Schema Refinement and
Normal Forms

CS430/630
Lecture 16

Slides based on “Database Systems” 3 ed, and Gehrke

Why Schema Refinement?

» We have learnt the advantages of relational tables ...
» ... but how to decide on the relational schema?

» At one extreme, store everything in single table
Huge redundancy
Leads to anomalies!

» We need to break the information into several tables
How many tables, and with what structures?
Having too many tables can also cause problems
E.g.,, performance, difficulty in checking constraints

Sample Relation

Hourly_Emps (ssn, name, lot, rating, wage, hrs_worked)
» Denote relation schema by attribute initial: SNLRWH

» Constraints (dependencies)
ssnis the key: S ™ SNLRWH
rating determines wage: R —> W
E.g., worker with rating A receives 20$/hr

Anomalies

» Problems due to R—» W :
Update anomaly: Change value of W only in a tuple — dependency violation
Insertion anomaly: How to insert employee if we don’t know hourly wage for
that rating?
Deletion anomaly: If we delete all employees with rating 5, we lose the
information about the wage for rating 5!

A
S N L R WH
123-22-3666 |Attishoo (48 |8 10 40
231-31-5368 |Smiley 22 8 10 30
131-24-3650 |Smethurst (35 5 7 30
434-26-3751 |Guldu 3% 5 7 32
612-67-4134 |Madayan |35 |8 10 40

Removing Anomalies

Hourly_Emps2 Wages
S] N L R H R W
123-22-3666 |Attishoo (48 |8 |40 8 10 |
231-31-5368 |Smiley 22 8 |30 |5 7
131-24-3650 |Smethurst {35 |5 |30
434-26-3751 |Guldu 35 5 32
612-67-4134 |Madayan |35 |8 |40 Create 2 smaller tables!

» Updating rating of employee will result in the wage “changing” accordingly
Note that there is no physical change of WV, just a “pointer change”

» Deleting employee does not affect rating-wages data

Dealing with Redundancy

» Redundancy is at the root of redundant storage,
insert/delete/update anomalies
» Integrity constraints, in particular functional dependencies, can
be used to identify redundancy
» Main refinement technique: decomposition (replacing ABCD
with, say, AB and BCD, or ACD and ABD)
» Decomposition should be used judiciously:
Decomposition may sometimes affect performance. Why?
What problems (if any) does decomposition cause?
Incorrect data
Loss of dependencies

Functional Dependencies (FDs)

» A functional dependency X — Y holds over relation R if
for every instance r of R
tht2er Ty (tl) =7y (t2) implies Ty (t1)= v (t2)
given two tuples in r,if the X values agree, Y values must also
agree

» FD is a statement about all allowable relations.
Identified based on semantics of application (business logic)

Given an instance r of R, we can check if it violates some FD f,
but we cannot tell if f holds over R!

FDs and Keys

» FDs are a generalization of keys
A key uniquely identifies all attribute values in a tuple
That is a particular case of FD ...
... but not all FDs must determine ALL attributes

» Kis a key for R means that K— R
However, K— R does not require K to be minimal!
K can be a superkey as well

Reasoning About FDs
» Given FD set F, we can usually infer additional FDs:
F ¥ = closure of F is the set of all FDs that are implied by F
» Armstrong’s Axioms (X,Y,Z are sets of attributes):
Reflexivity: If Y < X, then X —> Y
Augmentation: If X—> Y, then XZ — YZ forany Z

Transitivity: If X —>Y and Y —> Z, then X —> Z

» These are sound and complete inference rules for FDs!

Reasoning About FDs (cont’d)

» Additional rules
Not necessary, but helpful

» Union and decomposition (splitting)
X—=>Yand X >Z=>X—2>YZ
X—YZ=>X —>Yand X >Z

An Example of FD Inference
» Contracts(cid, sid, jid, did, pid, qty, value), and:

Contract id, supplier; project, department, part

Cis thekey: C — CS§JDPQV

Project purchases each part using single contract: JP —> C
Dept purchases at most one part from a supplier: SD— P

» JP=>C, C = CS|DPQV imply JP = CSJDPQV
» SD ™ P implies SD] —>JP
» SD) —JB JP—> CSJDPQV imply SDJ = CSJDPQV

Attribute Closure

4+
» Attribute closure of X (denoted X') wrt FD set F:
Set of all attributes A such that X —> A'is in F+

Set of all attributes that can be determined starting from
attributes in X and using FDs in F

» Apply_'s_plit rule such that all FDs have single attr in RHS
X =X
Repeat
peat
Y=X +
Search all FDs in F with LHSjrompIetely included in X
Add RHS cithose FDs to X
Until Y=X

Verifying if given FD in FD-set closure

» Computing the closure of a set of FDs can be expensive
Size of closure is exponential in number of attributes!

» But if we just want to check if a given FD X— Y is in the
closure of a set of FDs F:
Can be done efficiently without need to know F*
Compute X+ wrt F
Check ifY isin XT

Verifying if attribute set is a key
» Key verification can also be done with attribute closure
» To verify if X is a key, two conditions needed:

X*=R
X is minimal

» How to test minimality
Removing an attribute from X results in X’ such that X'* <> R

