
SQL Aggregate Queries

CS430/630
Lecture 8

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Aggregate Operators

Significant extension of relational algebra

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT COUNT (*)
FROM Sailors S

A is a single column

Result is single value obtained by applying aggregate over all
qualifying tuples

Aggregate Queries Examples

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)
 FROM Sailors S2)

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Aggregate + nested!

Common Mistake with Aggregates

 Can’t have both aggregates and non-aggregates in SELECT

 Exception: GROUP BY (later in this class)

 Reason: it is not guaranteed that there is only one tuple

with the MAX value

SELECT S.sname, MAX (S.age)
FROM Sailors S

Illegal Query!

Grouping Results

 So far, aggregates applied to all (qualifying) tuples

 We may want to apply them to each of several groups

 “Find the age of the youngest sailor for each rating level”

 In general, we don’t know how many rating levels exist, and what

the rating values for these levels are!

 Suppose we know that rating values go from 1 to 10

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = 1

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = 2

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = 10 …

How to achieve this?

Queries With GROUP BY and HAVING

 The target-list contains:

(i) attribute names list

(ii) terms with aggregate operations (e.g., MIN (S.age))

 The attribute list (i) must be a subset of grouping-list

 A group is a set of tuples that have the same value for all attributes in

grouping-list

 Each answer tuple corresponds to a group, so these attributes must

have a single value per group.

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Conceptual Evaluation

1. Compute cross-product of relation-list

2. Discard tuples that fail qualification, ‘unnecessary’ fields are

deleted

3. Remaining tuples are partitioned into groups by the value of

attributes in grouping-list

4. Discard groups that fail group-qualification

 Expressions in group-qualification must have a single value per group!

 An attribute in group-qualification that is not an argument of an

aggregate operation must appear in grouping-list (unless EVERY or

ANY used)

5. Generate single answer tuple per qualifying group

GROUPBY Query Example

SELECT S.rating, MIN (S.age)
 AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Sailors
“Find age of the youngest sailor with age at least

18, for each rating with at least 2 such sailors”

GROUPBY Conceptual Evaluation Example

rating minage

3 25.5

7 35.0

8 25.5

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

“Find age of the youngest sailor with age at least

18, for each rating with at least 2 such sailors”

More Group Qualification Functions

 So far, we have seen group qualification based on a property

of the group

 E.g., aggregate function computed for entire group

 But recent SQL standard version allow group qualification

based on a property of individual records

 EVERY(condition): TRUE if condition holds for every group tuple

 ANY(condition): TRUE if condition holds for some group tuple

Find age of the youngest sailor with age 18, for each rating

with at least 2 such sailors and with every sailor under 60.

rating minage

7 35.0

8 25.5

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5



rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

“Find age of the youngest sailor with age >= 18,

for each rating with at least 2 sailors (of any age)”

 HAVING executes AFTER WHERE

Pay attention to order of steps!

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

WRONG!!!

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

Find age of the youngest sailor with age >= 18,

for each rating with at least 2 sailors (of any age)

rating minage

3 25.5

7 35.0

8 25.5

10 35.0

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

“Find age of the youngest sailor with age >= 18,

for each rating with at least 2 sailors (of any age)”

 HAVING executes AFTER WHERE

 HAVING clause can also contain a subquery!

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
 FROM Sailors S2
 WHERE S.rating=S2.rating)

Pay attention to order of steps!

“Summary of cases” – INFORMAL!

 Can group validation condition be evaluated on “intermediate”
relation alone?

 If NO, then we need subquery in HAVING

 If YES, then we do not need subquery, and we have two further cases:

 Group validation condition DOES NOT depend on individual tuples in
group, only aggregates and group-by attributes appear in the HAVING
clause

 Group validation DOES depend on individual tuples in group, in which
case non-group-by attributes may appear with ANY or EVERY
operator

 Note: this is just a guideline for most cases, it is actually
possible to have a mix of the above!!!

Aggregates and FROM Subqueries

 Aggregate operations cannot be nested!

“Find rating that has lowest average sailor age”
SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
 FROM Sailors S
 GROUP BY S.rating) Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
 FROM Temp)

Correct solution:

WRONG

