
Database Application Development

Oracle PL/SQL

CS430/630
Lecture 15

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Outline

 Embedded SQL

 Dynamic SQL

 JDBC (API)

 SQLJ (Embedded)

 Stored procedures

Many host languages:

C, Cobol, Pascal, etc.

Java

Stored Procedures

Why Stored Procedures?

 So far, all data processing is done at the client

 Lots of data may have to be transferred

 Functionality (code) replicated at each client

 Lots of state (e.g., locks, transaction data) at the DBMS

 While client processes the data

 Stored procedures execute in same process space as DBMS

 Encapsulates application logic and is close to the data

 Reuse of common functionality by different clients

 Vendors introduced their own procedural extensions

 e.g., Oracle’s PL/SQL

SQL/PSM

 SQL Persistent Stored Modules

 SQL standard for stored procedures, available in SQL:2003

 Commercial vendors may offer own extensions of PSM

 Standard language for stored procedures

 Supports both procedures and functions

 Functions can return results through RETURN statement

 Procedures can return results in parameters

 In this course we focus on Oracle PL/SQL

PL/SQL

PL/SQL (Procedural Language SQL)

 Procedural extension to SQL developed by Oracle

 Most prominent DBMS procedural language

 Another language is T-SQL from Microsoft (MS SQL)

 Only DML allowed in PL/SQL

 DDL such as creating or dropping tables NOT allowed

 Basic program structure is a block

 There can be nested blocks

 PL/SQL syntax is not case sensitive (variable names as well)

PL/SQL Program Structure

DECLARE

 variable_declarations

BEGIN

 procedural_code

EXCEPTION

 error_handling

END;

PL/SQL in SQL Plus

 Ensure output goes to screen

 SET SERVEROUTPUT ON

 Executing PL/SQL in command line

 BEGIN

 DBMS_OUTPUT.PUT_LINE(‘Hello World’);

 END;

 /

 The / must be by itself on separate line

 DBMS_OUTPUT.PUT_LINE equivalent of printf() in C or

System.out.println() in Java

Data Types

 It is possible to use ORACLE SQL types

 NUMBER, VARCHAR, etc

 PL/SQL allows directly referring to a column type

 tablename.columnname%TYPE

e.g, SAILORS.SNAME%TYPE

 Also possible to define a row type (e.g., tuple)

 tablename%ROWTYPE

 Declaring a variable: <var_name> <TYPE>;

 sailor_rec SAILORS%ROWTYPE;

 Can later refer to individual fields using column names

 DBMS_OUTPUT.PUT_LINE(‘Name: ’ || sailor_rec.name ||

 ‘Age:’ || sailor_rec.age);

|| means string concatenation (like + in Java)

Assignments and Branches

 Assignment

 A := B + C;

 Branch

 IF condition THEN statements;

 ELSIF (condition) statements;

 ELSIF …

 ELSE statements;

 END IF;

Branch Example

DECLARE

 A NUMBER(6) := 10;

 B NUMBER(6);

BEGIN

 A := 23;

 B := A * 5;

 IF A < B THEN

 DBMS_OUTPUT.PUT_LINE(A || ’ is less than ’ || B);

 ELSE

 DBMS_OUTPUT.PUT_LINE(B || ’ is less-or-equal than ’ || A);

 END IF;

END;

 Output is: 23 is less than 115

Branch Example (2)

DECLARE

 NGRADE NUMBER;

 LGRADE CHAR(2);

BEGIN

 NGRADE := 82.5;

 IF NGRADE > 95 THEN

 LGRADE := ’A+’;

 ELSIF NGRADE > 90 THEN

 LGRADE := ’A’;

 ELSIF NGRADE > 85 THEN

 LGRADE := ’B+’;

 ELSIF NGRADE > 80 THEN

 LGRADE := ’B’;

 ELSE

 LGRADE := ’F’;

END IF;

Loops

LOOP

 statements

IF condition THEN

 EXIT;

END IF;

 statements

END LOOP;

LOOP

 statements

EXIT WHEN condition;

 statements

END LOOP;

Loop Example

DECLARE

 J NUMBER(6);

BEGIN

 J := 1;

 LOOP

 DBMS_OUTPUT.PUT_LINE(’J= ’ || J);

 J := J + 1;

 EXIT WHEN J > 5;

 DBMS_OUTPUT.PUT_LINE(’J= ’ || J);

 END LOOP;

END;

Output = ?

Loop Variants

WHILE condition

LOOP

 various_statements

END LOOP;

FOR counter IN startvalue .. endvalue

LOOP

 various_statements

END LOOP;

“For Loop” Example

BEGIN

 FOR K IN 1..5

 LOOP

 DBMS_OUTPUT.PUT_LINE(‘K= ’ || K);

 END LOOP;

END;

SQL Statements

 Data can be manipulated (DML) from PL/SQL

 SELECT must have INTO when cursors not used

DECLARE

 SID NUMBER(6);

BEGIN

 SID := 20;

 INSERT INTO Sailors (sid, name) VALUES (SID, ’Rusty’);

 SID := SID + 1;

 INSERT INTO Sailors (sid, name) VALUES (SID, ’Yuppy’);

END;

SQL Statements – retrieving data

 As before, there are two cases

1. Single-tuple result (the “easy” case)
SELECT selectfields INTO declared_variables

FROM table_list WHERE search_criteria;

DECLARE

 VAR_NAME Sailors.name%TYPE;

 VAR_AGE Sailors.age%TYPE;

BEGIN

 SELECT name, age INTO VAR_NAME, VAR_AGE

 FROM Sailors WHERE SID = 10;

 DBMS_OUTPUT.PUT_LINE(‘Age of ’ || VAR_NAME || ’ is ’ ||
VAR_AGE);

END;

SQL Statements – retrieving data

2. Multiple-tuples result: cursors are needed

CURSOR cursorname IS SELECT_statement;

OPEN cursorname;

FETCH cursorname INTO variable_list;

CLOSE cursorname;

Cursor Example

DECLARE

 S Sailors%ROWTYPE;

 CURSOR SAILORCURSOR IS

 SELECT * FROM Sailors;

BEGIN

 OPEN SAILORCURSOR;

 LOOP

 FETCH SAILORCURSOR INTO S;

 EXIT WHEN SAILORCURSOR %NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(’AGE OF ’ || S.sname || ’
 IS ’ || S.age);

 END LOOP;

 CLOSE SAILORCURSOR ;

END;

Cursor Attributes

%NOTFOUND: Evaluates to TRUE when cursor has no more rows

to read. FALSE otherwise

%FOUND: Evaluates to TRUE if last FETCH was successful and

FALSE otherwise

%ROWCOUNT: Returns the number of rows that the cursor has

already fetched from the database

%ISOPEN: Returns TRUE if this cursor is already open, and FALSE

otherwise

Declaring a Procedure

CREATE OR REPLACE

PROCEDURE procedure_name (parameters) IS

 variable declarations

BEGIN

 procedure_body

END;

 Parameters can be IN, OUT or INOUT, default is IN

CREATE OR REPLACE

PROCEDURE SUM_AB (A INT, B INT, C OUT INT) IS

BEGIN

 C := A + B;

END;

Declaring a Function

CREATE OR REPLACE

FUNCTION function_name (function_params) RETURN return_type IS

 variable declarations

BEGIN

 function_body

 RETURN something_of_return_type;

END;

 Example

CREATE OR REPLACE

FUNCTION ADD_TWO (A INT, B INT) RETURN INT IS

BEGIN

 RETURN (A + B);

END;

Exceptions

 Exceptions defined per block (similar to Java)

 Each BEGIN…END has its own exception handling

 If blocks are nested, exceptions are handled in an “inside to

outside” fashion

 If no block in the nesting handles the exception, a runtime error

occurs

 There are multiple types of exceptions

 Named system exceptions (most frequent) – we only cover these

 Unnamed system exceptions

 User-defined exceptions

Exceptions

 DECLARE

 …

 BEGIN

 EXCEPTION

 WHEN ex_name1 THEN

 error handling statements

 WHEN ex_name2 THEN

 error handling statements

 …

 WHEN Others THEN

 error handling statements

END;

Named System Exceptions

Exception Name Reason Error Number

CURSOR_ALREADY_OPEN When you open a cursor that is

already open.

ORA-06511

INVALID_CURSOR When you perform an invalid

operation on a cursor like closing

a cursor or fetch data from a

cursor that is not opened.

ORA-01001

NO_DATA_FOUND When a SELECT...INTO clause

does not return any row from a

table.

ORA-01403

TOO_MANY_ROWS When you SELECT or fetch more

than one row into a record or

variable.

ORA-01422

ZERO_DIVIDE When you attempt to divide a

number by zero.

ORA-01476

