1

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = 2

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = 10 …

How to achieve this?

Queries With GROUP BY and HAVING

 The target-list contains:

(i) attribute names list

(ii) terms with aggregate operations (e.g., MIN (S.age))

 The attribute list (i) must be a subset of grouping-list

 A group is a set of tuples that have the same value for all attributes in

grouping-list

 Each answer tuple corresponds to a group, so these attributes must

have a single value per group.

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Conceptual Evaluation

1. Compute cross-product of relation-list

2. Discard tuples that fail qualification, ‘unnecessary’ fields are

deleted

3. Remaining tuples are partitioned into groups by the value of

attributes in grouping-list

4. Discard groups that fail group-qualification

 Expressions in group-qualification must have a single value per group!

 An attribute in group-qualification that is not an argument of an

aggregate operation must appear in grouping-list (unless EVERY or

ANY used)

5. Generate single answer tuple per qualifying group

GROUPBY Query Example

SELECT S.rating, MIN (S.age)
 AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Sailors
“Find age of the youngest sailor with age at least

18, for each rating with at least 2 such sailors”

GROUPBY Conceptual Evaluation Example

rating minage

3 25.5

7 35.0

8 25.5

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

“Find age of the youngest sailor with age at least

18, for each rating with at least 2 such sailors”

More Group Qualification Functions

 So far, we have seen group qualification based on a property

of the group

 E.g., aggregate function computed for entire group

 But recent SQL standard version allow group qualification

based on a property of individual records

 EVERY(condition): TRUE if condition holds for every group tuple

 ANY(condition): TRUE if condition holds for some group tuple

Find age of the youngest sailor with age 18, for each rating

with at least 2 such sailors and with every sailor under 60.

rating minage

7 35.0

8 25.5

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

“Find age of the youngest sailor with age >= 18,

for each rating with at least 2 sailors (of any age)”

 HAVING executes AFTER WHERE

Pay attention to order of steps!

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

WRONG!!!

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

Find age of the youngest sailor with age >= 18,

for each rating with at least 2 sailors (of any age)

rating minage

3 25.5

7 35.0

8 25.5

10 35.0

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

“Find age of the youngest sailor with age >= 18,

for each rating with at least 2 sailors (of any age)”

 HAVING executes AFTER WHERE

 HAVING clause can also contain a subquery!

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
 FROM Sailors S2
 WHERE S.rating=S2.rating)

Pay attention to order of steps!

“Summary of cases” – INFORMAL!

 Can group validation condition be evaluated on “intermediate”
relation alone?

 If NO, then we need subquery in HAVING

 If YES, then we do not need subquery, and we have two further cases:

 Group validation condition DOES NOT depend on individual tuples in
group, only aggregates and group-by attributes appear in the HAVING
clause

 Group validation DOES depend on individual tuples in group, in which
case non-group-by attributes may appear with ANY or EVERY
operator

 Note: this is just a guideline for most cases, it is actually
possible to have a mix of the above!!!

Aggregates and FROM Subqueries

 Aggregate operations cannot be nested!

“Find rating that has lowest average sailor age”
SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
 FROM Sailors S
 GROUP BY S.rating) Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
 FROM Temp)

Correct solution:

WRONG

