
Schema Refinement and

Normal Forms

CS430/630
Lecture 16

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Why Schema Refinement?

 We have learnt the advantages of relational tables …

 … but how to decide on the relational schema?

 At one extreme, store everything in single table

 Huge redundancy

 Leads to anomalies!

 We need to break the information into several tables

 How many tables, and with what structures?

 Having too many tables can also cause problems

 E.g., performance, difficulty in checking constraints

Sample Relation

Hourly_Emps (ssn, name, lot, rating, wage, hrs_worked)

 Denote relation schema by attribute initial: SNLRWH

 Constraints (dependencies)

 ssn is the key: S SNLRWH

 rating determines wage: R W

 E.g., worker with rating A receives 20$/hr





Anomalies

 Problems due to R W :

 Update anomaly: Change value of W only in a tuple – dependency violation

 Insertion anomaly: How to insert employee if we don’t know hourly wage for

that rating?

 Deletion anomaly: If we delete all employees with rating 5, we lose the

information about the wage for rating 5!



S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

Removing Anomalies

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7

Hourly_Emps2 Wages

Create 2 smaller tables!

 Updating rating of employee will result in the wage “changing” accordingly

 Note that there is no physical change of W, just a “pointer change”

 Deleting employee does not affect rating-wages data

Dealing with Redundancy

 Redundancy is at the root of redundant storage,

insert/delete/update anomalies

 Integrity constraints, in particular functional dependencies, can

be used to identify redundancy

 Main refinement technique: decomposition (replacing ABCD

with, say, AB and BCD, or ACD and ABD)

 Decomposition should be used judiciously:

 Decomposition may sometimes affect performance. Why?

 What problems (if any) does decomposition cause?

 Incorrect data

 Loss of dependencies

Functional Dependencies (FDs)

 A functional dependency X Y holds over relation R if

for every instance r of R

 t1, t2 r, (t1) = (t2) implies (t1) = (t2)

 given two tuples in r, if the X values agree, Y values must also

agree

 FD is a statement about all allowable relations.

 Identified based on semantics of application (business logic)

 Given an instance r of R, we can check if it violates some FD f,

but we cannot tell if f holds over R!



  X
 X

 Y Y

FDs and Keys

 FDs are a generalization of keys

 A key uniquely identifies all attribute values in a tuple

 That is a particular case of FD …

 … but not all FDs must determine ALL attributes

 K is a key for R means that K R

 However, K R does not require K to be minimal!

 K can be a superkey as well





Reasoning About FDs

 Given FD set F, we can usually infer additional FDs:

 = closure of F is the set of all FDs that are implied by F

 Armstrong’s Axioms (X, Y, Z are sets of attributes):

 Reflexivity: If Y X, then X Y

 Augmentation: If X Y, then XZ YZ for any Z

 Transitivity: If X Y and Y Z, then X Z

 These are sound and complete inference rules for FDs!

F 

 

 
  

Reasoning About FDs (cont’d)

 Additional rules

 Not necessary, but helpful

 Union and decomposition (splitting)

 X Y and X Z => X YZ

 X YZ => X Y and X Z 

 
 

 SDJ JP, JP CSJDPQV imply SDJ CSJDPQV

An Example of FD Inference

 Contracts(cid, sid, jid, did, pid, qty, value), and:

 Contract id, supplier, project, department, part

 C is the key: C CSJDPQV

 Project purchases each part using single contract: JP C

 Dept purchases at most one part from a supplier: SD P






  

 

  

 SD P implies SDJ JP

 JP C, C CSJDPQV imply JP CSJDPQV

Attribute Closure

 Attribute closure of X (denoted X) wrt FD set F:

 Set of all attributes A such that X A is in F

 Set of all attributes that can be determined starting from

attributes in X and using FDs in F

 Apply split rule such that all FDs have single attr in RHS

X = X

Repeat
Y=X

Search all FDs in F with LHS completely included in X

Add RHS of those FDs to X

Until Y=X





A












Verifying if given FD in FD-set closure

 Computing the closure of a set of FDs can be expensive

 Size of closure is exponential in number of attributes!

 But if we just want to check if a given FD X Y is in the

closure of a set of FDs F:

 Can be done efficiently without need to know F+

 Compute wrt F

 Check if Y is in



X

X

Verifying if attribute set is a key

 Key verification can also be done with attribute closure

 To verify if X is a key, two conditions needed:

 X+ = R

 X is minimal

 How to test minimality

 Removing an attribute from X results in X’ such that X’+ <> R

