Database Application Development
Oracle PL/SQL

CS430/630
Lecture 15

Slides based on “Database Management Systems™ 3 ed, Ramakrishnan and Gehrke

Outline

' Embedc.led QL Many host languages:
» Dynamic SQL C, Cobol, Pascal, etc.

» JDBC (API)

» SQUJ (Embedded) | J2V@

» Stored procedures

Stored Procedures

Why Stored Procedures?

» So far, all data processing is done at the client
Lots of data may have to be transferred
Functionality (code) replicated at each client
Lots of state (e.g., locks, transaction data) at the DBMS
While client processes the data
» Stored procedures execute in same process space as DBMS
Encapsulates application logic and is close to the data
Reuse of common functionality by different clients

» Vendors introduced their own procedural extensions
e.g., Oracle’s PL/SQL

SQL/PSM

» SQL Persistent Stored Modules
SQL standard for stored procedures, available in SQL:2003

Commercial vendors may offer own extensions of PSM

» Standard language for stored procedures
Supports both procedures and functions
Functions can return results through RETURN statement

Procedures can return results in parameters

» In this course we focus on Oracle PL/SQL

PL/SQL

PL/SQL (Procedural Language SQL)

» Procedural extension to SQL developed by Oracle

Most prominent DBMS procedural language
Another language is T-SQL from Microsoft (MS SQL)

» Only DML allowed in PL/SQL
DDL such as creating or dropping tables NOT allowed

» Basic program structure is a block

There can be nested blocks

» PL/SQL syntax is not case sensitive (variable names as well)

PL/SQL Program Structure

DECLARE

variable declarations
BEGIN

procedural code
EXCEPTION

error_handling
END;

PL/SOL in SQL Plus

» Ensure output goes to screen
SET SERVEROUTPUT ON

» Executing PL/SQL in command line
BEGIN
DBMS_OUTPUT.PUT _LINE(‘Hello World’);
END;
/
The / must be by itself on separate line

» DBMS_OUTPUT.PUT _LINE equivalent of printf() in C or
System.out.println() in Java

Data Types

» It is possible to use ORACLE SQL types
NUMBER,VARCHAR, etc

» PL/SQL allows directly referring to a column type
tablename.columnname?%TYPE

e.g, SAILORS.SNAME?%TYPE

» Also possible to define a row type (e.g., tuple)
tablename%ROWTYPE

» Declaring a variable: <var_name> <TYPE>;
sailor _rec SAILORS%ROWTYPE;

» Can later refer to individual fields using column names

DBMS OUTPUT.PUT_LINE(‘Name:’ || sailor_rec.name ||
‘Age:’ || sailor_rec.age);
|| means string concatenation (like + in Java)

Assignments and Branches

» Assignment
A=B+C

» Branch
IF condition THEN statements;

ELSIF (condition) statements;
ELSIF ...

ELSE statements;
END IF;

Branch Example

DECLARE
A NUMBER(6) := 10;
B NUMBER(6);
BEGIN
A = 23;
B .= A * 5;
IF A < B THEN
DBMS_OUTPUT.PUT_LINE(A || "is less than’ || B);
ELSE
DBMS_OUTPUT.PUT_LINE(B ||’ is less-or-equal than’ || A);
END IF;
END;

» Outputis: 23 is less than |15

Branch Example (2)

DECLARE
NGRADE NUMBER;
LGRADE CHAR(2);
BEGIN
NGRADE := 82.5;
IF NGRADE > 95 THEN
LGRADE := A+’
ELSIF NGRADE > 90 THEN

LGRADE := ’"A’;

ELSIF NGRADE > 85 THEN
LGRADE := ’B+’;

ELSIF NGRADE > 80 THEN
LGRADE := ’B’;

ELSE
LGRADE := ’F;

END IF;

Loops

LOOP
statements

IF condition THEN
EXIT;

END IF;

statements
END LOOP;

LOOP
statements
EXIT WHEN condition;

statements
END LOOP;

Loop Example

DECLARE
] NUMBER(6);
BEGIN
] =1
LOOP
DBMS _OUTPUT.PUT_LINE(C)= " ||));
J =]+ 1
EXIT WHEN | > 5;
DBMS_OUTPUT.PUT_LINE(C)=" ||));
END LOOP;
END;
Output =?

Loop Variants

WHILE condition
LOOP

various_statements
END LOOP;

FOR counter IN startvalue ..

LOOP
various statements
END LOOP;

endvalue

“For Loop” Example

BEGIN
FOR K IN 1.5
LOOP
DBMS_OUTPUT.PUT_LINE(‘K= " || K);
END LOOP;
END;

SQL Statements

» Data can be manipulated (DML) from PL/SQL
SELECT must have INTO when cursors not used

DECLARE
SID NUMBER(6);
BEGIN
SID = 20;
INSERT INTO Sailors (sid, name) VALUES (SID, ’Rusty’);
SID := SID + |;
INSERT INTO Sailors (sid, name) VALUES (SID, "Yuppy’);
END;

SQL Statements — retrieving data

» As before, there are two cases

I. Single-tuple result (the “easy” case)
SELECT selectfields INTO declared variables
FROM table list WHERE search_criteria;

DECLARE
VAR NAME Sailors.name%TYPE;
VAR AGE Sailors.age%TYPE;
BEGIN
SELECT name,age INTO VAR NAME, VAR _AGE
FROM Sailors WHERE SID = 10;

DBMS_OUTPUTPUT _LINE(‘Age of * || VAR_NAME || ’ is ’ ||
VAR_AGE);

END;

SQL Statements — retrieving data

2. Multiple-tuples result: cursors are needed
CURSOR cursorname IS SELECT statement;

OPEN cursorname;
FETCH cursorname INTO variable list;

CLOSE cursorname;

Cursor Example

DECLARE
S Sailors’%?ROWTYPE;
CURSOR SAILORCURSOR IS
SELECT * FROM Sailors;
BEGIN
OPEN SAILORCURSOR;
LOOP
FETCH SAILORCURSOR INTO §;
EXIT WHEN SAILORCURSOR %NOTFOUND;
DBMS OUTPUT.PUT_LINECAGE OF ’ || S.sname || ’
IS 7 || S.age);
END LOOP;
CLOSE SAILORCURSOR ;
END;

Cursor Attributes

%NOTFOUND: Evaluates to TRUE when cursor has no more rows
to read. FALSE otherwise

%FOUND: Evaluates to TRUE if last FETCH was successful and
FALSE otherwise

%ROWCOUNT: Returns the number of rows that the cursor has
already fetched from the database

7%ISOPEN: Returns TRUE if this cursor is already open, and FALSE
otherwise

Declaring a Procedure

CREATE OR REPLACE

PROCEDURE procedure _name (parameters) IS
variable declarations

BEGIN

procedure_body
END;

Parameters can be IN, OUT or INOUT, default is IN
CREATE OR REPLACE
PROCEDURE SUM_AB (A INT, B INT, C OUT INT) IS
BEGIN
C = A + B;
END;

Declaring a Function

CREATE OR REPLACE
FUNCTION function_name (function_params) RETURN return_type IS
variable declarations
BEGIN
function_body
RETURN something of return_type;
END;
Example
CREATE OR REPLACE
FUNCTION ADD_TWO (A INT,B INT) RETURN INT IS
BEGIN
RETURN (A + B);
END;

Exceptions

» Exceptions defined per block (similar to Java)
Each BEGIN...END has its own exception handling

If blocks are nested, exceptions are handled in an “inside to
outside” fashion

If no block in the nesting handles the exception, a runtime error
occurs

» There are multiple types of exceptions
Named system exceptions (most frequent) — we only cover these

Unnamed system exceptions

User-defined exceptions

Exceptions

DECLARE
BEGIN
EXCEPTION
WHEN ex _namel THEN
error handling statements

WHEN ex_name2 THEN

error handling statements

WHEN Others THEN
error handling statements
END;

Named System Exceptions

Exception Name

Reason

Error Number

CURSOR_ALREADY_OPEN

When you open a cursor that is
already open.

ORA-0651 |

INVALID_CURSOR

When you perform an invalid
operation on a cursor like closing
a cursor or fetch data from a
cursor that is not opened.

ORA-01001

NO_DATA_FOUND

When a SELECT...INTO clause

does not return any row from a
table.

ORA-01403

TOO_MANY_ROWS

When you SELECT or fetch more
than one row into a record or
variable.

ORA-01422

ZERO_DIVIDE

When you attempt to divide a
number by zero.

ORA-01476

